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Type | error for a chi-square test when the
response probability changes during a trial

FEIFANG HU*', JIANDONG LU AND FENG TAI

Chi-square test is a commonly used method for testing
null hypothesis of no difference between treatment groups in
a binary response in a randomized clinical trial. The Type I
error is considered well controlled with a homogeneous pop-
ulation. In this article, we investigate the type I error of
the chi-square test when the underlying response probabil-
ity changes in the middle of a trial. In particular, we de-
rive the asymptotic properties of the chi-square test under
such an assumption and show that the type I error of the
chi-square test is well controlled. Therefore, the chi-square
test is still valid under change in response probability. Ad-
ditionally, we present the computation of the actual type I
error and some numerical results in an example to illustrate
impact on Type I error by a change in response probabil-

ity.

KEYWORDS AND PHRASES: Response probability, Cochran-
Mantel-Haenzsel test, Asymptotic property.

1. INTRODUCTION

Chi-square test is used for testing null hypothesis of no
difference between treatment groups in a binary response in
a randomized clinical trial. The Type I error is considered
well controlled with a homogeneous population. However, in
practice, the patient population may change over the period
of enrollment which may span a period of months or even
years.

The reasons for the change can be an expansion of the
investigational sites, new external information about the in-
vestigational treatment, or even a change in study design.
Because of small patient counts, it is common that studies
enroll patients globally. Due to differing regulatory require-
ments and standard of care across countries, the character-
istics of the patient population may differ over the period
of enrollment. In addition some countries may start to en-
roll patients early, while some other countries may enroll
patients later. For example, a global clinical trial may en-
roll patients from North America, South America, Europe,
and Asia. For logistic reasons, such as time required for the
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approval of the trial in different countries, patients enrolled
first are from North America and Europe, then from South
America, and finally from Asian countries.

Sometimes, new relevant information from external
sources may become available during enrollment and it may
trigger a change in the study design (e.g., dropping treat-
ment arms). Because such a change to the protocol will be
communicated to investigators, who determine the eligibil-
ity of patients enrolled and assess the outcome of patients, it
is debatable whether such communication will influence the
investigator’s opinion of the study agent, and consequently
will affect their decision making in terms of patients to be
enrolled and then clinical assessment of patients.

One such example is the design of a phase III trial to
evaluate the safety and efficacy of an investigational agent
in patients with moderate to severe ulcerative colitis who are
unresponsive to conventional therapy. The trial, a random-
ized double blinded placebo controlled study, has a drop-
ping dose design. It starts with randomizing patients into
3 active dose groups and a placebo. The primary endpoint
is the clinical response based on the improvement in Mayo
score, a UC disease index. With an expectation that the re-
sults of a separate dose finding study becomes available to
the sponsor during the enrollment, the protocol pre-specifies
the dropping of 1 or 2 dose groups. The Chi-square test is to
be used for the test of null hypothesis of no treatment effect
between selected dose treatment group(s) and the placebo
group by including all patients irrespective of whether they
are enrolled before or after the change.

In both cases, the assumption of homogenous population
may be violated. Consequently, it is unrealistic to assume
a constant response rate in each treatment group over the
time of enrollment. More examples and related discussions
can be found in Altman and Royston (1988), Bai and Hu
(1999), Coad (1991), Hu and Rosenberger (2000), Duan and
Hu (2009), etc. Can the simple Chi-square test still be used
to test the null hypothesis of no treatment effect?

This article intends to investigate the impact to Type I
error of the chi-square test if there were such a change in un-
derlying response probability. Section 2 defines the statisti-
cal problem, introduces notation and derives the asymptotic
property of the chi-square test under such an assumption.
Section 3 computes the actual type I error of the chi-square
test for a finite sample. Numerical results are presented for
the introductory example in comparison to the chi-square
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test in a homogenous population and CMH test with a stra-
tum for before and after the decision of change. Finally the
article concludes with a discussion of the practical implica-
tions to the analysis of such clinical trials.

2. STATISTICAL PROPERTY

2.1 Notations and framework

Without loss of generality, we consider the comparison of
two treatment groups with an equal sample size. The vari-
able of interest is a binary response variable. Let X7; and
X2 represent the number of patients with response before
the change is made to the trial for treatment groups 1 and
2, respectively. And let X5; and Xoo be the number of pa-
tients with response after the change is made to the trial
for treatment groups 1 and 2, respectively. Assume that X;;
is a random variable from a binomial distribution B(n;;pij)
where ¢+ = 1,2, j = 1,2, and ny and ny are the number
of patients in each treatment group before and after the
change is made. The observed data are presented in Ta-
ble 1.

Combine the observations from before and after together,
let n = ny + no,

S1 =X+ Xo1 and Sy = X2+ Xoo

be the total number of response of treatment 1 and 2 re-
spectively. Also let

S=8+85 =X11+ Xo1 + X2 + Xo2

be the total number of response from both treatments. The
null hypothesis is Hy: p11 = p12 = p1 and pa1 = pa2 = pa.

The chi-square test statistic for combined samples can be
written as,

Toni = (S1— S/2)*/V4

where
Vi — n?S(2n—5S)  S(2n-S)
(2n)2(2n) 8n
for Pearson chi-square test, while
Vi — n?S(2n — S) _ S(2n — S)
(2n)2(2n—1) 4(2n—-1)"

for Mantel-Haenszel chi-square test. For brevity of discus-
sion below, we only consider Pearson chi-square since they
have the same limiting properties.

On the other hand, the Cochran-Mantel-Haenszel (CMH)
test statistics with stratum of before or after the change is
made (Stokes, Davis and Koch, 2000), is

Tcmh = (Sl - 5/2)2/‘/%

where

n%d1(2n1 — dl)

(2”1)2(2711 — ].)

_ d1 (2711 — dl)
4(27’),1 — 1)

n%dQ(QTLQ — dg)
(2%2)2(2712 — ].)
d2(2n2 — dQ)
4(2712 - 1) '

9 =

For both cases (p1 = p2 and p; # p2), it is known that
Termp has a limit (for large n) x? distribution with 1 degree
of freedom under Hy: p11 = p12 = p1 and po; = pag = pa
is true. When p; = po (the population does not change),
it is well known that T,,; has a limit x? distribution with
1 degree of freedom Hy. However, it is unclear about the
limiting distribution of T,;; under Hy for the case p; # ps
(the population does change). We will discuss this in the
next subsection.

2.2 Asymptotic property of chi-square test
statistic when p; # p,

To discuss the properties of T,j; and T,,,;, we first write
S1—5/2=(X11— X12)/2 + (X1 — X22)/2,

which is the sum of independent random variables. Its cor-
responding mean and variance are

E(S1 —S/2) = E[(X11 — X12) + (Xo1 — X20)]/2
= [n1(p1 — p1) + n2(p2 — p2)]/2
=0
and
Var(S, — 8/2) = Var([(X11 — X12) + (X21 — X22)]/2)
[n1p1(1 —p1) + napa(1 — p2)]/2.

By the central limit theorem (for sum of independent ran-
dom variables, not for independent and identical distributed
(iid) random variables, see appendix of Hu and Rosenberger,
2006), we have

Sy —8/2
(nfpp1(1 = p1) + (1 = p)pa(1 — p2)]/2)1/2

— N(0,1)

Table 1. Data structure and observations

Before After Combined
Trt 1 Trt 2 Total Trt 1 Trt 2 Total Trt 1 Trt 2 Total
response X11 X12 dy Xo1 Xo2 da S1 S2 S
no response n1 — X11 n1 — Xi2 2n1 — ds na — Xo1 na — Xog 2ngo — da n— 51 n — Ss 2n — S
n1 ni n2 n2 n n
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in distribution, when n — oo and ny/n — p € (0,1). There-
fore,

(81— 5/2)°
(nlpp1(1 —p1) + (1 = p)p2(1 — p2)]/2)

in distribution, where X%1) represents Chi-squared distribu-

= X{

tion with 1 degree of freedom. Because ny/n — p, d1/n; —
2p; and dy/n2 — 2ps in probability, we have

Va
(nlpp1(1 —p1) + (1 = p)p2(1 — p2)]/2)

in probability by Slutsky’s Theorem (Bickel and Doksum,
1977, page 461). This reiterates the asymptotic property of
CMH test, whose type I error is generally controlled in large
sample theory.

For the Chi-square test statistics Te.p;, we have the fol-
lowing results.

—1

Theorem 2.1. When n — oo and ny/n — p € (0,1), then
C1Teni = X1y

i distribution under the Hy: p11 = p12 = p1 and pa1 =
D22 = p2, where

(pp1 + (1 = p)p2)[p(1 — p1) + (1 = p)(1 — p2)]
[pp1(1 —p1) + (1 = p)p2(1 — p2)]

Proof can be found in the Appendix. The theorem estab-
lishes the relationship between the chi-square test and CMH
test via a constant C7. Theoretically we have the following
result about the constant C;.

Cy =

Lemma 2.1. For all p1,p2 € (0,1) and p € (0,1),

(pp1 + (1 = p)p2)[p(1 — p1) + (1 — p)(1 — p2)]
[pp1(1 —p1) + (1 — p)p2(1 — p2)]

Proof can be found in the Appendix. Lemma 2.1 shows
that the constant C7; > 1 for any p1, po, and p, indicating
the chi-square test statistic T.p; is always less than T,,.p
under the null hypothesis for large sample size. Therefore,
chi-square test is more conservative than the CMH test un-
der the null hypothesis Hy. Figure 1 illustrates the value
of ¢y for various values of p, p1, and ps. Since Cy(p1,p2) =
C1(1—p1,1—p2), we only need to consider the cases where
p2 —p1 > 0. C increases as p or ps — pp increases, in-
dicating that the chi-square test becomes more conserva-
tive if the change in the response rate is more substan-
tial and if the proportion of subjects before the change in-
creases.

Cy = > 1.

3. ACTUAL TYPE | ERROR FOR
CHI-SQUARE AND CMH TEST

In section 2, we showed that the chi-square test has
a smaller type I error asymptotically. It is important to know

its type I error for finite sample. To understand the impact
to the type I error due to the difference of p; and ps, we
extended the formula provided by Garside and Mack (1976)
to the situation under study. Let Scp; (Semn) be the set of
all distinct vector of (X711, X129, X21, X22) (see the observed
data above), for which the chi-square test (CMH test) re-
jects the null hypothesis Hy at the significance level of «
(say, 0.05). Then the exact Type I error for the test, for any

pair of (pl,pg), is given by
(n1>(n1)<n2>(n2>
X11 X12 X21 X22

_ p2)2’ﬂ27d2

Echi(p1,p2)

= D

(X11,X12,X21,X22)€ESchi
d 2n1—dq,.d
x pit(1—p1)"™ "yt (1

and,

Ecmh(p11p2)

SD O O [ C 1 Coa1 59
(X11,X12,X21,X22)ESemn Xu X12 Xa1 X22

% ptlil(l 2n1—dy d2(1 _p2)2n2—d2.

- pl) D2

In addition, because for every vector of (Xi1, X12, Xo1,
Xa2) in a rejection region, there is the vector of (n; — X1,
ny — X12,n2 — Xo1,n2 — Xo99) in the rejection region, we
have

Echi(plaPZ) = Echi(l -p1,1 —pz)

and,

Ecmn(p1,p2) = Ecmn(1 — p1,1 — p2).

Therefore, we only consider the cases when py — p; > 0.

In the introductory example, the protocol specifies to en-
roll a total of 157 patients in each treatment group chosen
to be continued. The sponsor projects that the dose selec-
tion decision will occur when n; = 29 enrolled in each of
the 4 treatment groups, which leaves ny = 128. To investi-
gate the impact of timing of such a decision (i.e., ni:nsg), we
also compute the type I error for the cases where n; = 15
and n; = 58. Figure 2 showed the actual type I error for
the situation, where po — p; = 0, 0.05, 0.1, 0.2, respec-
tively.

When ps — p1 = 0 (in this case, C; = 1), the chi-square
test and the CMH test have a similar type I error, because
they have the same asymptotic distribution. When py — p;
increases, the chi-square test tends to have a smaller type I
error than the CMH test, especially in the case of ps —p; =
0.2. This agrees with our theoretical results in Section 2.
Comparing the CMH test, the actual type I error of the chi-
square test are similar when |pa —p1| < 0.1. Consistent with
the asymptotic results, the chi-square test becomes more
conservative when the proportion of sample size before the
change is > 20%, or the change in the response rate is greater
than 10%.

Type I error for a chi-square test when the response probability changes during a trial 473



p=0.1 p=0.2 p=0.5
~ —— P2-P1=0 -+ P2-P1=0.1 ~ —— P2-P1=0 -+ P2-P1=0.1 ~ —— P2-P1=0 -+ P2-P1=0.1
S -& P2-P1=0.05- X- P2-P1=0.2 e -&  P2-P1=0.05-x- P2-P1=0.2 2 -& P2-P1=0.05- %X- P2-P1=0.2
x x
\ 1
.\ 1
.\ 1
© © ©
S Q S o \ '
- - - \ !
x .\ 1
1 \ 1
1 .\ 1
1 .I 1
wn Yol Yo
S 4 S 4 | S 4 x x
p p ; p \ ;
; 8 ;
I N /
. x._ X
I X
< < . <
S (S , S
|
x
5 x 5 x ; 5
1 \ .
. /
@ ,I @ \. I' @
e l < o \ % S
I. ~ /"
1 X=X
!
;
o x o o
o - /' o - o - + +
- % , - - "
Xosgox’ +
: + +
- - + - +.. +
o 4 o .. B o [
- + - .+ - I
B +. - 0
- L+ \
+op .
+ ¥ N +-+ . A
o AN A “ea -
N A~ aca JNYNg RR-SRV RV
o A~ .A- A= A= A= 0= BT o Th- A o
S - 0—0—0—0—0—0—0—0—0 Q 0—0—0—0—0—0—0—0—0 S - 0—0—0—0—0—0—0—0—0
T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
P2 P2 P2

Figure 1. Constant C for different p1 and ps.

In addition to the sample size of n = 157, we have also
computed the type I error for varying ns, the results are
generally consistent with those in Figure 2. In cases with
the small (n = 50) to moderate (n = 200) sample size, the
type I error of chi-square test and a CMH test is similar
until po — p; > 0.2. Due to the discreteness of multinominal
distribution, however, both chi-square and CMH test may
result in a type I error as large as 0.056 for some ns, when
p1 = p2 = 0.5.

4. CONCLUSION AND DISCUSSION

This article is intended to address the type I error issue
when homogeneity assumption may be violated, particularly
with a binary response variable. Due to the complexity of
the contemporary trial designs, it is unrealistic to assume
a homogenous population for patients enrolled over the en-
tire enrollment.
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Both asymptotic and numerical results have demon-
strated that even when response rate changes during the
course of a trial, the chi-squared test based on combining
data before and after the change is conservative in terms of
control of type I error, when n is large.

As pointed out by Garside and Mack (1976), the chi-
square test is “approximate since it replaces multinomial
probabilities by a continuous multi-normal function” and
“the uncorrected chi-squared test gives actual error prob-
abilities which usually exceed a for some value of p”. The
same remark applies to the CMH test. Our actual type I er-
ror computation showed that the type I error of both tests
can be as large as 0.056 for some n and p; =~ ps ~ 0.5.
However, when p; # p2, the error probability is asymptoti-
cally less than the error probability of the homogeneity case
with p; = po. All these observations and the asymptotic
results lead us to conclude that the type I error of the chi-
square test is generally controlled (if not conservative) even
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Figure 2. Actual Type | error of chi-square and CMH test for the introductory example when |p; — p2| = 0,0.1,0.2, where
x-axis represents the value of ps and y-axis represents the value of actual type | error.
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when the response rate may change in the middle of the
trial.

However, the conservative nature of the Chi-square test
in such cases would result in a reduced power under the as-
sumption of homogeneous treatment effect (i.e., same odds
ratio irrespective of the change). Theoretically, the CMH
test with the stratum before and after change is preferred
when the response rate is considered different across the
stratum. However, in many cases, it is not clear when the
change occurred during the trial, thus, difficult to classify
the changes as strata. For example, time trend is quite com-
mon in clinical studies (Altman and Royston, 1988, Duan
and Hu, 2009, etc.), it is often impossible to classify the
trend as strata. One cannot use the CMH test with the
strata in those cases. In these cases, the simple Chi-square
test could be applied.

Chow and Chang (2007, chapter 2) discussed power prop-
erties of statistical tests for clinical trials with continuous
endpoints. It is important to study the properties of com-
monly used statistical tests when patient population changes
during the conduct of clinical trials. There are several pa-
pers which discussed this issue for clinical trials with con-
tinuous responses (Chow and Shao, 2005; Feng, Shao and
Chow, 2007; Losch and Neuhauser, 2008). In this paper,
we discussed some properties of the simple Chi-square test
with binary response. It remains a further research problem
to study how to adjust the Chi-square test to increase its
power when patient population changes.

In clinical trials involving important covariates (prognos-
tic factors), stratified randomization procedures are usu-
ally used to balance treatments. Rosenberger and Sverdlov
(2008) provided a good review of both the design and sta-
tistical inference about covariate-adaptive randomized clin-
ical trials (Taves, 1974; Pocock and Simon, 1975; etc.)
and covariate-adjusted response-adaptive randomized clini-
cal trials (Zhang, Hu, Cheung and Chan, 2007). As stated in
the paper, very little is known about the theoretical prop-
erties of the covariate-adaptive randomization procedures.
The response probabilities may vary in different strata.
When the number of strata is relative large and the sam-
ple size in each stratum is small, CMH test may not be
a good test. This is because the value of V5 could be un-
stable. In these cases, a simple Chi-square test could be a
better choice. The theoretical results in this paper can be
extended to these situations. This remains a further research
problem.

APPENDIX

Proof of Theorem 2.1. From Section 2, we have FE(S; —
S/2) = 0 and Var(S1—5/2) = [n1p1(1—p1)+naep2(1—p2)] /2.
Now we calculate the mean of V; (asymptotic mean). It is
easy to see that

E(S) = E(X11 + X12 + X1 + Xo2) = 2n1p1 + 2napo.

476 F. Hu, J. Lu and F. Tai

By the law of large number (Casella and Berger, 2002, pa-
ge 232 and 235 for independent and identical distributed
(iid) random variables, Shao, 2003, page 65 (Theorem 1.14)
for independent random variables with finite expectations),
we have
S Xy1+ Xio + Xog + Xoo
no n
_ 2mp1 + 2n2ps
n

— 2pp1 +2(1 — p)p2

in probability, when n — oo and ny/n — p € (0, 1).
Substitute above results to V;, we have
Vi = S(2n— 8)/[4(2n — 1)]

N (n1p1 + nap2)(n1(1 —p1) +na(l —p2))
(2n—1) ’

When n — oo and nq/n — p, it is not difficult to see that

Var([(X11 — Xi2) + (X21 — X22)]/2)
_ [nip1(1 — p1) + napa(1 — p2)]
2n
= [pp1(1 = p1) + (1 = p)p2(1 — p2)]/2.

Because

S
ot 2pp1 4 2(1 — p)pa,

and Slutsky’s Theorem (Bickel and Doksum, 1977, pa-
ge 461), we also have

(4.1) Vi/n = (ppr+(1=p)p2)lp(1=p1)+(1=p)(1=p2)]/2,

in probability.

By the Lindeberg’s central limit theorem (for sum of
independent random variables, not for independent and
identical distributed (iid) random variables, Shao (2003),
Theorem 1.15, page 67; also see appendix of Hu and
Rosenberger, 2006, page 166 for more general results), we
have

(S1—5/2)
(nlpp1(1 = p1) + (1 = p)p2(1 — p2)]/2)"/2
in distribution. Therefore
(51 = 5/2) Lo
(n[op1(1—p1) + (1= p)p2(1 —p2)]/2) =~

— N(0,1)

(4.2)

in distribution, where X(21) represents Chi-squared distribu-
tion with 1 degree of freedom.
Let

pp1+ (1 = p)p2)[p(1 = p1) + (1 = p)(1 — p2)]
[pp1(1 —p1) + (1 = p)p2(1 — p2)]

o =1



Therefore,

CiTeni
_ (ppr + (1= p)p2)[p(1 = p1) + (1 = p)(1 = p2)]
[pp1(1 = p1) + (1 = p)p2(1 — p2)]
G 5/2)
1

_ (51 -5/2)°
~ (nlppr(1 = p1) + (1 = p)p2(1 — p2)]/2)
o Popy + (1= p)pa)lp(L = p1) + (1 = p)(1 = p2)]/2
1% ’

From the result (4.1), we have

n(pp1 + (1 = p)p2)[p(1 — p1) + (1 — p)(1 — p2)}/2
Vi

—1

in probability. Based on (4.2) and Slutsky’s Theorem, we
then have

CiTeni — X%1)
in distribution, when n — oo and ny/n — p. O

Proof of Lemma 2.1. Because

(pp1+ (1= p)p2)[p(1 —p1) + (1 —p)(L —p2)] > 0
and

[pp1(1 —p1) + (1 = p)p2(1 — p2)] > 0,

we just need to prove

f(p) = (pp1 + (1 = p)p2)[p(1 — p1) + (1 — p)(1 — p2)]

= [pp1(1 = p1) + (1 = p)p2(1 — p2)]
>0

for all p1,ps € (0,1) and p € (0,1). To do this, we calculate
the derivative of f first. After some simple calculation, we
have

f@=%=m—m%—m.

It is easy to see that f'(p) > 0for p € (0,1/2) and f'(p) <
0 for p € (1/2,1). Also f'(p = 1/2) = 0. Therefore f(p)
is increasing for p € (0,1/2) and then decreasing for p €
(1/2,1). Now because f(p =0) =0 and f(p=1) =0, we
have f(p) > 0. Therefore, C; > 1. O
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