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Efficient designs for phase II oncology trials with
ordinal outcome
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Phase II trials in oncology are usually single arm stud-
ies to screen oncology treatments based on tumor response.
Treatment response can be categorized into one of four
types: complete response, partial response, stable disease
and progressive disease. Investigators usually dichotomize
responses in phase II trials and use a simple hypothesis re-
garding that binary outcome. We describe an efficient de-
sign to test an intersection hypothesis where the drug is
not considered promising if both tumor response (defined as
complete or partial response) and disease control (defined as
tumor response or stable disease) are low. The new design
can be generated using easy-to-use software that is available
at http://cancer.unc.edu/biostatistics/program/ivanova/.
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1. INTRODUCTION

In phase II oncology trials, investigators are interested
in screening potential treatments for efficacy often based on
four mutually exclusive categories defined by Response Eval-
uation Criteria in Solid Tumors (RECIST) [3]: Complete Re-
sponse (CR), Partial Response (PR), Stable Disease (SD) or
Progressive Disease (PD). Simon [20] proposed a two-stage
design for single-arm trials with binary outcome which has
become widely employed. Using this method, a trial may be
stopped after the first stage if the agent shows insufficient
promise. This two-stage design offers ethical and financial
benefits compared to single-stage designs because ineffec-
tive agents are abandoned earlier and therefore in general
fewer patients are required. Simon’s design is often applied
to tumor response (TR) defined as either CR or PR. More
recently, disease control (DC) defined as CR, PR or SD, has
been used as a primary outcome [1, 2].

Our motivating example is a trial in patients with ad-
vanced non-small cell lung cancer who have experienced
disease progression after platinum-based therapy. The tu-
mor response (TR) rate to currently available second-line
therapies is 5–10% [18, 19, 9]. The improvement in overall
survival and quality of life observed with these therapies is
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most likely related to disease control given the modest tu-
mor response rates. In situations such as this, when TR is
modest, clinicians may be interested in disease control (DC)
since it may better predict clinical outcome. Interest has in-
creased in novel endpoints for evaluating new therapeutic
agents in oncology [6]. Historically the TR was a frequently
used endpoint to assess novel cytotoxic agents which induced
tumor regression, but many targeted agents are cytostatic
and inhibit tumor growth rather than cause tumor regres-
sion. Issues in determining tumor response have included
variation in the assessment of response [4] or variability in
tumor measurements on repeat imaging [15]. An unblinded
single arm trial may be susceptible to bias in the assess-
ment of response by the investigator and lacks a “control
arm” for comparison. However, tumor response remains an
important clinical event in order to identify biomarkers for
future development [13, 16]. Thus, both the tumor response
(TR) and disease control (DC) have clinical value and aid
in the development of novel agents. Therefore testing both
tumor response (TR) and disease control (DC) formally in
a phase II trial has important clinical implications.

Several authors have addressed the issue of testing po-
tential drugs in phase II trials based on different outcomes
and different configurations of the hypotheses. Panageas [17]
proposed a method that rejects the treatment if it does not
achieve desirable CR or PR rate. Specifically, they tested
no complete response effect (H0C) and no partial response
effect (H0P ) individually using a trinomial distribution, but
did not test the tumor response defined as CR + PR. Lin
and Chen [11] developed an extension that weighted the two
outcomes relative to their importance. Testing two binary
endpoints simultaneously was considered by Lu et al. [12]
and Lin et al. [10] with the latter using Monte Carlo proce-
dures to obtain decision boundaries. Lu et al. [12] considered
CR and TR, while Lin et al. [10] considered TR and DC
as endpoints of interest. We will consider tumor response
(TR) and disease control (DC) as these are frequently of
interest, including in our motivating example. However, the
proposed method can be used for hypothesis testing based
on any ternary outcome, for example, {CR, PR, SD + PD}
in place of {CR + PR, SD, PD} (Table 1).

Let pT and pD, pT ≤ pD, denote the probability for tumor
response and disease control in the population, respectively,
and p0T and p0D denote the null probabilities of tumor re-
sponse and disease control. Consider the following simple
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Table 1. Response outcomes in phase II cancer trials

Complete Response, CR Tumor Response, Disease Control,
Partial Response, PR TR = CR or PR DC = TR or SD
Stable Disease, SD No Response = SD or PD = CR or PR or SD
Progressive Disease, PD Progressive Disease, PD

hypotheses:

H0T : pT ≤ p0T versus H1T : pT > p0T ,

H0D : pD ≤ p0D versus H1D : pD > p0D.

Lu et al. [12] considered testing an intersection hypothesis
H0T ∩ H0D. While Lu et al. [12] considered CR and TR
rather than TR and DC, we use TR and DC when referring
to their method without loss of generality. We will refer
to their method as the LJL design. According to the LJL
design, we can test H0T ∩H0D with the objective to accept
the treatment based on either promising TR or promising
DC rates. The treatment is not considered promising if both
TR and DC rates are low. Let α be the type I error rate for
testing H0T ∩H0D. Let pAT and pAD be the values for the
alternative hypothesis for TR and DC rates respectively, and
β, βT , βD be the type II error rates associated with testing
H0T ∩ H0D given {pT = pAT and pD = pAD}, pT = pAT

and pD = pAD respectively. The LJL method considered
designs such that 1) treatment is concluded to be effective
with probability of at most α when pT = p0T and pD =
p0D, 2) for pT = pAT and any pD the probability to accept
the treatment is at least 1−βT , 3) for any pT and pD = pAD

the probability to accept the treatment is at least 1 − βD.
Note that H0T and H0D were not tested but rather it was
required to have good power for testing H0T ∩ H0D when
pT = pAT and good power for testing H0T ∩H0D when pD =
pAD. Since the focus was on achieving given power when
pT = pAT or pD = pAD, the rejection regions considered
in the LJL method and the method in [10] were restricted
to the regions with linear boundaries t and d, such that
{(XT , XD) : XT > t or XD > d}, where XT and XD are
the number of patients with tumor response and with disease
control in the trial and t and d are constants that define
rejection region.

There exist many two-stage designs for given power and
type I error rates. Simon [20] tabulated the designs that
minimize either the maximum sample size (“minimax” de-
sign) or the expected sample size under the null hypothe-
sis (“optimal” design). Jung et al. [8] proposed minimizing
the weighted average of the maximum sample size and the
expected sample size under the null. These admissible de-
signs feature the minimax and optimal designs as special
cases and often yield other good designs. Because the op-
timal and minimax designs can often result in first stage
sample sizes which are too small or too large, having other
options provided by admissible designs is desirable. In our

experience, an investigator often chooses an admissible de-

sign with preferable stage one sample size over optimal or

minimax designs. Our proposed method computes all ad-

missible designs.

We extend the method in [12] in several ways. First, we

propose a two-stage design that tests H0T ∩H0D as the main

objective without restrictions on the shape of rejection re-

gion. Second, our approach allows specifying desirable β, the

type II error rate, to test H0T ∩H0D given promising rates of

TR and SD, as well as βT and βD. Third, the proposed way

of ordering points in the sample space allows developing an

efficient algorithm to search over possible designs for each

total sample size n and stage 1 sample size n1. This algo-

rithm is implemented in our easy-to-use web-based software

to obtain all admissible designs. Fourth, we describe how to

test H0T and H0D individually as well as testing H0T ∩H0D.

Our method yields higher power, lower expected sample size

under the null and lower maximum total sample size, to test

H0T ∩H0D compared to the method of Lu et al. [12]. The

power when pT = pAT or when pD = pAD is higher than

the power in [12] as well in many cases.

The paper is organized in the following way. Section 2

describes the formulation of the hypotheses and describes

the rejection region for a single stage design, including an

example. The two-stage design with an example is described

in Section 3. The proposed method is extended in Section 4

to include individual tests for H0T and H0D. The applica-

tion to the phase II trial in non-small cell lung cancer and

discussion are found in Sections 5 and 6.

2. SINGLE STAGE DESIGN

Consider testing

H0 : H0T ∩H0D versus H1 : H1T ∪H1D.

Our goal is for given type I and type II error rates α, β, βT ,

and βD to find a single stage design by determining the total

sample size n and futility region S1, such that

(1)

Pr
{
(XT , XD) ∈ S̄1 | p0T , p0D

}
≤ α,

Pr
{
(XT , XD) ∈ S̄1 | pAT , pAD

}
≥ 1− β,

min
pD

Pr
{
(XT , XD) ∈ S̄1 | pAT , pD

}
≥ 1− βT ,

min
pT

Pr
{
(XT , XD) ∈ S̄1 | pT , pAD

}
≥ 1− βD.
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Applying proposition A.1 from [12], (1) is equivalent to

(2)

Pr
{
(XT , XD) ∈ S̄1 | p0T , p0D

}
≤ α,

Pr
{
(XT , XD) ∈ S̄1 | pAT , pAD

}
≥ 1− β,

Pr
{
(XT , XD) ∈ S̄1 | pAT , pD = pAT

}
≥ 1− βT ,

Pr
{
(XT , XD) ∈ S̄1 | pT = 0, pAD

}
≥ 1− βD.

We now describe how to construct the rejection region S̄1

for testingH0T∩H0D in a single stage trial. Let Pr(XT , XD |
pT , pD, n) be the probability of outcome (XT , XD) after
n patients have been assigned and given pT and pD. For
any given outcome (xT , xD), we compute the probability
V (xT , xD) = Pr(XT ≥ xT or XD ≥ xD | p0T , p0D, n).
We use the values V (xT , xD) to order outcomes in the
sample space. To form the rejection region, we first take
outcomes with the smallest V (xT , xD), then add outcomes
with the second smallest possible value of V (xT , xD), etc.
We continue the process until the sum of the probabilities
of the outcomes in rejection region given H0,Pr(xT , xD |
p0T , p0D, n), is less than α.

For each observed outcome (xT , xD), define the p-value
as the sum of Pr(XT , XD | p0T , p0D, n) for all (XT , XD)
such that V (XT , XD) ≤ V (xT , xD):

pv(xT , xD)

(3)

=
∑

(XT ,XD):V (XT ,XD)≤V (xT ,xD)

Pr(XT , XD | p0T , p0D, n).

For a single-stage design, the rejection region can be defined
as the set of points with p-values less than α. As there are
many designs for given α and β, we are usually interested
in a single-stage design with the smallest n.

We use an example with a small sample size to illustrate
the differences between the LJL and proposed approaches.
Clearly, phase II oncology trials have larger total sample
sizes.

Example, single stage Figure 1 presents the rejection re-
gion for the intersection hypothesis, H0T ∩ H0D, when
p0T = 0.15, p0D = 0.35, pAT = 0.55, and pAD = 0.75
with α = 0.05. The proposed test rejects H0T ∩ H0D for
all outcomes shown by dark dots. In comparison, the LJL
test for the same α level rejects H0T ∩ H0D if XT ≥ 4 or
XD ≥ 6. Points that are in the rejection region of the pro-
posed test and not in the LJL test are marked with crosses.
Since power given pAT is computed as the minimum over
all possible values of pD, and the minimum is attained at
pD = pAT , both our proposed method and LJL test yield
the same power of 0.44 when pT = pAT . Similarly, power
for given pAD is computed as the minimum over all possi-
ble values of pT , and the minimum is attained at pT = 0.
Both methods yield the same power for DC of 0.61. The
power for H0T ∩H0D is much higher for the proposed test:
0.80 versus 0.68 for the LJL test. If TR is the only outcome

Figure 1. Rejection region for the intersection hypothesis for
p0T = 0.15, p0D = 0.35, pAT = 0.55, and pAD = 0.75 with
n = 7 and α = 0.05. The proposed test rejects H0C ∩H0T

for all outcomes shown by dark dots. Lines show the
boundaries for rejection region of the LJL method. The points
marked with “×” are additional points in the rejection region

using the proposed method.

considered in the trial, then H0T is rejected if XT ≥ 4. If
DC is the only outcome, the H0D is rejected if XD ≥ 6. In
this example, the rejection region for the proposed test is
actually larger than the union of the rejection regions for
H0T and H0D. This is because the proposed test exhausts
the α level well compared to tests for a single binary out-
come. The actual level attained is 0.047 for the proposed
test, 0.040 for the LJL test, 0.01 to test HT and 0.01 to
test HD.

3. TWO-STAGE DESIGN

3.1 Two-stage design

Let n1 be the number of patients assigned in stage 1 and

(X
(1)
T , X

(1)
D ) be the outcome in stage 1. Let the futility re-

gion, S1, be the set of outcomes that do not warrant contin-
uation to stage 2, and let PET be the probability of early
termination of the trial under H0T ∩H0D,

PET = Pr
{
(X

(1)
T , X

(1)
D ) ∈ S1 | p0T , p0D, n1

}
.

Region S̄1 that warrants continuation of the trial to stage
2 can be described as the set of outcomes with p-values
less than 1 – PET. The process of computing p-value was
described in Section 2. Also denote (XT , XD) to be the out-
come after stage 2, and S2 to be a set of outcomes for which
futility is declared after the trial (fail to reject the null hy-
pothesis H0T ∩H0D).
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Our goal is for given α, β, βT , and βD, to find n, n1, S1

and S2, such that

Pr
{
(X

(1)
T , X

(1)
D

)
∈ S̄1 and

(XT , XD) ∈ S̄2 | p0T , p0D
}
≤ α,

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2 | pAT , pAD

}
≥ 1− β,(4)

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2 | pAT , pD = pAT

}
≥ 1− βT ,

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2 | pT = 0, pAD

}
≥ 1− βD.

Similarly to Section 2, we used Proposition A.1 from [12]
in (4). Note that a two-stage design can be alternatively
described by n, n1, PET and S2.

The expected sample size under H0, EN0, is defined as

EN0 = n1 + (n− n1)PET.

As there might be many designs satisfying criteria (4), we
will consider all admissible designs [8], designs that minimize
wEN0 + (1−w)n for some w, such that 0 ≤ w ≤ 1. Admis-
sible designs are obtained by an exhaustive search through
n, n1, PET and S2.

We describe futility region Si using constants ti, di and a
set of points Ai, i = 1, 2:

S1(t1, d1, A1) =
{
(X

(1)
T , X

(1)
D ) : X

(1)
T ≤ t1 and

X
(1)
D ≤ d1

}
∪A1,

S2(t2, d2, A2) =
{
(XT , XD) : XT ≤ t2 and

XD ≤ d2
}
∪A2.

Example, two-stage Figure 2 presents the minimax two-
stage design for p0T = 0.15, p0D = 0.35, pAT = 0.55, and
pAD = 0.75, that attains a power of at least 0.8 (β = 0.2)
for testing H0T ∩ H0D with α = 0.05. Stage 1 enrolls
n1 = 5 patients and the maximum total sample size is
n = 7. The futility region S1, the number of responses
in n1 = 5 stage 1 patients, is shown by snowflakes. Com-
pared to the LJL method, we do not restrict the shape
of the futility region, though in this case the futility re-
gion has two linear boundaries. The rejection region after
stage 2, S̄2, is shown by dark dots. Futility region S1can
be described by t1 = 1, d1 = 2, A1 = {∅} and S2 by
t2 = 2, d2 = 4, A2 = {(3, 3), (3, 4)(0, 5), (1, 5)}. For n = 7,
there are seven possible designs that attain 0.8 power with
type I error rate of 0.05. For comparison, a two-stage design
described in [12] does not exist for n = 7, and only exists
for larger sample sizes.

Figure 2. The minimax two-stage design for p0T = 0.15,
p0D = 0.35, pAT = 0.55, and pAD = 0.75 with β = 0.2 and
α = 0.05. Stage 1 enrolls n1 = 5 patients. Snowflakes show
the futility region in stage 1. Dark points show rejection

region after both stages.

3.2 Results

The new design can be generated using easy-to-use soft-
ware that we have developed available at http://cancer.
unc.edu/biostatistics/program/ivanova/. We illustrate the
features of the new approach using examples previously
studied ([12], Tables II and IV). Results for two of 24 scenar-
ios in [12] are presented in Table 2. We display all admissible
designs including minimax and optimal designs. An admis-
sible design [8] is a design that minimizes wn + (1 – w)EN0

for some w in [0, 1]. A given admissible design in Table 2
minimized the weighted sum over all values of w we report.
Wide interval for w indicates that both n and EN 0 are small
to yield the smallest wn + (1 – w)EN0 for a wide range of w.

We selected a scenario where our approach has the most
and the least advantage over the LJL method. We generated
the new design when 1) as in [12], only βT and βD are given;
2) βT , βD and β are given; 3) only β is given. Lu et al.
[12] did not use β to construct designs, therefore we used β
reported in ([12], Tables II and IV). Since the new design is
constructed to have good power for testing H0T ∩H0D, the
smallest required sample size for the new design when only
β is specified is always the same or less. In fact, the proposed
method yields a sample size that is strictly less in 21 of 24
scenarios and is equal in the remaining 3. Also across all
scenarios and power requirements, the new approach yields
smaller EN 0 and much optimal designs with much smaller
maximum sample size.

In the first scenario, the sample size for testingH0T ∩H0D

is 47, compared to 53 required by the LJL test. When only
βT and βD are specified, the total sample size reduces from
53 for the LJL test to 42 for the proposed method. We also

466 A. Ivanova, J. Monaco and T. Stinchcombe



Table 2. Comparison of the new approach and the LJL method

1− β 1− βT 1− βD Method n n1 EN0 w Design

p0T = 0.01, p0D = 0.2, pAT = 0.1, pAD = 0.4, α = 0.1

– 0.9 0.9 LJL 53 33 39.9 Minimax
LJL 59 27 37.8 Optimal

– 0.9 0.9 New 42 24 25.8 [0.08, 1] Minimax
New 51 20 25.0 [0, 0.08] Optimal

0.98 0.9 0.9 New 52 30 38.2 [0.77, 1] Minimax
New 53 28 35.0 [0.16, 0.77]
New 54 27 34.8 [0, 0.16] Optimal

0.98 – – New 47 23 34.0 [0, 1] Minimax,
Optimal

p0T = 0.05, p0D = 0.2, pAT = 0.2, pAD = 0.45, α = 0.05

– 0.6 0.8 LJL 24 16 17.9 Minimax
LJL 29 12 16.4 Optimal

– 0.6 0.8 New 26 17 19.4 [0.79, 1] Minimax
New 27 10 15.8 [0.54, 0.79]
New 28 10 14.6 [0.28, 0.54]
New 29 11 14.2 [0. 0.28] Optimal

0.87 0.6 0.8 New 26 17 19.4 [0.78, 1] Minimax
New 27 11 15.9 [0, 0.78] Optimal

0.87 – – New 24 14 17.0 [0.41, 1] Minimax
New 26 11 15.6 [0, 0.41] Optimal

observe dramatic reduction in the expected sample size un-
der the null hypothesis, EN 0, by more than 10 patients for
each of the inputs 1)–3). In the second scenario, the worst
of the 24 scenarios, sample sizes of the minimax designs to
test H0T ∩H0D are equal for the two methods. When only
βT and βD are specified, the sample size for the minimax
design for the proposed approach is higher: 26 versus 24
for the LJL design. This is a consequence of the different
approaches of the two methods for selection of the points
in the rejection region. For example, consider the process
of constructing the rejection region to test H0T ∩H0D. Let
XS denote the number of patients with stable disease. Using
Figure 1, suppose all points {(XT , XS) : XT ≥ 4}, except for
a point (4, 0), and all points {(XT , XS) : XT +XS ≥ 6} are
already in the rejection region. Say, the α-level has not been
reached yet, and we can add one more point: either (4, 0)
or (3, 2). To maximize the probability to reject H0T ∩H0D

when pT = pAT , as in the LJL method, because of (2), we
need to ensure good power when the probability of SD is
0 and hence XS = 0. Therefore point (4, 0) will be chosen.
Alternatively, for good power for testing H0T ∩H0D, point
(3, 2) will be chosen. If the sole focus is on testing H0T or
H0D, the LJL test can be improved by considering a hy-
brid with the proposed approach where a rejection region
is first constructed by selecting two linear boundaries as in
the LJL test and then more points are added to the rejec-
tion region using the ordering described here in Section 2.
This approach is more computationally intensive compared
to the proposed method as multiple rejection regions exist
for given α.

4. TESTING INDIVIDUAL HYPOTHESES
H0T AND H0D IN A TWO-STAGE

DESIGN

It is often of interest to test H0T and H0D as well as
H0T ∩ H0D. Thus far, we have considered only the type I
error rate under H0T ∩H0D. To test also H0T and H0D when
the trial continues to the maximum sample size, we need to
find rejection regions for H0T and H0D, S̄2T and S̄2D such
that

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2 | p0T , p0D
}
≤ α,

max
pD

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2T | p0T , pD
}
≤ α,

max
pT

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2D | pT , p0D
}
≤ α,

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2 | pAT , pAD

}
≥ 1− β,

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2T | pAT , pD = pAT

}
≥ 1− βT ,

Pr
{
(X

(1)
T , X

(1)
D ) ∈ S̄1 and

(XT , XD) ∈ S̄2D | pT = 0, pAD

}
≥ 1− βD.
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Applying proposition A.1 from [12], the type I error
rate to test H0T is maximized when pD = 1 – pT . When
pD = 1 – pT , the probability of stopping for futility is 0
and the rejection region coincides with the one for a sin-
gle stage design with binary outcome. The type I error rate
to test H0D is maximized when pD = pT , that is, when
Pr{SD} = 0. The probability of stopping for futility is then

Pr{(X(1)
T , X

(1)
D ) ∈ S̄1 | pT = pD = p0D}. Conceivably, S̄2T

or S̄2D can have points that are not in S̄2. When this occurs,
to control type I error rate in a strong sense using the closed
testing principle [14], the rejection region of H0T is S̄2T ∩ S̄2

and the rejection region of H0D is S̄2D ∩ S̄2.

Consider the example from Section 3. The rejection re-
gion for H0T , is S̄2T = {XT : XT ≥ 4}. Rejection region for
H0D is S̄2D is found so that the probability to reject the null
hypothesis pD = 0.35 in a two-stage design with n = 7 and
n1 = 5 and stopping for futility after stage 1 if X1D ≤ 1 is
at most α. We compute that S̄2D = {XD : XD ≥ 6}. In this
example, the power to reject H0T ∩ H0D when pT = pAT

is the same as the power to reject H0T , and also the power
to reject H0T ∩ H0D when pD = pAD is the same as the
power to reject H0D. However in most cases, the power to
reject H0T will be smaller than the probability to reject
H0T ∩ H0Dwhen pT = pAT , and similarly to H0D. See our
example in Section 5.

5. MOTIVATING EXAMPLE

Our motivating example is a single arm phase II trial of
a novel agent that may have activity in non-small cell lung
cancer in patients who have experienced disease progression
after first-line therapy. We were interested in using disease
control, defined as CR or PR or SD lasting more than 12
weeks, as the primary endpoint. The DC rates were set to
p0D = 0.25 and pAD = 0.50. Tumor response was also of
interest with p0T = 0.05 and pAT = 0.25. The Simon’s min-
imax design to test H0D alone with type I error rate of 0.05
and power of 0.80 yields the sample size of 24,H0T alone can
be tested with 16 patients. We tested H0T ∩H0D with type
I error rate of at most 0.05, and power to reject H0T ∩H0D

of 0.8 when {pT = pAT and pD = pAD}, and at least 0.65
when pT = pAT or pD = pAD. We obtained all possible de-
signs using our software with parameters p0T = 0.05, p0D =
0.25, pAT = 0.25, pAD = 0.5, α = 0.05, β = 0.21, βT = 0.35
and βD = 0.35. The minimax design to test H0T ∩ H0D

was selected with n = 18 yielding the probability to reject
H0T ∩ H0D of 0.80, 0.76 and 0.70 when {pT = pAT and
pD = pAD}, pT = pAT and pD = pAD respectively. The de-
sign has stage 1 size of n1 = 12, futility region S1 described
by t1 = 1, d1 = 5, A1 = {(2, 2), (2, 3), (2, 4), (0, 6)} and S2

by t2 = 2, d2 = 7 and A2 = {∅}. That is, H0T ∩ H0D is
rejected at the end if X1T ≥ 3 or X1D ≥ 8. If one would like
to test H0T and H0D as well as H0T ∩H0D, H0T is rejected
if X1T ≥ 4, and H0D is rejected if X1T ≥ 9.

6. DISCUSSION

Our motivation for this proposed method resulted from
interest by the investigators’ from the cancer center in test-
ing H0T ∩H0D rather than testing either H0T or H0D. Test-
ingH0T ∩H0D usually yields a smaller sample size than sam-
ple sizes for testing H0T and H0D separately. For example,
recall that in our motivating example, the Simon’s design
to test H0D alone with type I error rate of 0.05 and power
of 0.8 yields the minimum sample size of 24. If we modify
pAT slightly and use pAT = 0.22 in place of pAT = 0.25, 24
patients are required to test H0T alone. In comparison, if we
test H0T ∩H0D with 0.8 power, we need only 19 patients.

We have developed easy-to-use software to generate de-
signs we describe here. From the user’s input values of α,
1 − β, 1 − βT , 1 − βD, p0T , p0D, pAT , pAD, the software
calculates the sample sizes (n and n1), the futility region
points for stage 1 and final analysis, PET and EN 0, for each
admissible design. The website also provides a suggested de-
scription of the method for a clinical trial protocol.

Apart from the proposed method, our software
also contains various phase II methods that are fre-
quently used at the Lineberger Comprehensive Can-
cer Center. Among methods available at http://cancer.
unc.edu/biostatistics/program/ivanova/ are Simon’s and
Fleming’s two-stage designs and the method to generate
stopping boundary for continuous toxicity monitoring in a
phase II trial [7].
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