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Robust inference for longitudinal data analysis
with non-ignorable and non-monotonic missing
values

Chi-hong Tseng
∗
, Robert Elashoff, Ning Li and Gang Li

A common problem in the longitudinal data analysis is
the missing values due to subject’s missed visits and loss
to follow up. Although many novel statistical approaches
have been developed to handle such data structures in re-
cent years, few methods are available to provide robust infer-
ence in the presence of outlying observations. In this paper
we propose two methods, t-distribution model and robust
normal model, for robust inference with non-ignorable non-
monotonic missing data problems in longitudinal studies.
These methods are conceptually simple and computation-
ally straight forward. We also conduct simulation studies
and use a real data example to demonstrate the performance
of these methods.

Keywords and phrases: Pseudo-likelihood, t-distribu-
tion, Huber function, Missing not at random.

1. INTRODUCTION

Longitudinal studies are frequently used in clinical re-
search to monitor disease progression and treatment effects
over time. The most commonly used model to analyse con-
tinuous longitudinal data is the linear mixed-effects model
proposed by Laird et al. (1982). This model specifies flexi-
ble random effects to describe the within-subject correlation
present in the longitudinal data. However, the normality as-
sumption in the linear mixed effects model is often unrealis-
tic and its performance may be compromised when the un-
derlying normality assumption is violated (Pinheiro et al.,
2001).

To relax the restricted normality assumption in longitu-
dinal data analysis, various robust approaches have been
proposed in the context of likelihood inference. Huggins
(1993) and Richardson et al. (1995) considered reweight-
ing each observation’s contribution to the likelihood func-
tion and score equations to reduce the impact of outliers.
Similarly, Gill (2000) used the robust version of the likeli-
hood function and discussed its inference on regression co-
efficients, covariance parameters estimation, prediction and
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model selection. Others used a broader family of distribu-
tions with less restriction to allow flexible modelling of ran-
dom effects and measurement error distributions. For ex-
ample Pinheiro et al. (2001) proposed linear mixed effects
models with a t distribution for random effects and mea-
surement errors. Verbeke et al. (1996) used a mixture of
normal distributions to model random effects. They also
proposed statistical tests for heterogeneity in the random-
effects distribution. Zhang et al. (2001) considered the semi-
nonparametric (SNP) method that allows the random effects
to follow a density belonging to a class of smooth densities.
Ghidey et al. (2004) proposed the penalized Gaussian mix-
ture model for random effects.

Another concern in longitudinal data analysis is the miss-
ing data problem. During the course of study follow-up,
the outcome variables and covariates can be missing due
to subjects’ non-response, dropout, death or other reasons.
There is a rich statistical literature on the analysis of miss-
ing data. Little et al. (2002) defined and discussed various
missing data mechanisms. If the missingness is independent
of the observed and unobserved data, the missing mecha-
nism is missing completely at random (MCAR). If given
the observed data, the missingness is independent of unob-
served data, it is defined as missing at random (MAR). With
MCAR or MAR data, the missing data mechanism (the dis-
tribution of the missing data) can be ignored when using
likelihood methods, and the missing data mechanism is con-
sidered ignorable (Little et al., 2002). However, in practice
it may be difficult to justify the independence assumptions
of MCAR or MAR, and we need to consider missing not
at random (MNAR), where the missing probability depends
on unobserved data. For example, in our motivating exam-
ple of the Scleroderma Lung Study, about 60% of patient
dropouts are due to death or treatment failure, which are
likely related to lack of treatment efficacy.

With non-ignorable missing data, statistical modelling of
the missing mechanisms along with the modelling of the
outcome of interest is generally required for unbiased infer-
ence (Hogan et al., 1981; Ibrahim et al., 2009). Three mod-
elling strategies are commonly used to handle non-ignorable
missing data: selection models, pattern mixture models and
shared parameter models. Selection models (Wu et al., 1988;
Schluchter, 1992) specify an overall outcome model and
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a missing mechanism model that describes how missing data
depend on the outcome variable. They provide a natural
way to express the outcome process and the missing mech-
anism. Pattern mixture models (Little, 1993) consider the
full data as a mixture of data from different missing data
patterns. They allow different outcome models for subjects
with different missing data patterns. Finally, shared param-
eter models use latent variables, such as random effects, to
account for the dependence between the outcome variable
and missingness. For example, Elashoff et al. (2007, 2008)
used a joint modelling approach to analyse the lung function
data in a Scleroderma study in the presence of non-ignorable
dropouts. They used a cause-specific hazard frailty model
for competing risk failure times, and a linear mixed effects
model for the outcome variable. The missing data caused
by the non-ignorable dropouts in the linear mixed effects
model are adjusted by the correlated random effects from
the frailty model and linear mixed effects model.

Two types of missing data patterns are generally distin-
guished (Ibrahim et al., 2009) in the statistical literature.
The first type is called “intermittently missing” or “not
monotonic missing”, where a subject may miss particular
visits during the course of study follow-up and return at
later scheduled visits. On the other hand, “dropout” or
“monotonic missing” data refer to a subject who leaves
the study at some point and never returns. Few methods
are available for non-monotonic and non-ignorable missing
data. Ibrahim et al. (2001) used a full likelihood approach
that specifies the joint likelihood of the outcome and missing
indicator to handle non-monotonic and non-ignorable miss-
ingness. The full likelihood approach requires a full specifi-
cation of the joint distribution of the data and missingness.
It is also computationally intensive, although efficient if the
specified model is true. Troxel et al. (1998) and Parzen et al.
(2006) proposed the pseudo-likelihood approach for the non-
monotonic and non-ignorable missing data problem. It re-
quires fewer modelling assumptions and simplifies computa-
tional effort.

1.1 Relationship to current literature

In this paper we are interested in making robust statisti-
cal inference that accommodates outlying observations with
non-monotonic and non-ignorable missing data in longitudi-
nal studies with continuous outcome variables. A number of
likelihood based extensions to incorporate robust inference
have been proposed for the non-ignorable missing data prob-
lem. For example, Brown et al. (2003) relaxed the distribu-
tional assumption of the random effects in the longitudinal
model. Li et al. (2009) used a t-distribution to model the
distribution of measurement and model errors; this model
effectively down-weights the influence of outlying observa-
tions. However, these methods are computationally intensive
and not applicable to non-monotonic missing data.

We extend the pseudo-likelihood approach (Troxel et al.,
1998; Parzen et al., 2006) with a t-distribution model

(Lange et al., 1989; Pinheiro et al., 2001; Li et al.,
2009) and a robust normal model (Huggins, 1993;
Richardson et al., 1995; Gill, 2000) to make robust infer-
ence with non-monotonic and non-ignorable missing data.
Troxel et al. (1998) used the pseudo-likelihood method to
analyse continuous longitudinal data, assuming a normal
distribution and allowing non-monotonic non-ignorable
missing data. However, as we will demonstrate in our
simulation study, the normal distribution assumption in
Troxel et al. (1998) lacks robust properties such that the
estimation is sensitive to outlying observations. Lange et al.
(1989) and Pinheiro et al. (2001) discussed the use of
t-distribution for robust inference without missing data.
Gill (2000) used the robust normal model with full likeli-
hood for robust inference without missing data. Li et al.
(2009) modelled longitudinal and survival data simulta-
neously to handle monotonic missing data. They used
the t distribution in the longitudinal model for robust
inference.

Our pseudo-likelihood approach uses the selection model
to handle the missing data problem; it consists of a linear
model that specifies the marginal distribution of the out-
come and a logistic regression model as the missing mech-
anism model that describes how missing data depend on
the outcome variable. The pseudo-likelihood approach has
several advantages. First, it only requires specification of
the marginal distribution of the outcome variable, without
making assumptions on the joint distribution of the data in
the longitudinal model. Second, because the model specifies
the marginal distribution of the outcome variable, it readily
provides the population average interpretation of the esti-
mates. Third, when compared to a full likelihood model, the
pseudo-likelihood approach has a simpler formulation and is
computationally straightforward. Our general model stated
above is also mathematically tractable and computationally
straightforward in comparison with other robust full likeli-
hood methods (Huggins, 1993; Gill, 2000).

The paper is organized as follows: in section 2, we present
the model specification and its inference based on the
pseudo-likelihood approach; in section 3, we conduct sim-
ulation studies to examine the effectiveness and the robust
properties of our methods; in section 4, we demonstrate the
methods with a real example from a scleroderma clinical
trial. We state the conclusions in section 5.

2. PSEUDO-LIKELIHOOD APPROACH

In this section, we formulate the selection model for non-
ignorable missing data and the inference based on pseudo-
likelihood approach according to Troxel et al. (1998) and
Parzen et al. (2006). Let Yi(t) be the outcome variable of
the ith subject at time t, and Ri(t) be the response indi-
cator of the ith subject at time t, for i = 1, . . . , n, and
t = 1, . . . ,K. Ri(t) = 1 if Yi(t) is observed, and Ri(t) = 0 if
Yi(t) is missing.Xi(t) andWi(t) are the predictive covariates
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for Yi(t) and Ri(t) respectively; they may be overlapped or
disjoint. We assume that the outcome variable Yi(t) is sub-
ject to non-ignorable missing data and Xi(t) and Wi(t) are
completely observed. To handle the non-ignorable missing-
ness, the selection model specifies an overall outcome model
and a missing mechanism model. The outcome variable Yi(t)
follows the marginal linear model with predictive covariate
Xi(t):

(1) Yi(t) = Xi(t)β + σεi(t).

We assume the marginal distribution of Yi(t) has a density
function f(Yi(t)|Xi(t)). The regression coefficients β are the
parameters of interest and σ is a scale parameter. εi(t) rep-
resent the standardized residual and are correlated. For the
missing mechanism model, we assume that Ri(t) is associ-
ated with covariates Wi(t) and current outcome Yi(t) with
a logistic model.

(2) Prob(Ri(t) = 1) =
exp(α0 +Wi(t)αw + Yi(t)αy)

1 + exp(α0 +Wi(t)αw + Yi(t)αy)

Equations (1) and (2) constitute our model.

The pseudo-likelihood (Gong et al., 1981) is then formu-
lated by fixing the nuisance parameters of pairwise correla-
tions at zero; the data of different time points are treated as
independent. Let Θ = (β, σ, α), the pseudo-likelihood and
log pseudo-likelihood are given by,

L(Θ)

=

n∏
i=1

K∏
t=1

[f(Yi(t)|Xi(t))f(Ri(t)|Wi(t), Yi(t))]
Ri(t)

×
[∫

f(Yi(t)|Xi(t))f(Ri(t)|Wi(t), Yi(t))dYi(t)

]1−Ri(t)

,

�(Θ) = logL(Θ) =

n∑
i=1

�i(β, σ, α) =

n∑
i=1

K∑
t=1

�ti(Θ),

and

�ti(Θ) = Ri(t)[log f(Yi(t)|Xi(t))

+ log f(Ri(t)|Wi(t), Yi(t))]

+ (1−Ri(t)) log

∫
f(Yi(t)|Xi(t))

× f(Ri(t)|Wi(t), Yi(t))dYi(t)

The maximum pseudo-likelihood estimator Θ̂ = (β̂, σ̂, α̂)
maximizes the log pseudo-likelihood, and it can be obtained
by solving the pseudo score equations:

(3) S(Θ) =
∂

∂Θ
�(Θ) =

n∑
i=1

∂

∂Θ
�i(Θ) =

n∑
i=1

Si(Θ) = 0

Troxel et al. (1998) demonstrated the consistency of the
maximum pseudo likelihood estimator if the longitudinal
model and missing model are correctly specified. We also
provide an analysis of the consistency of our t distribution
model in the Appendix. Because the observations from the
same individual are likely correlated, we need to use the
“sandwich” variance estimator (White, 1982; Liang et al.,
1986).

n1/2(Θ̂−Θ) −→ N(0,Σ(Θ))

where

Σ(Θ)

=

[
1

n
E

(
∂(Θ)

∂S(Θ)

)]−1
1

n

∑
E(Si(Θ)S′

i(Θ))

[
1

n
E

(
∂S(Θ)

∂(Θ)

)]−1

A consistent variance estimator can be obtained by Σ̂ =
Σ(Θ̂).

The pseudo-likelihood approach in the missing data prob-
lem is also related to the expected score method proposed
by Wang et al. (2001, 2008). For an observed Yi(t), its con-
tribution to the score equation (3) is

Si(t,Θ) =
∂

∂Θ
�ti(Θ)

(4)

=
∂

∂Θ
log f(Yi(t)|Xi(t)) + log f(Ri(t)|Wi(t), Yi(t)).

When Yi(t) is unobserved, its contribution to the score
equation (3) has a nice mathematical expression as the
conditional expectation of Si(t,Θ) given the observed data
Oi(t) = (Ri(t) = 0, Xi(t),Wi(t)).

∂

∂Θ

∫
Yi(t)

f(Yi(t)|Xi(t))f(Ri(t) = 0|Wi(t), Yi(t))dYi(t)(5)

= E [Si(t,Θ)|Oi(t)]

The overall pseudo score equations (3) combine the likeli-
hood score (4) from the complete data, and the conditional
expectation of score (5) for incomplete data. Furthermore,
for the incomplete data, the derivative of the score can be
expressed as a combination of conditional expectation of
Si(t,Θ) and its derivative ∂

∂ΘSi(t,Θ):

E

[
∂

∂Θ
Si(t,Θ)|Oi(t)

]
+ E [Si(t,Θ)S′

i(t,Θ)|Oi(t)](6)

− E [Si(t,Θ)|Oi(t)]E [S′
i(t,Θ)|Oi(t)]

2.1 Robust inference

The first robust inference approach uses a t-distribution
to characterize the marginal distribution of the outcome.
The marginal distribution of εi(t) in equation (1) follows a
t-distribution with v degrees of freedom; εi(t) ∼ t−distribu-
tion(v), t = 1, . . . ,K. There are various ways to incorporate
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the t distribution model for robust inferences (Lange et al.,
1989). For example, given sufficient data, one can estimate
v based on likelihood method. In this article, we use a fixed
v = 3 throughout for robust inference. The t distribution
with 3 degrees of freedom has sufficient long tails and pro-
vides a considerable degree of down-weighting for extreme
outliers (Lange et al., 1989). It also simplifies the model and
computational effort, as recommended by Tukey (1949) and
Lange et al. (1989).

The second robust inference approach incorporates the
robust normal likelihood (Huggins, 1993; Gill, 2000). The
log-likelihood for an observed Yi(t) in the outcome model
equation (1) under the normal distribution assumption is,

log f(Yi(t)|Xi(t))

= constant− 1

2
log σ2 − 1

2

(
Yi(t)−Xi(t)β

σ

)2

= constant− 1

2
log σ2 − 1

2
εi(t)

2

To bound the influence of outlying observations, we replace
1
2εi(t)

2 by Huber’s ρ function:

ρ(e) =
1

2
e2, if |e| ≤ c

= c|e| − 1

2
c2, if |e| > c

where c is some constant. We use c = 1.345; it produces 95%
efficiency when the errors are normal and still offers protec-
tion against outliers. The robust log-likelihood becomes

constant− 1

2
κ log σ2 − 1

2
κρ(εi(t))

with the consistent correction factor κ = E[e ∂
∂eρ(e)]

(Huggins, 1993).

For both methods, the maximization of pseudo-likelihood
with respect to the unknown parameters can be carried out
by the Newton Raphson method. We calculate the condi-
tional expectation in equations (5) and (6) by numerical in-
tegration over the unobserved outcomes using the 20-point
Gauss Hermite quadrature (Abramowitz et al., 1972). To
choose the initial values for maximization by the Newton
Raphson method, we first conduct a multiple linear regres-
sion to regress Y on covariate X to obtain the initial values
for β and σ. Then a logistic regression is used to obtain the
initial value for αw, which estimates the association between
missing indicators (R) and W . The initial value for the αy

is 0. These estimates are biased, but they work well as initial
values for maximization. This procedure is implemented in
a short R program. We intend to make it available as an R
package and the reader can write to the first author for the
code.

3. SIMULATION STUDY

In this section, we carry out simulation studies to evaluate
the robust property and efficiency of the proposed methods.
The set-up of the simulation is based on the selection model.
The longitudinal data are generated by the linear mixed
effects model:

(7) Yi(t) = β0 + β1Xi + β2t+ γi + ei(t)

where Yi(t) is the outcome value of the ith subject at time
t, Xi is the treatment indicator, t is the time, i = 1, . . . , n =
200, t = 1, . . . ,K = 5. The sample size is n = 200, and
each subject has at most K = 5 visits. Xi is generated ac-
cording to a Bernoulli distribution with probability 0.5. β’s
are the regression coefficients; β0 is the intercept, β1 is the
treatment effect, and β2 is the slope of the time trend. γi is
the ith subject’s random effect and ei(t) is the measurement
error for the ith subject’s outcome at time t. The missing
data are generated by the logistic model,

(8) Prob(Ri(t) = 1) =
exp(α0 + α1Yi(t) + α2t)

1 + exp(α0 + α1Yi(t) + α2t)

where Ri(t) is the response indicator; Ri(t) = 1 if Yi(t) is
observed, and 0 if Yi(t) is missing. The probability that Yi(t)
is missing is determined by the (unobserved) outcome value
Yi(t) and time t. If α1 �= 0, the missing probability depends
on Yi(t) and the above model generates MNAR data.

For each simulated dataset, we consider 4 methods to
estimate the parameters of interest β: maximum pseu-
do-likelihood estimation based on t distribution model
(t model), maximum pseudo-likelihood estimation based on
robust normal likelihood (robust normal model), maximum
pseudo-likelihood estimation based on normal distribution
model (normal model) (Troxel et al., 1998) and linear mixed
effects model (LME model) (Laird et al., 1982). The first
three models allowMNAR, while the LMEmodel uses model
(7) and ignores the missing mechanism in (8).

3.1 Influence of a single outlier

We first illustrate the robust property of the proposed
methods by examining the influence of one outlying obser-
vation, using a similar approach by Pinheiro et al. (2001).
One data set is generated based on normal random effects
and normal measurement errors based on (7) and (8) with

(9) γi ∼ N(0, σ2
γ) and ei(t) ∼ N(0, σ2

e).

The simulation parameters are (β0, β1, β2, σγ , σe, α0, α1,
α2) = (1, 0.2, 1,

√
0.5,

√
0.5,−4,−0.5,−0.1), and this set-up

generates about 10% missing data. The sample size (n) is
200, and the number of visits (K) is 5. We arbitrarily re-
place one observed data point Yi(t) by Yi(t)+Δ to generate
an outlying observation. Δ varies between −5 and 5, while
the standard deviation of Yi(t) conditional on Xi and t is
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Figure 1. The influence of single outlier on the estimates of treatment effect β1 and slope β2. The upper 3 plots of A, B and
C give the relative change of β̂1 when adding Δ to an observation at an early time (t = 1), middle time (t = 3), and later

time (t = 5). The lower 3 plots give the corresponding relative change of β̂2. The solid line is the relative change based on the
t model, the dashed line is the relative change based on the robust normal model, and the dotted line is the relative change

based on the normal model.

√
σ2
γ + σ2

e = 1. We are interested in the relative change of β

estimates. The relative change of β estimates is calculated
by (β̂(Δ)− β̂)/β̂, where β̂ is the estimate based on the orig-

inal data and β̂(Δ) is the estimate based on the new data
with an outlying observation.

Figure 1 displays the relative change of treatment effect
estimate (β̂1) and slope estimate (β̂2) based on the t model
(solid line) robust normal model (dashed line) and the nor-
mal model (dotted line). The upper 3 plots of A, B and C

show the relative change of β̂1 when adding Δ to an observa-
tion at an early time (t = 1), middle time (t = 3), and later
time(t = 5), respectively. The lower 3 plots give the corre-

sponding relative change of β̂2 by Δ. This figure shows that
the estimates from the t model and the robust normal model
are protected against the influence of an outlying observa-

tion; the estimates based on the t model and robust normal
model stay constant as the magnitude of Δ increases. On
the other hand, the percent change on the estimates based
on the normal model is almost linearly associated with the
amount of contamination, and the variance of the estimates
also increase sharply as the Δ increases (data not shown).
We also experimented with Δ as large as 20, and the esti-
mates based on the t model and the robust model are essen-
tially not affected. For β1, the impact of Δ is very similar
across time points t = 1, 3, or 5. Because β2 is the slope
parameter, its change depends on the time point where the
outlying observation is located.

3.2 Influence of different outlier patterns

In the second simulation, we generate data sets with var-
ious combinations of outlying random effects and outlying
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measurement errors in the longitudinal data. Conceptually,
outlying random effects represent a proportion of subjects
who might behave differently than the rest of the cohort.
Outlying measurement errors represent a proportion of ob-
servations following a different distribution from the rest of
the data. Specifically, in equation (7), the random effects
and measurement errors have the following mixture distri-
butions,

γi ∼ (1− pγ)N(0, σ2
γ) + pγN(0, f2

γσ
2
γ) and

ei(t) ∼ (1− pe)N(0, σ2
e) + peN(0, f2

e σ
2
e),

(10)

where pγ and pe correspond to the percentages of random
effect outliers and measurement error outliers, and fγ > 1
and fe > 1 represent the degree that the outliers deviate
from the rest of the observations. The larger fγ and fe
are, the larger variability the outliers have. A special case
pγ = pe = 0 gives normal random effects and normal mea-
surement errors without any outlier.

We are also interested in investigating the impact of
MNAR assumption on the proposed methods when this as-
sumption does not hold. The missing data are generated
based on the following missing mechanism,

Prob(Ri(t) = 1|Zi(t)) =
exp(α0 + α1Zi(t)Yi(t) + α2t)

1 + exp(α0 + α1Zi(t)Yi(t) + α2t)
,

(11)

where Zi(t) a Bernoulli random variable with probability
Prob(Zi(t) = 1) = pm and Prob(Zi(t) = 0) = 1−pm. When
pm = 1, the missing mechanism is MNAR because the prob-
ability of missing always depends on the outcome variable
Yi(t), provided α1 �= 0. On the other hand when pm = 0, the
missing mechanism is MAR. When pm is between 0 and 1,
it generates data by a mixture of MNAR and MAR mecha-
nism.

We vary the combination of pm, pγ , pe, fγ and fe in the si-
mulation and estimate the treatment effects with the 4 mod-
els: t model, robust normal model, normal model and LME
model. The simulation parameters are (β0, β1, β2, σγ , σe,
α0, α1, α2)=(1, 0.2, 1,

√
0.5,

√
0.5, −4, −0.5, −0.1). The

sample size is n = 200, and each subject has at most K = 5
visits. This simulation setup generates about 10% missing
data. The LME model assumes MAR missing mechanism,
and the normal model, the robust normal model and the
t model assume the non-ignorable missingness (MNAR) in
equation (8). For each setup, 500 simulations are carried out
to compare the bias, the mean square error and to calculate
the relative efficiency among these models.

Table 1 gives the simulation summary on the estimation
of treatment effect (β1). We first investigate the bias among
3 missing mechanisms MNAR (pm = 1), mixture of MNAR
and MAR (pm = 0.5), and MAR (pm = 0). Overall all
models give relatively small bias. Under the MNAR simu-
lation, the LME model appears to produce larger bias on

the estimation of β1 than the other 3 models that assume
non-ignorable missing. When the data are generated under
the MAR assumption, the t model appears to have a larger
bias than the other 3 models. In theory, the t model and the
normal model provide consistent estimators under MNAR
when the model and the distribution are correctly specified
as shown in Troxel et al. (1998).

We use the ratio of mean square error as a measure of
the relative efficiency between two models. R1 and R2 give
the relative efficiency for the normal vs. the t model and
the LME model vs. the t model. R3 and R4 give the rela-
tive efficiency for the normal model vs. the robust normal
model and the LME vs. the robust normal model. If the
relative efficiency is larger than one, it suggests that the
t model or the robust normal model has a smaller mean
square error and is more efficient than the LME or the nor-
mal model. In Table 1, we observe that the robust infer-
ence based on the t model and the robust normal model
offer comparable efficiency comparing to the normal or the
LME model when the outliers are of moderate variability
(fe = 2 or fγ = 2) or there is no outlier (pe = pγ = 0).
When there exist outliers with large variability (fe = 4 or
fγ = 4), the t model and the robust normal model pro-
vide better efficiency across different missing mechanism of
MNAR, mixture of MNAR and MAR, and MAR. The ad-
vantage of robust inference is more pronounced when the
outliers are random effect outliers than measurement error
outliers. The efficiency also increases as the proportion of
outliers increases. The performance of the t model and the
robust normal model are similar. The t model works slightly
better when the outlier proportion is high and variability is
large. One the other hand, when there is no outlier, the
robust model has better efficiency than the t model and
it maintains about 95% efficiency compared to the normal
model or the LME model.

Table 2 summarizes the simulation results for the slope of
time trend β2. Overall, the bias is small and similar among
4 models. The LME model has a slightly larger bias with
MNAR data. We still observe that the t model and the ro-
bust normal model offer better efficiency when the outlier
proportion is high and variability is large, particularly with
measurement error outliers. However, when there is no out-
lier or the outliers have moderate variability, the normal
model and the LME model appear to have better efficiency,
and the robust normal model also outperforms the t model.
The t model and the robust model have more pronounced
advantage in estimating β2 with measurement error outliers
than random effect outliers.

4. SCLERODERMA LUNG STUDY DATA
ANALYSIS

In this section, we demonstrate the use of the proposed
methods to handle non-monotonic and non-ignorable miss-
ingness in the analysis of the Scleroderma Lung Study
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Table 1. Simulation studies to compare bias, mean square error(MSE) on β1 between the t model, the robust normal model,
the normal model and the linear mixed effects (LME) model. The relative efficiency (RE) is calculated for

RE1 = MSE(normal model)
MSE(t model) , RE2 = MSE(LME)

MSE(t model) , RE3 = MSE(normal model)
MSE(robust model) , RE4 = MSE(LME)

MSE(robust model)

MNAR, pm = 1 Bias(×10−3) MSE(×10−3)
pγ pe fγ fe t robust normal LME t robust normal LME RE1 RE2 RE3 RE4

0 0 1 1 0.23 3.02 3.99 9.86 12.67 12.19 11.84 11.77 0.93 0.93 0.97 0.97
0.05 0 2 1 8.68 6.26 5.36 17.34 13.33 12.46 12.79 12.76 0.96 0.96 1.03 1.02
0.1 0 2 1 2.87 5.61 6.90 4.90 15.98 15.16 15.65 15.68 0.98 0.98 1.03 1.03

0.25 0 2 1 4.85 4.37 2.86 7.57 16.73 17.20 18.89 18.59 1.13 1.11 1.10 1.08
0.05 0 4 1 0.54 4.21 6.11 17.77 15.45 14.92 18.65 18.92 1.21 1.22 1.25 1.27
0.1 0 4 1 7.02 6.09 9.54 18.52 16.03 16.12 24.36 25.00 1.52 1.56 1.51 1.55

0.25 0 4 1 25.86 27.89 41.91 25.51 21.9 26.46 42.39 45.41 1.94 2.07 1.6 1.72
0 0.05 1 2 6.79 7.64 7.53 6.86 13.71 13.12 12.93 12.73 0.94 0.93 0.99 0.97
0 0.1 1 2 3.47 1.22 1.38 12.01 13.28 12.97 12.11 11.71 0.91 0.88 0.93 0.9
0 0.25 1 2 0.40 0.81 1.22 18.14 15.16 14.25 14.06 14.16 0.93 0.93 0.99 0.99
0 0.05 1 4 6.03 5.04 4.93 21.80 14.96 14.59 16.70 16.30 1.12 1.09 1.14 1.12
0 0.1 1 4 4.21 1.52 2.30 13.03 13.93 13.36 14.33 13.98 1.03 1.00 1.07 1.05
0 0.25 1 4 26.79 25.08 40.49 46.98 14.77 15.44 20.11 20.47 1.36 1.39 1.3 1.33

pm = 0.5 Bias(×10−3) MSE(×10−3)
pγ pe fγ fe t robust normal LME t robust normal LME RE1 RE2 RE3 RE4

0 0 1 1 8.76 2.26 3.05 3.27 13.36 11.97 11.35 11.33 0.85 0.85 0.95 0.95
0.05 0 2 1 11.33 4.86 4.45 1.84 13.37 13.02 13.42 13.48 1.00 1.01 1.03 1.03
0.1 0 2 1 13.22 9.35 9.31 2.97 15.12 14.52 15.04 14.90 1.00 0.99 1.04 1.03

0.25 0 2 1 5.93 8.29 8.35 13.51 20.08 19.86 22.19 22.16 1.10 1.10 1.12 1.12
0.05 0 4 1 3.54 5.48 6.71 10.03 14.86 15.03 19.21 19.91 1.29 1.34 1.28 1.32
0.1 0 4 1 16.88 19.00 26.91 27.56 15.58 16.36 23.79 24.35 1.53 1.56 1.45 1.49

0.25 0 4 1 3.46 4.47 13.73 1.00 23.74 27.87 43.50 45.15 1.83 1.9 1.56 1.62
0 0.05 1 2 7.57 1.83 1.04 6.01 13.58 13.03 12.78 12.72 0.94 0.94 0.98 0.98
0 0.1 1 2 8.64 3.60 3.29 3.23 13.95 13.13 12.78 12.53 0.92 0.90 0.97 0.95
0 0.25 1 2 1.40 0.51 0.96 5.47 13.95 12.94 12.94 13.08 0.93 0.94 1.00 1.01
0 0.05 1 4 11.06 8.81 8.15 12.8 14.30 14.27 16.92 16.86 1.18 1.18 1.19 1.18
0 0.1 1 4 6.65 6.90 7.11 1.35 12.86 12.33 13.04 12.93 1.01 1.01 1.06 1.05
0 0.25 1 4 20.83 20.98 29.08 26.51 16.62 16.92 21.16 20.99 1.27 1.26 1.25 1.24

MAR, pm = 0 Bias(×10−3) MSE(×10−3)
pγ pe fγ fe t robust normal LME t robust normal LME RE1 RE2 RE3 RE4

0 0 1 1 11.73 5.18 6.41 3.00 13.9 12.26 12.10 12.10 0.87 0.87 0.99 0.99
0.05 0 2 1 8.60 2.24 1.80 2.03 14.32 14.07 14.53 14.43 1.01 1.01 1.03 1.03
0.1 0 2 1 13.19 7.43 7.01 2.61 15.31 14.78 15.33 15.36 1.00 1.00 1.04 1.04

0.25 0 2 1 22.42 14.02 15.64 10.21 18.30 17.52 19.01 18.80 1.04 1.03 1.09 1.07
0.05 0 4 1 16.71 11.92 13.06 8.30 15.65 15.17 20.46 20.07 1.31 1.28 1.35 1.32
0.1 0 4 1 14.34 9.18 8.72 2.99 17.50 18.72 30.66 30.47 1.75 1.74 1.64 1.63

0.25 0 4 1 3.63 3.34 5.08 1.55 25.66 30.69 51.32 50.89 2.00 1.98 1.67 1.66
0 0.05 1 2 8.42 2.76 1.90 2.07 13.07 12.59 12.22 12.28 0.93 0.94 0.97 0.98
0 0.1 1 2 9.00 1.29 1.38 3.08 13.26 12.81 12.71 12.65 0.96 0.95 0.99 0.99
0 0.25 1 2 8.76 1.71 0.57 3.81 12.88 11.83 12.20 12.15 0.95 0.94 1.03 1.03
0 0.05 1 4 2.08 0.86 2.68 1.09 13.79 13.29 15.32 15.32 1.11 1.11 1.15 1.15
0 0.1 1 4 10.42 4.41 5.04 1.31 13.39 12.78 13.78 13.76 1.03 1.03 1.08 1.08
0 0.25 1 4 8.24 9.69 11.06 9.91 15.41 15.96 19.59 19.67 1.27 1.28 1.23 1.23

(Tashkin et al., 2006). The Scleroderma Lung Study is a
multi-center placebo-control double-blind randomized study
to evaluate the effects of oral cyclophosphamide (CYC) on
lung function and other health-related symptoms in patients
with evidence of active alveolitis and scleroderma-related
interstitial lung disease. In this study, eligible participants
received either daily oral cyclophosphamide or matching

placebo for 12 months, followed by another year of follow-
up without study medication. The primary end point of the
study is the forced vital capacity (FVC, expressed as a per-
centage of the predicted value), which is measured at base-
line and at three-month intervals throughout the study. One
hundred and fifty eight eligible patients underwent random-
ization, and about 15% of them dropped out of the study
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Figure 2. FVC overtime in the placebo and CYC groups. In the Scleroderma lung study, the forced vital capacity (FVC,
expressed as a percentage of the predicted value) is measured at baseline and at three-month intervals throughout the study.

before 12 months. About 30% of dropouts are due to death
and treatment failures. Intermittent missed visits also oc-
curred during the course of the study. It is likely that the
missing data are due to the ineffectiveness of treatment and
related to the outcome of interest.

Here we present the analysis of the primary endpoint of
FVC. Figure 2 gives the plot of FVC over time for each
study group. Most subjects have small variation in FVC
over time. However, a few observations show considerable
changes between visits. It suggests the possibility of out-
lying observations. The outcome model includes covariates
of time, baseline FVC (FVC0), baseline maximum fibro-
sis (MAXFIB0), cyclophosphamide (CYC), and the interac-
tions between treatment and baseline FVC, baseline maxi-
mal fibrosis and time.

FVC = β0 + β1Time + β2FVC0 + β3MAXFIB0

+ β4CYC+ β5CYC× FVC0

+ β6CYC×MAXFIB0 + β7CYC× Time + ε

We also specify the missing data model that the missing pro-
bability is a function of FVC and time, using a logistic mo-
del.

Pr(R = 0) = [1 + exp(α0 + α1FVC+ α2Time)]
−1

Table 3 gives the analyses of the outcome model based on
the t model, robust normal model, normal model and LME
model. Comparing the t model, robust normal model and
normal model, it appears that normal model is more sensi-
tive to outlying observations and generates larger estimated
coefficients and larger standard deviation than the other two
models. For example, the estimated β1 is −0.33, −0.65, and

−1.15 for t model, robust normal model and normal model.
Similar trends are also observed for β3, β4, and β6.

Because this is a randomized trial, the assignment of CYC
is independent of baseline characteristics. We can derive the
overall treatment effect at time m:

E(FVC|CYC = 1,Time = m)

− E(FVC|CYC = 0,Time = m)

=

∫ [
E(FVC|CYC = 1,Time = m,FVC0,MAXFIB0)

− E(FVC|CYC = 0,Time = m,FVC0,MAXFIB0)
]

× df(FVC0,MAXFIB0)

≈ 1/n

n∑
i=1

Effi

where Effi is the treatment(CYC) effect for the ith subject
at time m

Effi

= E(FVCi|CYC = 1,Time = m,FVC0i,MAXFIB0i)

− E(FVCi|CYC = 0,Time = m,FVC0i,MAXFIB0i).

Based on the t model the overall treatment effect at 12
months is estimated by 2.41(%) with the standard deviation
of 1.18, and the p-value = 0.041. The robust normal model
estimates similar treatment effect 2.50 with standard devia-
tion of 2.33. The normal model and LME model give smaller
treatment effect estimates of 1.80 and 1.47. We also observe
that the normal model gives the largest variance estimate. It
suggests that the t-model may be more sensitive in detecting
the treatment effect. Alternatively, we can use the Wald’s
test to examine the hypothesis of β4 = β5 = β6 = β7 = 0
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Table 2. Simulation studies to compare bias, mean square error(MSE) on β2 between the t model, the robust normal model,
the normal model and the linear mixed effects (LME) model. The relative efficiency (RE) is calculated for

RE1 = MSE(normal model)
MSE(t model) , RE2 = MSE(LME)

MSE(t model) , RE3 = MSE(normal model)
MSE(robust model) , RE4 = MSE(LME)

MSE(robust model)

MNAR, pm = 1 Bias(×10−3) MSE(×10−3)
pγ pe fγ fe t robust normal LME t robust normal LME RE1 RE2 RE3 RE4

0 0 1 1 0.57 0.78 0.53 4.17 0.41 0.32 0.29 0.28 0.71 0.68 0.92 0.88
0.05 0 2 1 1.28 1.15 1.92 4.71 0.42 0.34 0.31 0.30 0.75 0.72 0.93 0.89
0.1 0 2 1 1.84 0.33 0.53 3.66 0.42 0.32 0.29 0.28 0.68 0.66 0.91 0.88

0.25 0 2 1 3.52 1.51 1.96 3.92 0.50 0.40 0.37 0.31 0.73 0.61 0.92 0.77
0.05 0 4 1 2.60 2.72 2.00 4.62 0.40 0.33 0.32 0.31 0.80 0.76 0.97 0.92
0.1 0 4 1 5.07 3.64 3.08 4.63 0.46 0.40 0.40 0.33 0.86 0.71 1.01 0.83

0.25 0 4 1 8.90 8.17 13.78 3.54 0.53 0.45 0.65 0.29 1.23 0.55 1.44 0.64
0 0.05 1 2 0.51 0.15 0.48 4.56 0.37 0.31 0.30 0.30 0.82 0.81 0.97 0.95
0 0.1 1 2 2.00 0.92 0.70 4.51 0.45 0.38 0.39 0.39 0.86 0.85 1.02 1.01
0 0.25 1 2 2.92 1.62 2.22 6.83 0.51 0.45 0.46 0.50 0.91 0.99 1.02 1.11
0 0.05 1 4 4.03 3.58 3.83 8.92 0.46 0.43 0.63 0.66 1.36 1.42 1.47 1.53
0 0.1 1 4 3.73 2.34 1.12 6.00 0.38 0.36 0.46 0.48 1.21 1.27 1.29 1.36
0 0.25 1 4 9.45 8.23 12.56 13.33 0.69 0.73 1.27 1.27 1.84 1.84 1.73 1.73

pm = 0.5 Bias(×10−3) MSE(×10−3)
pγ pe fγ fe t robust normal LME t robust normal LME RE1 RE2 RE3 RE4

0 0 1 1 2.36 0.89 0.74 2.08 0.42 0.31 0.28 0.27 0.67 0.64 0.91 0.87
0.05 0 2 1 1.79 1.16 0.98 2.50 0.46 0.34 0.31 0.28 0.67 0.62 0.89 0.82
0.1 0 2 1 1.72 0.85 1.03 2.04 0.41 0.32 0.28 0.26 0.68 0.63 0.88 0.82

0.25 0 2 1 2.53 1.03 1.59 2.24 0.48 0.35 0.30 0.28 0.63 0.59 0.85 0.8
0.05 0 4 1 3.20 2.09 2.03 2.56 0.37 0.31 0.33 0.29 0.88 0.77 1.05 0.92
0.1 0 4 1 3.44 2.46 2.96 2.29 0.40 0.32 0.32 0.29 0.80 0.73 0.98 0.89

0.25 0 4 1 4.44 4.83 9.01 1.28 0.48 0.42 0.51 0.32 1.07 0.67 1.21 0.76
0 0.05 1 2 1.33 0.43 0.55 2.30 0.47 0.36 0.34 0.33 0.71 0.69 0.95 0.93
0 0.1 1 2 1.75 0.44 0.29 1.83 0.47 0.36 0.35 0.34 0.75 0.71 0.98 0.94
0 0.25 1 2 4.45 2.07 2.33 3.80 0.57 0.46 0.48 0.47 0.84 0.83 1.05 1.04
0 0.05 1 4 2.88 2.12 3.08 3.84 0.46 0.44 0.63 0.63 1.38 1.37 1.44 1.43
0 0.1 1 4 2.82 1.58 0.97 2.23 0.38 0.34 0.47 0.46 1.22 1.20 1.36 1.35
0 0.25 1 4 5.94 5.75 8.31 6.36 0.67 0.76 1.32 1.29 1.96 1.92 1.73 1.69

MAR, pm = 0 Bias(×10−3) MSE(×10−3)
pγ pe fγ fe t robust normal LME t robust normal LME RE1 RE2 RE3 RE4

0 0 1 1 0.23 0.14 0.32 0.09 0.37 0.28 0.26 0.25 0.70 0.68 0.94 0.91
0.05 0 2 1 2.07 0.66 0.25 0.42 0.34 0.28 0.26 0.25 0.76 0.75 0.92 0.90
0.1 0 2 1 0.60 1.58 1.21 1.42 0.34 0.28 0.26 0.25 0.77 0.74 0.94 0.90

0.25 0 2 1 1.64 0.75 1.19 0.97 0.40 0.32 0.31 0.28 0.77 0.71 0.95 0.87
0.05 0 4 1 0.60 0.21 0.30 0.52 0.38 0.30 0.28 0.27 0.74 0.70 0.93 0.87
0.1 0 4 1 2.34 1.22 1.50 1.24 0.35 0.28 0.27 0.25 0.77 0.72 0.95 0.88

0.25 0 4 1 1.27 1.81 0.59 1.45 0.38 0.30 0.29 0.24 0.75 0.63 0.95 0.78
0 0.05 1 2 0.28 0.38 0.03 0.05 0.37 0.31 0.30 0.30 0.80 0.80 0.95 0.95
0 0.1 1 2 2.47 1.49 1.52 1.29 0.39 0.31 0.32 0.31 0.82 0.80 1.04 1.01
0 0.25 1 2 1.07 0.12 0.00 0.38 0.46 0.41 0.43 0.42 0.95 0.93 1.06 1.04
0 0.05 1 4 0.60 0.58 0.34 0.78 0.46 0.46 0.71 0.71 1.55 1.54 1.54 1.53
0 0.1 1 4 2.03 0.79 0.71 0.48 0.39 0.35 0.46 0.45 1.17 1.14 1.32 1.29
0 0.25 1 4 0.77 0.64 2.35 1.04 0.58 0.66 1.17 1.16 2.03 2.02 1.78 1.77

for overall treatment effect. All 4 methods show clear evi-
dence of treatment difference. These results are in agreement
with the analysis in Tashkin et al. (2006). The t model, ro-
bust normal model and normal model also give significant
p-values for FVC(α1) and Time (α2) on their associations
with missing data. It suggests that, if the models are speci-
fied correctly, the missing mechanism is likely MNAR.

5. CONCLUSIONS

We present two methods to provide robust inference

for longitudinal data analysis with non-ignorable and non-

monotonic missing values. These two methods are robust

in two ways: first, the t-distribution model and the robust

normal likelihood reduce the influence of outlying observa-
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Table 3. The comparison of t model, robust normal model, normal model and linear mixed effects model for FVC in the
Scleroderma study, using first 12 months data

t model robust model normal model LME model
β Est(Std) p-value Est(Std) p-value Est(Std) p-value Est(Std) p-value

β1(Time) −0.33(0.07) <0.001 −0.65(0.16) <0.001 −1.15(0.24) <0.001 −0.27(0.08) <0.001
β2(FVC0) 0.95(0.03) <0.001 0.93(0.07) <0.001 0.82(0.12) <0.001 0.92(0.04) <0.001
β3(MAXFIB0) −1.28(0.29) <0.001 −2.14(0.57) <0.001 −3.22(1.15) 0.005 −1.32(0.43) 0.003
β4(CYC) −0.74(0.25) 0.003 −1.50(0.58) 0.010 −2.00(1.43) 0.161 −0.77(0.89) 0.387
β5(CYC×FVC0) 0.05(0.05) 0.303 0.04(0.09) 0.661 0.04(0.19) 0.840 0.07(0.05) 0.208
β6(CYC×MAXFIB0) 1.77(0.47) <0.001 3.16(1.10) 0.004 5.47(2.18) 0.012 1.48(0.62) 0.018
β7(CYC×Time) 0.26(0.10) 0.008 0.33(0.19) 0.080 0.32(0.33) 0.341 0.19(0.11) 0.102

overall effect at 12M 2.41(1.18) 0.041 2.50(2.33) 0.28 1.80(4.43) 0.684 1.47(0.95) 0.123

β4 = β5 = β6 = β7 = 0 <0.001 <0.001 0.011 0.055

tions on the parameter estimation and, second, the pseudo-
likelihood approach does not impose any constraint on the
joint distribution of data. We demonstrate that an analy-
sis with linear mixed effects models can potentially produce
larger bias when the missing mechanism is MNAR. Both the
t model and the robust normal model have better efficiency
than the normal model or linear mixed effects model, when
there is large percentage of long tailed outlying observations.
However, when there are no or some outlying observations
with moderate variability, robust normal and t model can be
less efficient than the normal model or linear mixed effects
model.

One marginal outcome model and one missing mecha-
nism model are specified to analyse the Scleroderma data
and in simulations study. In reality, subjects may miss vis-
its or be lost to follow-up for different reasons. For exam-
ple, possible reasons for study dropout in the Scleroderma
study include death, treatment failure, loss to follow-up and
etc. A potential improvement of our model is to incorporate
different missing mechanism models for different causes of
missing data to better describe the missing mechanism. For
example, Elashoff et al. (2007), Elashoff et al. (2008) and
Li et al. (2009) specify different survival functions for time
to different dropout causes. A clear and detailed documenta-
tion of missing reasons and dropout causes is imperative for
such analysis. We use a logistic regression model to estimate
the missingness probability for non-monotonic missing data.
However, the missing data pattern in a clinical study can
include both monotonic and non-monotonic missingness. In
particular, intermittent missingness can occur for all alive
subjects, while missing data due to death are always mono-
tonic. A missing mechanism model that distinguishes non-
monotonic and monotonic might be more appropriate.

Our t model has a fixed 3 degrees of freedom. It is pos-
sible to consider the degrees of freedom as a parameter of
the model and estimate it based on the data. However, we
observe that our tmodel with fixed 3 degrees of freedom pro-
vides more than 85% efficiency in estimating the treatment
effect even when the data are normally distributed. Esti-
mating the degrees of freedom generally involves intensive

computation (Pinheiro et al., 2001) and the improvement in
efficiency might be limited.

Finally, the selection model provides a natural way to
model the longitudinal process and missing mechanism si-
multaneously and has the advantage of easy interpretation.
It, however, has the drawback of non-identifiability that
the distribution of missing data and the missing mecha-
nism can not be verified based on the observed data. For-
tunately, we can often bring in knowledge and assumptions
that are external to the data to provide evidence for miss-
ing mechanism (Verbeke et al., 2008). Therefore the non-
ignorable missing data analysis must be carried out with
great care. It also implies the importance of collecting infor-
mation on the causes of missing data in a clinical study to
determine possible missing mechanism. In our Scleroderma
example, many missing data are due to lack of treatment ef-
ficacy (for example, death or treatment failure), and MNAR
seems to be a reasonable assumption. In general, local sen-
sitivity analysis can be performed to evaluate the effects
of non-ignorability (Verbeke et al., 2001; Ma et al., 2005).
It is also desirable to investigate the sensitivity of differ-
ent parametrization of missing data models and its implica-
tion on the robust property of estimates (Rizopoulos et al.,
2008).

APPENDIX

Here we demonstrate the consistency for the pseudo-
likelihood estimator of β. We denote ft(Y ) and ft(R|Y )
as the density function based on t or robust normal model
and its associated missing mechanism model, and f(Y ) and
f(R|Y ) as the density function of the true marginal model
of response Y and the true missing mechanism. The param-
eter of interest is β in the longitudinal model and we use
f ′
t(Y ) to represent ∂

∂β ft(Y ).

To use the method of moment theory (Hansen, 1982)
to demonstrate the consistency of t model estimators, we
need to first evaluate the expected value of pseudo-likelihood
score equation (equation (3)): E(S(β)) =

∑n
i=1 Si(β) =

488 C. Tseng et al.



∑n
i=1

∑K
t=1 Si(t)(β), and

E(Si(t)(β)) = P (R(t)1 = 0)E(S(t)i|R(t)i = 0)(12)

+ P (R(t)i = 1)E(S(t)i|R(t)i = 1).

We first examine E(S(t)i|R(t)i = 0). For notational simplic-

ity, we will drop the time indicator t and use Si, Ri and Yi

to represent Si(t), Ri(t) and Yi(t) such that

E(Si|Ri = 0)

=

∫
Yi

[
∂

∂β
log ft(Yi) + log ft(Ri = 0|Yi)

]
f(Yi|Ri = 0)dYi

=

∫
Yi

[
∂

∂β
logft(Yi)

]
f(Yi|Ri = 0)dYi

=

∫
Yi

f ′
t(Yi)

ft(Yi)

f(Yi)f(Ri = 0|Yi)

P (Ri = 0)
dYi.

The first term of equation (12) becomes

P (R1 = 0)E(Si|Ri = 0) =

∫
Yi

f ′
t(Yi)

f(Yi)

ft(Yi)
f(Ri = 0|Yi)dYi.

(13)

We can express E(Si|Ri = 1) as

E(Si|Ri = 1)

=

∫
Yi

[
∂

∂β
log

∫
Yi

ft(Yi)ft(Ri = 1|Yi)dYi

]
f(Yi|Ri = 1)dYi

=

∫
Yi

⎡
⎢⎢⎣

∫
Yi

f ′
t(Yi)ft(Ri = 1|Yi)dYi∫

Yi

ft(Yi)ft(Ri = 1|Yi)dYi

⎤
⎥⎥⎦f(Yi|Ri = 1)dYi

=

∫
Yi

f ′
t(Yi)ft(Ri = 1|Yi)dYi∫

Yi

ft(Yi)ft(Ri = 1|Yi)dYi

=

∫
Yi

f ′
t(Yi)ft(Ri = 1|Yi)dYi

Pt(Ri = 1)

where Pt(Ri = 1) =

∫
Yi

ft(Yi)ft(Ri = 1|Yi)dYi represents

the marginal probability of missing data based on t or robust

normal model.

If Pt(Ri = 1) ≈ P (Ri = 1),

P (R1 = 1)E(Si|Ri = 1) ≈
∫
Yi

f ′
t(Yi)ft(Ri = 1|Yi)dYi.

(14)

Combining (13) and (14),

E(Si(β))

=

∫
Yi

f ′
t(Yi)

f(Yi)

ft(Yi)
f(Ri = 0|Yi)dYi

+

∫
Yi

f ′
t(Yi)ft(Ri = 1|Yi)dYi

=

∫
Yi

f ′
t(Yi)

f(Yi)f(Ri = 0|Yi) + ft(Yi)ft(Ri = 1|Yi)

ft(Yi)
dYi

If the model assumptions hold, that is, ft(Yi) = f(Yi)
and ft(Ri|Yi) = f(Ri|Yi), then

E(Si(β)) =

∫
Yi

f ′
t(Yi)dYi =

∂

∂β

∫
ft(Yi)dYi = 0,

and the proposed model provides consistent estimates for
the longitudinal model based on the method of moments
theory (Hansen, 1982). We observe that ft(Yi) is an even
function and f ′

t(Yi) is an odd function. If f(Yi)f(Ri =
0|Yi) + ft(Yi)ft(Ri = 1|Yi) is also an even function then
E(Si(β)) = 0. Our simulation results suggest that the es-
timates based on the t-model have negligible bias with
various outliers patterns, percentages and missing mecha-
nisms.
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