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A phase I dose-finding study based on
polychotomous toxicity responses

Xiaobin Yang and Keying Ye
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In phase I clinical trials, toxicity study is important and
the toxicity level is often categorized into multiple (poly-
chotomous) grades, rather than dichotomous grades. In this
paper, we introduce a concept of overall maximum toler-
ated dose (overall MTD) and we discuss its analytic proper-
ties. The traditional definition of the MTD is shown to be a
special case of the overall MTD. A dose-finding strategy is
also proposed to obtain the overall MTD. Motivated by the
continual reassessment method (CRM), a cumulative pro-
bit model with latent variables is introduced to fit the data.
By introducing latent variables, Markov chain Monte Carlo
(MCMC) methods are employed to estimate the model pa-
rameters. Simulation studies show that the cumulative pro-
bit model, which takes into account the severity level of tox-
icity, reduces the number of patients allocated to the higher
toxicity dose level. This could reduce the risk of toxicity for
patients in the phase I study.
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1. INTRODUCTION

The primary goal of a phase I clinical trial is to deter-
mine the dose of a candidate drug to use in a subsequent
phase II trial. Issues of side effects due to toxicity in the
drug, or the dose limiting toxicity (DLT) is always a main
concern in phase I study. Toxicity level is often categorized
into multiple grades. For instance, the general guidelines of
the Common Toxicity Criteria (CTC) (National Cancer In-
stitute, 2003) are grade 0 for no toxicity; grade 1, 2, 3, 4 and
5 for minimal toxicity, moderate toxicity, severe toxicity, life
threatening and death, respectively. In most dose allocation
procedures, such as the traditional “3+3”design [7], CRM
[6] and EWOC [2], these grades are dichotomized. For ex-
ample, if grade 4 fatigue is considered DLT then grades 0−3
will be non-DLT and treated identically from the point of
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view of an experimental design. Such dichotomization works
for relatively mild toxicities. However, for severe and possi-
bly irreversible effects such as renal, liver, or neurological
toxicities, grade 4 renal toxicity is much more dangerous
than that for grade 3. Hence, those toxicity grades cannot
be treated equivalently. Such concerns need be addressed in
the dose escalation process.

In 2009, Yin and Yuan [10] proposed using multiple par-
allel CRM models, each with a different set of prespecified
toxicity probabilities. In the Bayesian paradigm, they assign
a discrete probability mass to each CRM model as the prior
model probability. The posterior probabilities of toxicity can
be estimated by the Bayesian model averaging (BMA) ap-
proach. Dose escalation or deescalation is determined by
comparing the target toxicity rate and the BMA estimates
of the dose toxicity probabilities. Yin and Yuan examine
the properties of the BMA-CRM approach through exten-
sive simulation studies, and also compare this new method
and its variants with the original CRM. The results demon-
strate that the BMA-CRM is competitive and robust, and
eliminates the arbitrariness of the prespecification of toxi-
city probabilities. Unfortunately, the BMA-CRM approach
dose not take the multiple toxicity grade level into account.

During the past ten years, polychotomous toxicity re-
sponse has been widely discussed. In 2000, Wang et al. [8]
extended the CRM by incorporating the idea of unequal
weights on the assessments of grade 3 and grade 4 toxic-
ity in the dose escalation. The simulation results show that
their procedures reduce the chance of recommendation to
the higher dose levels by taking into account the impact
of grade 4 toxicity, both for the standard design and for
the CRM. Similar trends are observed for patient allocation
to the higher levels. Additionally, for CRM which performs
more accurately on the estimation of maximum tolerated
dose (MTD), the proposed extended CRM maintains the
same characteristic.

In 2004, Bekele and Thall [3] proposed a Bayesian method
for dose finding in a sarcoma trial based on a vector of cor-
related, ordinal-valued toxicities with severity levels varying
with dose. They also developed a method for jointly eliciting
the prior, a vector of weights quantifying the clinical impor-
tance of each level of each type of toxicity, and a target total
toxicity burden (TTB) acceptable to the physicians.

There is other research related to this type of problem. In
2007, Yuan et al. [11] proposed another extension of the con-
tinual reassessment method (CRM), called the Quasi-CRM,
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to incorporate the grade information. They convert the tox-
icity grades to numeric scores that reflect their impacts on
the dose allocation procedure, and then incorporate those
scores into the CRM using the quasi-Bernoulli likelihood. A
simulation study demonstrates that the Quasi-CRM is su-
perior to the standard CRM and comparable to a univariate
version of the Bekele and Thall method [3].

In Phase I clinical trial, maximum tolerated dose (MTD)
refers to the highest dose of a drug or treatment that does
not cause unacceptable side effects and the MTD is deter-
mined in clinical trials by testing increasing doses on differ-
ent groups of people until the highest dose with acceptable
side effects is found (Dictionary of Cancer Terms. National
Cancer Institute). This is a descriptive definition rather than
an analytical definition, and it leads to different interpreta-
tions and comprehension of MTD in practice.

For most of the model-based designs, MTD is defined
as a dose, x∗, at which the probability of DLT is equal
to θ, where θ is an aimed-for target DLT probability.
This definition of MTD works well under the case of di-
chotomous toxicity responses. However, it is difficult to di-
rectly apply such a definition in the case of polychoto-
mous toxicity responses. For example, suppose the proba-
bility configurations for toxicity grades 0−5 at dose level
x1 and x2 are p1 = (0.10, 0.25, 0.35, 0.15, 0.10, 0.05) and
p2 = (0.35, 0.25, 0.10, 0.05, 0.10, 0.15), respectively, where
the pij is the probability that the patient suffers the j th
toxicity grade at dose xi, j = 1, . . . , 6, i = 1, 2. For instance,
p13 = 0.35 means the chance that the patient suffers a 3rd
toxicity grade at dose x1 is 35 percent. Assume that there is
a DLT if the toxicity grade is 4 or above and non-DLT oth-
erwise and set the target DLT probability θ equals to 0.30.
Since P (DLT|x1) = P (DLT|x2) = 0.30, both dose levels x1

and x2 are MTD according to such definition, i.e. there is
no difference between dose levels x1 and x2 in the sense of
the probability of DLT. It is obvious that these two dose
levels are not the same by comparing their probability con-
figurations. For dose x1, the probability mass concentrates
at a third toxicity grade with probability 0.35. However, for
dose x2, the probability mass has dispersed concentrations
at first and sixth toxicity grades with probabilities 0.35 and
0.15, respectively. Hence, it is hard to generate the definition
of the MTD from the case of dichotomous toxicity responses
to that of the polychotomous toxicity responses naturally.

In the case of polychotomous toxicity responses, Bekele
and Thall [3] define MTD as the dose at which the total tox-
icity burden (TTB) is equal to a target TTB. A numerical
variable, so called severity weight, is defined on the ordered
toxicity grade. Then the TTB is obtained by calculating the
mean value of the severity weight. Simulation study shows
that, on average, this definition performs well under a wide
variety of circumstances. However, in practice, the meaning
of the target TTB is not quite straightforward (e.g., 3.04
in Bekele and Thall’s example [3]) and it requires a great
deal of effort to interact with the physicians for establishing
severity weight as well as target TTB.

It is thus important to reconsider the definition of MTD,
which can be applied in both cases of dichotomous and poly-
chotomous toxicity responses and meanwhile can be easily
interpreted by physicians. In this research, we attempt to
give a more rigorous definition for MTD and we also pro-
pose an attractable way to deal with the computation of
the MTD. In Yang, Ye and Wang, 2011 [9] a probit model
with latent variables in the case of dichotomous toxicity re-
sponses is studied. In this article, a cumulative probit model
with latent variables will be investigated in the case of poly-
chotomous toxicity responses. In the next section, we intro-
duce the new definition of overall MTD along with its ana-
lytic properties. In Section 3, the cumulative probit model
with latent variables and the full conditional distributions
are given. The likelihood function and the posterior distri-
bution functions of the model parameters will be given in
Section 4. In Section 5, a simulation study exploring oper-
ating characteristics of the proposed method is presented.
Finally, in Section 6, conclusions and discussions are pro-
vided.

2. THE OVERALL MTD

Suppose that, instead of a binary definition of toxicity,
we use an M -point ordinal toxicity scale. Denoted by Y
the polychotomous toxicity response which takes one of the
M values, {1, . . . ,M}. Define by py(x) the probability of
suffering toxicity grade Y = y, y = 1, . . . ,M , at dose x such
that

∑M
y=1 py(x) = 1 for all x ∈ X (where X is the set of all

interesting dose levels). Set a critical toxicity grade m, m ∈
{1, 2, . . . ,M}, such that there is a severe toxicity response
if the toxicity grade is m or higher, or, simply Y ≥ m , not
a severe toxicity response if the toxicity grade is less than
m, or Y < m. Such severe toxicity is named as level-m
severe toxicity, denoted by Tm = {Y ≥ m}. For any level-
m severe toxicity Tm, there is a target toxicity probability
θm, m ∈ {1, 2, . . . ,M}. A dose x is said level-m tolerable
if the probability of level-m severe toxicity Tm at x is less
than or equal to θm, i.e. P (Y ≥ m|x) ≤ θm, not level-m
tolerable if the probability of Tm at x is greater than θm,
i.e. P (Y ≥ m|x) > θm. Given a critical toxicity grade m,
the maximum dose of all level-m tolerable doses is called the
level-m maximum tolerated dose. To make it clearer,
we introduce the following definition.

Definition 2.1. For critical toxicity grade m, m ∈
{1, 2, . . . ,M}, associated with its target severe toxicity prob-
ability θ, the level-m maximum tolerated dose (or
briefly level-m MTD), denoted by mMTD(θ), is defined
as

mMTD(θ) = sup{x|P (Y ≥ m|x) ≤ θ}(1)

= sup

{
x

∣∣∣∣∣
M∑

y=m

py(x) ≤ θ

}
,

where sup{S} is the supremum of set S.
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Figure 1. Graph illustration for Proposition 2.1. It shows that
the level-m MTD, mMTD(θ), is increasing in its

corresponding target toxicity probability θ.

Here, we take the supremum because of the belief that,
given a target toxicity probability, the higher the dosage,
the more efficient the chemical compound, i.e. it is assumed
that dose-response curves for both toxicity and efficacy are
increasing in the dosage, or, simply expressed, “the more
pain, the more gain.”

The following propositions show some properties of the
level-m MTD.

Proposition 2.1. For any critical toxicity grade m, m ∈
{1, 2, . . . ,M}, mMTD(θ) is increasing in θ, where θ is the
target toxicity probability associated with the critical toxicity
grade m (see Figure 1).

Proof. Suppose θ′ < θ′′, then
∑M

y=m py(x) ≤ θ′ implies∑M
y=m py(x) ≤ θ′′, for m ∈ {1, 2, . . . ,M}. Hence, {x|∑M
y=m py(x) ≤ θ′} ⊂ {x|

∑M
y=m py(x) ≤ θ′′}. Therefore,

mMTD(θ′) = sup

{
x

∣∣∣∣∣
M∑

y=m

py(x) ≤ θ′

}

≤ sup

{
x

∣∣∣∣∣
M∑

y=m

py(x) ≤ θ′′

}

=mMTD(θ′′).

Hence, mMTD(θ) is increasing in θ.

Referring to any level-m maximum tolerated dose,

mMTD(θ), Proposition 2.1 shows the higher the tolerance
probability θ, the larger the amount of the dose should
be applied to achieve the maximum efficacy of the drug.
The following proposition shows that, on the other side, the

Figure 2. Graph illustration for Proposition 2.2. It shows that,
for a fixed target toxicity probability θ, mMTD(θ) is

increasing in the toxicity grade m.

higher the toxicity grade which is treated as the DLT, the
larger the amount of the drug that can be tolerated.

Proposition 2.2. Given a target toxicity probability θ,

mMTD(θ) is increasing in toxicity grade m, i.e.,

m′MTD(θ) ≤m′′MTD(θ), for any m′ < m′′ in {1, 2, . . . ,m}
(see Figure 2).

Proof. Suppose m′<m′′, then
∑M

y=m′ py(x)≥
∑M

y=m′′ py(x),
Hence,⎧⎨

⎩x

∣∣∣∣∣∣
M∑

y=m′

py(x) ≤ θ

⎫⎬
⎭ ⊂

⎧⎨
⎩x

∣∣∣∣∣∣
M∑

y=m′′

py(x) ≤ θ

⎫⎬
⎭ .

Therefore,

m′MTD(θ′) = sup

⎧⎨
⎩x

∣∣∣∣∣∣
M∑

y=m′

py(x) ≤ θ

⎫⎬
⎭

≤ sup

⎧⎨
⎩x

∣∣∣∣∣∣
M∑

y=m′′

py(x) ≤ θ

⎫⎬
⎭

=m′′MTD(θ).

Hence, mMTD(θ) is increasing in m.

In order to define the overall MTD in the case of poly-
chotomous toxicity responses with M -point ordinal toxicity
grade, let us introduce the following notations. Denoted by
Y = {1, . . . ,M} the set of ordered grades that are associ-
ated with the polychotomous toxicity response Y. Suppose
P = {p1(x), . . . , pM (x)|x ∈ X} such that

∑M
y=1 py(x) = 1,

for all x ∈ X, and θ = {θ1, . . . , θM}, where θm is the target
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Figure 3. Graph illustration for Definition 2.2. In this graph,
there are 4 increasing curves

P (Y ≥ mi|x) =
∑M

y=mi
py(x), i = 1, . . . , 4, where

m1 < · · · < m4 are some toxicity grades. There is a level-mi

MTD given the target toxicity probability θi, denoted by a
small circle, i = 1, . . . , 4. The overall MTD, denoted by a

dotted circle, is the minimum of all level-mi MTD’s.

toxicity probability corresponding to the level-m severe tox-
icity Tm, m ∈ {1, 2, . . . ,M}. The triplet {Y,P ,θ} is called
anM -point ordinal toxicity grade system defined on X.

Example 2.1. Suppose Y = {1, 2}, where 1 indicates a
non-DLT and 2 a DLT. Let P = {1− p(x), p(x)|x ∈ X} and
θ = {1, θ}, then {Y,P ,θ} is a 2-point ordinal toxicity grade
system, or dichotomous toxicity grade system, defined on X.
Furthermore, if p(x) = [(1 + tanhx)/2]a and θ = 0.2, then
the original CRM by O’Quigley et al. [6] can be reconsidered
under this framework {Y,P ,θ}.

Suppose {Y,P ,θ} is an M -point ordinal toxicity grade
system defined on X. Based on Definition 2.1, dose x is level-
m tolerable if and only if dose x ≤ mMTD(θm). Hence, the
overall MTD of {Y,P ,θ} should be defined as the minimum
of all the level-m MTD. To make it clearer, we introduce the
following definition.

Definition 2.2. Given M dimensional vector θ =
(θ1, θ2, . . . , θM ), whose elements θm’s are pre-specified tar-
get toxicity probabilities with respect to the critical toxicity
grade m’s, the overall MTD of the M -point ordinal toxi-
city grade system, denoted by MMTD(θ), is defined as

(2) MMTD(θ) = min{mMTD(θm)|m = 1, 2, . . . ,M},

where mMTD(θm) is the level-m MTD associated with its
target toxicity probability θm, for m ∈ {1, 2, . . . ,M} (see
Figure 3).

The following theorem shows that the target toxicity
probability θm’s should be monotone decreasing in practice,
i.e., θ1 > θ2 > · · · > θM . Otherwise, the toxicity grade sys-
tem can be reduced to a lower dimension system.

Theorem 2.1. Suppose {Y,P,θ} is an M -point ordi-
nal toxicity grade system with its associated target toxic-
ity probability θ = (θ1, θ2, . . . , θM ) and P = {p1(x), . . . ,
pM (x)|x ∈ X}. If there exists an m0 such that θm0 ≥
θm0−1, then the M -point ordinal toxicity grade sys-
tem {Y,P,θ} is equivalent to the (M − 1)-point or-
dinal toxicity grade system {Y∗,P∗,θ∗}, where Y∗ =
{1, . . . ,M − 1}, P∗ = {p1(x), . . . , pm0−2(x), pm0−1(x) +
pm0(x), pm0+1(x), . . . , pM (x)|x ∈ X} and θ∗ = {θ1, . . . ,
θm0−1, θm0+1, . . . , θM}. Hence, the toxicity grade m0−1 and
m0 should be combined into one single toxicity grade level
m0 − 1. Here, “equivalence”is in the sense of finding the
overall MTD.

Proof. Denoted by MMTD(θ) and M−1MTD∗(θ∗) the over-
all MTD of {Y,P ,θ} and {Y∗,P∗,θ∗}, respectively. Since
θm0 ≥ θm0−1, using Propositions 2.1 and 2.2, we have

m0−1MTD(θm0−1) ≤ m0MTD(θm0−1) ≤ m0MTD(θm0),

where mMTD(θ) is the level-m MTD associated with system
{Y,P ,θ}. Hence,

MMTD(θ) =min{mMTD(θm)|m = 1, . . . ,M}(3)

=min{mMTD(θm)|m = 1, . . . ,

m0 − 1,m0 + 1, . . . ,M}.

Since P∗ = {p1(x), . . . , pm0−2(x), pm0−1(x) + pm0(x),

pm0+1(x), . . . , pM (x)|x ∈ X}, one has
∑M−1

y=m p∗y(x) =∑M
y=m py(x) for m ≤ m0 − 1 and

∑M−1
y=m p∗y(x) =∑M

y=m+1 py(x) for m > m0 − 1. Furthermore, since θ∗ =
{θ1, . . . , θm0−1, θm0+1, . . . , θM}, one has θ∗m = θm for m ≤
m0 − 1 and θ∗m = θm+1 for m > m0 − 1. Consequently,

{
∑M−1

y=m p∗y(x) ≤ θ∗m} is equivalent to {
∑M

y=m py(x) ≤ θm}
for m ≤ m0 − 1, and {

∑M−1
y=m p∗y(x) ≤ θ∗m} is equivalent to

{
∑M

y=m+1 py(x) ≤ θm+1} for m > m0 − 1.
Therefore, according to (1), mMTD∗(θ∗m) = mMTD(θm)

for m ≤ m0 − 1 and mMTD∗(θ∗m) = m+1MTD(θm+1) for
m > m0 − 1, where mMTD∗(θ∗m) is the level-m MTD asso-
ciated with system {Y∗,P∗,θ∗}. Finally, using (3),

MMTD(θ) =min{mMTD(θm)|m = 1, . . . ,m0 − 1,

m0 + 1, . . . ,M}
=min{mMTD∗(θ∗m)|m = 1, . . . ,M − 1}
= M−1MTD∗(θ∗),

which implies that {Y,P ,θ} is equivalent to {Y∗,P∗,θ∗}
in the sense of finding the overall MTD.

Repeatedly applying Theorem 2.1, we obtain the follow-
ing corollary.
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Corollary 2.1. Suppose {Y,P,θ} is an M -point ordinal
toxicity grade system with its associated target toxicity prob-
ability θ = (θ1, θ2, . . . , θM ) and P = {p1(x), . . . , pM (x)|x ∈
X}. If there exists an m0 such that θm = 1, for m < m0 and
θm = θ < 1, for m ≥ m0, then the M -point ordinal toxic-
ity grade system {Y,P,θ} is equivalent to the 2-point ordi-
nal toxicity grade system {Y∗,P∗,θ∗}, where Y∗ = {1, 2},
P∗ = {

∑m0−1
y=1 py(x),

∑M
y=m0

py(x)|x ∈ X} and θ∗ = {1, θ}.
Furthermore,

MMTD(θ) = 2MTD∗(θ∗) = sup

{
x

∣∣∣∣∣
M∑

y=m0

py(x) ≤ θ

}
.

So, for the admissibility requirement, we assume 1 = θ1 >
θ2 > · · · > θM > 0. Since θ1 = 1 and

∑M
y=1 py(x) = 1,

1MTD(1) = sup{x|
∑M

y=1 py(x) ≤ 1} = sup{X}. Hence, (2)
is equivalent to

(4) MMTD(θ) = min{mMTD(θm)|m = 2, . . . ,M}.

The dichotomized response model might be considered as
a special case of the polychotomous response model, where
M = 2, Y ∈ {0, 1} (to provide the notation consistency,
we use {0, 1} instead of {1, 2}) and m = 1, which is ac-
tually a 2-point ordinal toxicity grade system. The overall
MTD, 2MTD(θ) is equal to the level-1 MTD, 1MTD(θ) =
sup{x|P (Y = 1|x) ≤ θ} = sup{x|ψ(x, a) ≤ θ}, where
ψ(x, a) is defined as in the original CRM paper by O’Quigley
et al. [6].

3. THE CUMULATIVE PROBIT MODEL
WITH LATENT VARIABLES

To make the problem more interesting, we will assign a
model structure on the M -point ordinal toxicity grade sys-
tem, {Y,P ,θ}, in the following context. Define the cumula-
tive probabilities of the toxicity response Y at dose x as

ηy(x) = P (Y ≤ y|x) =
y∑

j=1

pj(x), y = 1, . . . ,M − 1.

Then, (1) is equivalent to

(5) mMTD(θ) = sup{x|ηm−1(x) ≥ 1− θ}.

Instead of assigning a model structure on toxicity response Y
directly, we will assign a model structure on the cumulative
probabilities ηy(x), which is the usual way to fit the ordered
categorical data. Assume that there exists a latent con-
tinuous random variable Zx with probability density func-
tion fZx(z|x,β) or cumulative density function FZx(z|x,β),
at dosage x, where β is the model parameters. Suppose
that we observe toxicity grade Y = y, y ∈ {1, 2, . . . ,m},
at dose x, where Y = y|x if γy−1 < Zx ≤ γy. Here,

γ0, γ1, . . . , γM−1, γM are unknown bin boundaries (we de-
fine γ0 = −∞ and γM = ∞). Hence,

py(x) = P (Y = y|x) = FZx(γy|x,β)− FZx(γy−1|x,β)

and the cumulative probabilities at dose x is

ηy(x) = P (Y ≤ y|x) =
y∑

j=1

pj(x)(6)

=

y∑
j=1

[FZx(γj |x,β)− FZx(γj−1|x,β)]

= FZx(γy|x,β).

Therefore, (5) can be modified as

(7) mMTD(θ) = sup{x|FZx(γm−1|x,β) ≥ 1− θ}.

Given the critical value m ∈ {1, 2, . . . ,M}, Y ≥ m implies
that there is a level-m severe toxicity at dosage x. If we
define the probability of toxicity as

ψ(x,β, γm−1) = P (Y ≥ m|x) = 1− FZx(γm−1|x,β),

then (1) becomes

(8) mMTD(θ) = sup{x|ψ(x,β, γm−1) ≤ θ},

which is similar to the dichotomized response case. Fur-
thermore, suppose we choose the normal latent variable,
Zx ∼ N(xTβ, 1), where β = (β0, β1)

T and x = (1, x)T ,
then, the probability of toxicity is

ψ(x,β, γm−1) = 1− Φ(γm−1 − xTβ)(9)

= Φ(xTβ − γm−1),

for m = 1, . . . ,M − 1. Consequently, under the normal as-
sumption, the MTD derived from (8) is

mMTD(θ) =
γm−1 − β0 − Φ−1(1− θ)

β1
.

For an M -point ordinal toxicity grade system,
{p1(x), . . . , pM (x)}, associated with its target toxicity
probability θ = (θ1, θ2, . . . , θM ), if the normal latent
variable is used, then the overall MTD is defined as

MMTD(θ)

= min

{
γm−1 − β0 − Φ−1(1− θm)

β1

∣∣∣∣m = 2, . . . ,M

}

In the next section, we will use the Bayes method to fit
model (9).
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4. THE LIKELIHOOD FUNCTION AND THE
POSTERIOR DISTRIBUTION

Denoted by Fj = {(x1, y1), . . . , (xj , yj)} the history of
the first j assignments and responses, where xl is the dose
level of the lth patient (that is xl ∈ {d1, . . . , dK}) and yl
is the observed response which takes one of M ordered cat-
egories, 1, . . . , M and l = 1, . . . , j. In model (9) of Sec-
tion 3, both the regression parameter β and the bin bound-
ary γ = (γ1, γ2, . . . , γM−1) are unknown. To ensure that the
parameters are identifiable, it is necessary to impose one re-
striction on the bin boundary γ (see Albert and Chib [1]).
Without loss of generality, we take γ1 = 0. The likelihood
function of β and γ is

L(β,γ|Fj)

∝
j∏

l=1

M∑
y=1

I(yl = y)[Φ(γy − xT
l β)− Φ(γy−1 − xT

l β)].

It is straightforward to find the maximum likelihood esti-
mate of (β,γ) by using the Newton-Raphson method and
to obtain the approximate standard deviations of (β,γ) by
using the second derivative of log likelihood evaluated at
the maximum likelihood estimate. But, unfortunately, due
to the small sample size in phase I clinical trials the accuracy
of the MLE is questionable (see Albert and Chib [1]).

In order to increase the accuracy of the estimation, the
Gibbs sampling algorithm (see Gelfand and Smith [5]) for
the polychotomized response described in [1] can be gen-
eralized to this situation. We introduce j latent variables
Z1, Z2, . . . , Zj , where Zl are independent N(β0 + β1xl, 1)
and xl is the dose level of the lth patient.

Define

(10) Yl = y, if γy−1 < Zl ≤ γy, for y = 1, 2, . . . ,M.

The joint likelihood function of (β,γ,Z) is

L(β,γ,Z|Fj)

∝
j∏

l=1

[
M∑
y=1

I(yl = y)I(γy−1,γy)(Zl)

]
φ(Zl;x

T
l β, 1).

Let π(β,γ) = π(β)π(γ) be the prior on (β,γ), the joint
posterior density function of (β,γ,Z) given data Fj is

π(β,γ,Z|Fj) ∝ π(β)π(γ)(11)

×
j∏

l=1

[
M∑
y=1

I(yl = y)I(γy−1,γy)(Zl)

]
φ(Zl;x

T
l β, 1).

Since the probability of DLT is assumed to be increasing
in dose level x and the categories of toxicity grade are
ordered, we need certain constraints on the prior distri-
bution of (β,γ). The prior π(β,γ) should be defined on
{(β,γ)|β1 > 0,−∞ < γ1 < γ2 < · · · < γM−1 < ∞}.

In order to evaluate (9) at any given dose x ∈
{d1, . . . , dK}, parameters (β, γm−1) need to be jointly gen-
erated from (11). Note that this joint posterior distribu-
tion (11) is complicated in the sense that it is difficult to
normalize and sample from it directly. But computation of
the marginal posterior distribution of (β, γm−1) using the
Gibbs sampling algorithm requires only the posterior dis-
tribution of β conditional on (Z,γ), posterior distribution
of Z conditional on (β,γ) and the posterior distribution of
γ conditional on (β,Z), and these full conditional posterior
distributions are easy to obtain and easy to sample.

Based on (11), the full conditional posterior distributions
are found as follows.

• π(β|γ,Z,Fj)

The posterior densities of β0 and β1, given γ and Z, is given
by the following. If a flat prior π(β0) ∝ 1 is assigned on β0,
then,

(12) β0|β1,Z,Fj ∼ N

(∑j
l=1(zl − β1xl)

j
,
1

j

)
.

If a proper conjugate prior N(β̄0, σ̄
2
0) is assigned, then,

β0|β1,Z,Fj(13)

∼ N

(
σ̄2
0

∑j
l=1(zl − β1xl) + β̄0

1 + σ̄2
0j

,
σ̄2
0

1 + σ̄2
0j

)
.

If a flat prior π(β1) ∝ I(β1 > 0) is assigned, then,

β1|β0,Z,Fj ∼ N

(∑j
l=1(zl − β0)xl∑j

l=1 x
2
l

,
1∑j

l=1 x
2
l

)
,(14)

for β1 > 0. If a proper conjugate truncated normal prior
N(β̄1, σ̄

2
1)I(β1 > 0) is assigned, then,

β1|β0,Z,Fj(15)

∼ N

(
σ̄2
1

∑j
l=1(zl − β0)xl + β̄1

1 + σ̄2
1

∑j
l=1 x

2
l

,
σ̄2
1

1 + σ̄2
1

∑j
l=1 x

2
l

)
,

for β1 > 0. If a proper, but non-conjugate exponential prior
exp{−β1}I(β1 > 0) is assigned, then,

β1|β0,Z,Fj ∼ N

(∑j
l=1(zl − β0)xl − 1∑j

l=1 x
2
l

,
1∑j

l=1 x
2
l

)
,(16)

for β1 > 0.

• π(Z|β,γ,Fj)

Zl’s are latent variables, not parameters. Hence no priors
are needed. Using (11), the posterior density of Z, given β
and γ, is
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π(Z|β,γ,Fj)(17)

∝
j∏

l=1

[
M∑
y=1

I(yl = y)I(γy−1,γy)(Zl)

]
φ(Zl;x

T
l β, 1),

which implies that Z1, Z2, . . . , Zj are independent with

(18) Zl|β,γ,Fj ∼ N(xT
l β, 1)I(γy−1 < Zl < γy),

for yl = y, where y takes one of the M ordered categories,
1, . . . , M and l = 1, . . . , j − 1. (18) implies that Zl|β,γ,Fj

is a normal random variable truncated at the left γy−1 and
right γy when yl = y.

• π(γ|β,Z,Fj)

According to (11), the posterior density of γ, given β and
Z, is

π(γ|β,Z,Fj)(19)

∝ π(γ)

j∏
l=1

[
M∑
y=1

I(yl = y)I(γy−1,γy)(Zl)

]
,

which implies that γ1, γ2, . . . , γj are dependent. Suppose a
flat prior is assigned on γ

π(γ) = I(−∞ < γ1 < γ2 < · · · < γM−1 < ∞),

then the full conditional posterior distribution of γi given
β, γ−i = {γy, y 	= i}, Z and Fj , is

π(γi|β,γ−i,Z,Fj)

∝
j∏

l=1

[
I(yl = i)I(γi−1,γi)(Zl)

+ I(yl = i+ 1)I(γi,γi+1)(Zl)
]
.

This conditional distribution can be seen to be uniform,
i.e.,

(20) γi|β,γ−i,Z,Fj ∼ U(a, b),

where a = max{max{Zl : yl = i}, γi−1} and b =
min{min{Zl : yl = i+ 1}, γi+1}.

Based on the Gibbs sampler, β0, β1, Z and γ could be
generated from those full conditional posterior distributions.

After drawing from the marginal joint posterior distribu-
tion π(β, γm−1), one can estimate the overall MTD by using
the following formula.

MM̂TD(θ)(21)

= min

{
Eπ(γm−1|Fj)γm−1 − Eπ(β0|Fj)β0

Eπ(β1|Fj)β1

− Φ−1(1− θm)

Eπ(β1|Fj)β1

∣∣∣∣m = 2, . . . ,M

}
.

The estimates of the expectations in (21) are obtained
based on the simulation. Suppose one has obtained N gen-

erations of (β0, β1, γm−1), which are (β
(i)
0 , β

(i)
1 , γ

(i)
m−1), i =

1, 2, . . . , N , then,

Êπ(β0|Fj)(β0) =
1

N

N∑
i=1

β
(i)
0 ,

Êπ(β1|Fj)(β1) =
1

N

N∑
i=1

β
(i)
1 ,

Êπ(γm−1|Fj)(γm−1) =
1

N
γ
(i)
m−1.

The formula in (21) does not guarantee to yield an exact
dose level as one of the predetermined dose levels. More
often we choose the dose that is closest to the computed
result.

5. SIMULATION RESULTS

To evaluate the operating characteristics of the poly-
chotomous response model, a simulation study is performed.
We use a 5-point ordinal toxicity scale, i.e., the poly-
chotomous toxicity response Y takes one of the 5 values,
{1, . . . , 5} at any given dose level, with grade 1 representing
no toxicity, grade 2 minor toxicity, grade 3 moderate toxi-
city, grade 4 severe toxicity, and grade 5 very severe or life
threatening toxicity. We suppose there are six ordered dose
levels, x1, x2, . . . , x6 and the data are simulated according
to the following probabilities,

pij = P (Y = i|Dose = xj),

for i = 1, . . . , 5, and j = 1, . . . , 6, where
∑5

i=1 pij = 1 for

any j = 1, . . . , 6, and, for any i0 = 2, . . . , 5,
∑5

i=i0
pij′ <∑5

i=i0
pij′′ , for any 1 ≤ j′ < j′′ ≤ 6. Table 1 shows the true

probabilities of each grade (1–5) at each dose level (1–6) for
four simulation scenarios.

In this simulation study, the probabilities are generated
in one of the following two ways.

(1) Normal latent: pij = P (γj−1 < Zi ≤ γj), for i =
1, . . . , 5 and j = 1, . . . , 6, where Zi ∼ N(β0 + βxi, 1), γ0 =
−∞, γ5 = ∞ and β = (β0, β1), γ = (γ1, . . . , γ4) are set to
different values for different scenarios.

(2) General situation: for any i0 = 2, . . . , 5,
∑5

i=i0
pij′ <∑5

i=i0
pij′′ , if 1 ≤ j′ < j′′ ≤ 6.

The target toxicity probabilities, θ = (θ1, . . . , θ5), are
set in three different combinations. For each scenario we
use 200 duplications (trials). In each trial, we recruit 30
patients in 10 cohorts with 3 patients per cohort. The first
cohort of subjects in each trial was treated at the lowest
dose. Additional constraints follow those of Faries [4] where
dose escalation was limited to a maximum of 1 dose between
consecutive subjects. The dose closest to the final updated
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Table 1. True probabilities of toxicity for various grade and
dose levels

Scenario Grade Dose level

x1 x2 x3 x4 x5 x6

A 1 0.87 0.78 0.70 0.51 0.19 0.12
2 0.08 0.12 0.15 0.19 0.16 0.13
3 0.03 0.06 0.09 0.15 0.20 0.18
4 0.01 0.03 0.04 0.09 0.18 0.20
5 0.00 0.01 0.02 0.06 0.27 0.37

B 1 0.87 0.78 0.70 0.51 0.19 0.12
2 0.08 0.12 0.15 0.19 0.16 0.13
3 0.02 0.04 0.05 0.08 0.10 0.09
4 0.02 0.04 0.06 0.12 0.20 0.19
5 0.01 0.02 0.04 0.10 0.36 0.47

C 1 0.82 0.73 0.53 0.35 0.23 0.15
2 0.10 0.14 0.19 0.20 0.17 0.15
3 0.05 0.08 0.14 0.18 0.20 0.19
4 0.02 0.04 0.08 0.14 0.17 0.19
5 0.01 0.02 0.06 0.13 0.23 0.32

D 1 0.83 0.75 0.55 0.37 0.24 0.16
2 0.09 0.12 0.17 0.18 0.16 0.14
3 0.03 0.05 0.08 0.10 0.10 0.09
4 0.03 0.05 0.11 0.16 0.19 0.20
5 0.02 0.03 0.09 0.19 0.31 0.41

MTD was taken to be the final recommended dose. The
updated MTD was then calculated by using (21).

The working model is⎧⎪⎨
⎪⎩
Y = y|x, if γy−1 < Zx ≤ γy, where y = 1, 2, . . . , 5,

and, −∞ = γ0 < γ1 < · · · < γ4 < γ5 = ∞,

Zx ∼ N(β0 + β1x, 1), for x ∈ {x1, x2, . . . , x6}.

We always set a prior π(β0, β1) ∝ exp(−β1), β1 > 0 on the
parameter in each scenario. To ensure that the parameters
are identifiable, it is necessary to impose one restriction on
the bin boundary γ = (γ1, . . . , γ4). Since toxicity grades 3,
4 and 5 represent moderate, severe and very severe or life
threatening toxicity, we take γ2 = 0. Table 2 is an illus-
tration of the process from one of the simulated trials. We
frame those toxicity grades which are grade 3, 4 and 5, since
they represent the moderate, severe and very severe or life
threatening toxicities.

Figure 4 shows an example of the simulated parameters
of β = (β0, β1) and γ = (γ1, γ3, γ4) at the sample size 30.
Based on the trace in Figure 4, the MCMC results converge
and based on the density in Figure 4, all the constraints on
the model parameters, such as β1 > 0, γ1 < 0, γ3 > 0 and
γ4 > 0, are satisfied.

Table 3 shows the simulation results. In Table 3, we
only display target toxicity probabilities (θ3, θ4, θ5), since

Table 2. An illustration of one of the simulated trials

Cohort Dose level Toxicity grade

Subject 1 Subject 2 Subject 3

1 x1 1 2 1
2 x2 2 1 1

3 x3 1 1 3

4 x4 1 1 3

5 x5 5 5 1

6 x4 1 1 4
7 x3 1 1 1

8 x4 1 1 4
9 x4 1 2 2

10 x4 3 1 2

Decision x4

θ1 has been always set to be equal to 1 and θ2 is asso-
ciated with toxicity grade 2 (which is minor toxicity) and
above, hence we also set θ2 = 1. For (θ3, θ4, θ5), we con-
sider three settings, (0.3, 0.3, 0.3) which is equivalent to
the dichotomized model, (0.3, 0.1, 0.05) which indicates that
toxicity grades 4 and 5 are considered and differentiated,
(0.3, 0.06, 0.02) which indicates that grades 4 and 5 are more
severe in toxicity than grade 3. Table 3 shows that both
percent of recommended level and percent of patient allo-
cation are toward the lower dose levels in general. For the
first scenario, 83% of the recommendations are x4 for di-
chotomized model. However, for the polychotomous model,
54% and 21% of the recommendations are x4 for target tox-
icity probability settings (0.3, 0.1, 0.05) and (0.3, 0.06, 0.02),
respectively. In addition, for (0.3, 0.06, 0.02), 46% of the rec-
ommendations are x3, which is the largest recommendation
rate among all six dose levels. As for patient allocation,
34% and 20.4% of them allocate to x4 for (0.3, 0.1, 0.05)
and (0.3, 0.06, 0.02), respectively (decrease from 44.6% for
dichotomized model). Similar results are shown for the sce-
narios B, C and D. In conclusion, the polychotomous model,
which takes a severity level of toxicity into account, reduces
the number of patients allocated to the higher toxicity dose
level. It also reduces the risk of toxicity for patients in the
phase I study.

6. CONCLUSIONS AND DISCUSSIONS

In this study, we propose a new definition of the overall
MTD, MMTD(θ), in the case of the polychotomous toxicity
responses and the analytic properties of the overall MTD
are also examined. It is shown that the traditional defini-
tion of MTD in the case of the dichotomous (binary) toxic-
ity responses is a special case of the overall MTD. In order
to find the overall MTD, MMTD(θ), in practice, the target
toxicity probability θ = {θ1, . . . , θM}, where θm is the tar-
get toxicity probability corresponding to the level-m severe
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Figure 4. An illustration of simulated β and γ (sample size = 30). The trace column gives the time series plot for each
parameter. After burn-in the first 1,000 generations and thinning in each 100 generations, the time series plots appear to be
stationary. The ACF column gives the autocorrelation function for each parameter and it shows that the parameters are not
significantly autocorrelated. From the density column, it is clear that β1 > 0, γ1 < 0, γ3 > 0 and γ4 > 0, which satisfy the

constraints on the model parameters.

toxicity Tm, m ∈ {1, 2, . . . ,M}, needs to be pre-specified.
The determination of each θm, m = 1, . . . ,M , is same as
the determination of the target probability θ in the dichoto-

mous (binary) toxicity case. Therefore, compared with the
existing methods described in [3, 8, 11], there is not much
more effort needed to interact with the physicians.
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Table 3. Simulation results

Scenario Target Dose level

(θ3, θ4, θ5) x1 x2 x3 x4 x5 x6

A
(.30, .30, .30) Rec. 1.5 11.5 83.0 4.0

Exp. 12.1 14.5 21.8 44.6 6.7 0.2
(.30, .10, .05) Rec. 3.5 7.0 34.5 54.0 1.0

Exp. 16.5 16.8 27.7 34.0 4.9 0.1
(.30, .06, .02) Rec. 13.0 20.0 46.0 21.0

Exp. 22.1 24.4 29.4 20.4 3.7

B
(.30, .30, .30) Rec. 0.5 13.0 80.5 6.0

Exp. 12.7 13.4 22.9 42.9 7.7 0.4
(.30, .10, .05) Rec. 6.5 18.5 47.0 27.5 0.5

Exp. 20.6 22.3 31.7 22.2 2.9 0.3
(.30, .06, .02) Rec. 28.0 33.5 32.6 6.0

Exp. 33.0 26.9 26.4 11.6 1.9 0.1

C
(.30, .30, .30) Rec. 1.0 9.5 67.5 21.0 1.0

Exp. 14.4 21.6 42.3 18.0 3.5 0.2
(.30, .10, .05) Rec. 6.5 32.5 53.5 8.0

Exp. 18.2 32.2 37.1 11.2 1.2 0.1
(.30, .06, .02) Rec. 20.5 49.5 29.0 1.0

Exp. 28.2 37.3 27.1 6.3 1.1

D
(.30, .30, .30) Rec. 7.0 68.5 22.5 2.0

Exp. 14.1 21.8 42.8 17.6 3.4 0.4
(.30, .10, .05) Rec. 17.5 48.0 32.5 2.0

Exp. 27.2 35.9 29.6 6.3 1.0
(.30, .06, .02) Rec. 43.0 45.5 11.5

Exp. 41.3 34.8 19.1 4.1 0.7

As an illustration of our research, we utilize the cumu-
lative probit model (9) with the normal latent variables as
the working model. The simulation studies show that the
cumulative probit model, which takes severity level of toxi-
city into account, reduces the number of patients allocated
to the higher toxicity dose level. That reduces the risk of
toxicity for patients in the phase I study. We also perform
simulation studies on various settings of the target toxicity
probability θ = {θ1, . . . , θM}. Simulation results shows that
our method is robust in the change of the target toxicity
probability.

In practice, other working models, such as the cumulative
logistic model or other suitable models, can be utilized under
the same framework. Consequently, solutions of the overall
MTD, such as shown in (21), may have different forms.

In addition, prior elicitation often is an important task.
In this study, we provide full conditional distributions for
the parameters and latent variables for various priors. When
more complex models or hard-to-deal-with priors are used,
the difficulties might arise when complex full conditional
distributions are obtained. However, many simulation meth-
ods can be applied to handle those difficulties, such as

acceptance-rejection algorithms or the Metropolis-Hastings
algorithm.
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