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A new non-inferiority test based on Bayesian
estimation in matched-pairs design
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∗

Non-inferiority of one treatment to another is a common
issue in medical research. In this paper, a new test using
an approximate p-value based on Bayesian estimation is
proposed. Our test is based on only one point of the two-
dimension nuisance parameter space for accuracy improve-
ment and computational purposes. The sizes and powers of
our test are considered. Simulation results suggest that our
test can control the type I error rates with reasonable pow-
ers while the asymptotic normal test cannot for most cases.
In comparison to Sidik’s exact test, our test is much easier
to implement.
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1. INTRODUCTION

Tests for non-inferiority of one treatment to another have
been a subject of interest in biostatistical research. Lu and
Bean (1995) [1] first proposed test statistics and sample
size formulae based on the McNemar test for comparison
of non-inferiority of sensitivities. Nam (1997) [2] and Tango
(1998) [3] introduced the asymptotic normal test. Hsueh et
al (2001) [4] proposed two exact unconditional tests for non-
inferiority based on the standard p-value [5]. Sidik (2003)
[6] also proposed two exact unconditional tests of non-
inferiority based on both standard [5] and confidence in-
terval p-values [7] for a 2 × 2 matched-pairs sample. Lloyd
(2008) [8] suggested a more powerful exact test, but the test
is rather complex in computation. In this paper, we carry on
the idea of Storer and Kim (1990) [9] and Seung-Ho (2000)
[10] to estimate the unknown nuisance parameters to im-
prove the accuracy [11], but we will use Bayesian estimation
instead because, combining prior knowledge, Bayesian esti-
mator may perform better when sample sizes are small.

Supposing there are n patients, we consider n pairs of
matched samples, (X1j , X0j) for j = 1, 2, . . . , n, where the
X1j and X0j are binary responses (1 for a positive and 0 for
a negative treatment result) of the new and standard treat-
ments for the jth pair. The four resulting types of matched
observations and probabilities can be displayed as follows:
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New Treatment Standard Treatment Total
1 0

1 x11(p11) x10(p10) x1+(p1)
0 x01(p01) x00(p00) x0+(1− p1)

Total x+1(p0) x+0(1− p0) n(1)

The random cell counts {xij , i; j = 0; 1} follow a multi-
nomial distribution with {pij , i; j = 0; 1} as distribution pa-
rameters. Under this model structure, the positive (or re-
sponse) rate of the new treatment is p1 = p11+p10, and the
positive rate of the standard is p0 = p11 + p01.

We say that the new treatment is non-inferior to the
standard if p0 − p1 ≤ δ1, and inferior to the standard if
p0 − p1 ≥ δ0, where δ0(> 0) and δ1(< δ0) are the specific
threshold values of inferiority and non-inferiority. To test
non-inferiority of the new treatment to the standard, we
need to construct the statistical framework as follows:

(1) H0 : p0 − p1 ≥ δ0 versus H1 : p0 − p1 ≤ δ1

The objective of our study is to present a new test for non-
inferiority based on restricted Bayesian estimation using an
approximate p-value, which is easy to implement, and less
conservative and more powerful than the exact test of Sidik
[6]. The remainder of the paper is structured as follows.
Section 2 briefly reviews the asymptotic normal test of Nam
[2] and Tango [3] and the exact unconditional test of Sidik
[6], and then presents our new test of this study. In section
3, we carry out simulation studies to compare our test with
the asymptotic normal test [2, 3] and the exact test of Sidik
[6]. In Section 4, an example is presented for illustration.
Conclusions of the results of this paper are presented in the
last section.

2. TESTING STATISTICS

Nam [2] and Tango [3] introduced the asymptotic normal
test statistic based on the restricted maximum likelihood
estimate (RMLE) of p10 under the constraint p01−p10 = δ0
is

Z(x01, x10) =
x01 − x10 − nδ0√
n(p̃10 + p̃01 − δ20)

Here p̃01 = p̃10+ δ0, and p̃10 = (−b+
√
b2 − 4ac)/(2a) is the

RMLE of p10, where a = 2n, b = (2n+x10−x01)δ0−x01−x10,
and c = −x10δ0(1− δ0).
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In a large sample, we can use Z to test the hypothe-
sis (1), but the asymptotic test may not work well when
sample sizes are small or moderately large. Sidik [6] defined
an exact unconditional p-value of Z for testing (1) based on
a standard p-value as follows:

PZ(x01, x10) = sup
0≤p10≤ 1−δ0

2

Pp10(Z(X01, X10) ≤ Z(x01, x10))

= sup
0≤p10≤ 1−δ0

2

∑
(u,v)∈RZ

n!

u!v!(n− t)!
(p10 + δ0)

u

× pv10(1− 2p10 − δ0)
n−t

where t = u+ v, RZ = {(u, v) : Z(u, v) ≤ Z(x01, x10)}.
However, this test PZ is complex to compute because it

needs to search the supremum over the interval [0, 1−δ0
2 ] of

a nuisance parameter p10 (It’s so called in the sense that
p-value of Z cannot be determined with its value unknown).
Also, according to our simulation studies, this test PZ is
somewhat conservative when the sample size is small or even
moderately large. This should not be surprising. In fact,
Sidik provides the computations of exact size and power
based on the multinomial distribution and thus the sizes
may not be exactly equal to (therefore less than) the speci-
fied alpha because of the discrete nature of data.

In this paper, we propose a new test using an approximate
p-value based on Bayesian estimation. The procedure has
mainly two steps:

(1) Get a Bayesian estimator of p10;

(2) Compute an approximate p-value of the test Z based
on the Bayesian estimator of p10.

First, we assume p10 to be uniformly distributed in the
interval [0, 1−δ0

2 ] from Bayes’ principle (in estimating a pa-
rameter, one should initially assume that each possible value
has equal probability). So the prior probability density func-
tion of p10 is:

(2) π(θ) =

⎧⎨
⎩

2

1− δ0
, 0 ≤ θ ≤ 1− δ0

2
;

0, otherwise.

Therefore, the posterior probability density function of
p10 is:

π(θ|x) =
(

n!

x01!x10!(n− x01 − x10)!
θx10(θ + δ0)

x01(3)

× (1− 2θ − δ0)
n−x01−x10

2

1− δ0
I

(
0 ≤ θ ≤ 1− δ0

2

))

/

(∫ 1−δ0
2

0

n!

x01!x10!(n− x01 − x10)!
θx10(θ + δ0)

x01

× (1− 2θ − δ0)
n−x01−x10

2

1− δ0
dθ

)

where x = (x01, x10). So we can get a Bayesian estimator of
p10 as follows:

(4) θ̃B =

∫ 1−δ0
2

0

θ · π(θ|x)dθ

Now we define a new approximate p-value of Z for testing
(1) using the restricted Bayesian estimation θ̃B of p10 under
the constraint p01 − p10 = δ0 as follows:

PBZ(x01, x10)(5)

=
∑

(i,j)∈RZ

n!

i!j!(n− i− j)!
(θ̃B + δ0)

iθ̃jB

× (1− 2θ̃B − δ0)
n−i−j

where

θ̃B =
1− δ0

2
·
x01∑
i=0

aibi/

x01∑
i=0

bi(6)

Here ai = x10+i+1
n+i+2−x01

, bi = Ci
x01

( 2δ0
1−δ0

)x01−i · B(x10 + i +
1, n− x01 − x10 + 1).

We will reject the null hypothesis and conclude that the
new treatment is non-inferior to the standard treatment if
the proposed approximate p-value of Z is smaller than the
chosen significance level α.

3. SIMULATION STUDIES

In the first simulation, to investigate the significance level
of 5%, we repeated the experiment 10,000 times which pro-
vided a 95% confidence interval of type I error rate as

Table 1. Sizes of tests based on 10,000 simulations

δ = 0.05 δ = 0.10
n p10 Z PZ PBZ Z PZ PBZ

15 0.05 0.0410 0.0105 0.0105 0.0573 0.0237 0.0237
0.22 0.0580 0.0437 0.0437 0.0586 0.0450 0.0450
0.26 0.0568 0.0428 0.0428 0.0542 0.0464 0.0464
0.30 0.0563 0.0459 0.0459 0.0538 0.0495 0.0495
0.45 0.0447 0.0447 0.0447 0.0771 0.0257 0.0257

20 0.09 0.0554 0.0401 0.0401 0.0435 0.0294 0.0435
0.14 0.0571 0.0442 0.0442 0.0485 0.0410 0.0485
0.28 0.0561 0.0448 0.0448 0.0463 0.0363 0.0451
0.36 0.0580 0.0504 0.0504 0.0506 0.0399 0.0408
0.40 0.0614 0.0465 0.0465 0.0490 0.0342 0.0417

30 0.20 0.0555 0.0448 0.0502 0.0455 0.0452 0.0452
0.24 0.0589 0.0497 0.0507 0.0464 0.0458 0.0458
0.37 0.0562 0.0470 0.0530 0.0491 0.0418 0.0446
0.42 0.0509 0.0453 0.0509 0.0568 0.0417 0.0512
0.45 0.0462 0.0389 0.0462 0.0714 0.0336 0.0336

Note that cases that the type I error of Z exceeded 5.43% appear
in bold underlined.
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Figure 1. Size functions of tests based on 10,000 simulations.

(4.57%, 5.43%) for a 5% error rate. Figure 1 summarized
the results of the comparisons of type I error rates of the
asymptotic test Z [2, 3], Sidik’s PZ [6] and our new test
PBZ. As is shown in Figure 1 and Table 1, cases that type
I error of Z was bigger than 5.43% appear. The type I error

rates of our new test PBZ and Sidik’s PZ test seemed the
same when the sample size was as small as 15 or 20, but
when the sample size was average or moderately large, such
as n = 30 or 50, the type I error rate of our test PBZ was
closer to 5% than that of Sidik’s PZ test.
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Figure 2. Power functions of the tests for δ0 = 0.05 based on 10,000 simulations.

In the second simulation experiment, we studied the pow-
ers of Z, PZ and PBZ. As is shown in Figure 2 and Table 2,
the powers of PZ and PBZ seemed the same when the sam-
ple size was as small as 15 or 20, but when the sample size
was average or moderately large, such as n = 30 or 50, our

test PBZ was more powerful than Sidik’s PZ test.
In the third simulation experiment, we evaluated the

MSEs of θ̃B and p̃10. As is shown in Figure 3, the MSE
(i.e. Mean Square Error) of θ̃B seemed smaller than that of
p̃10 in mass.
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Table 2. Statistical powers of tests for δ0 = 0.05 based on 10,000 simulations

δ1 = 0 δ1 = −0.05 δ1 = −0.10
n p10 Z PZ PBZ Z PZ PBZ Z PZ PBZ

15 0.10 0.1041 0.0488 0.0488 0.2197 0.0944 0.0944 0.4569 0.1858 0.1858
0.15 0.0930 0.0661 0.0661 0.1784 0.1209 0.1209 0.3431 0.2166 0.2166
0.25 0.0885 0.0656 0.0656 0.1443 0.1151 0.1151 0.2207 0.1820 0.1820

20 0.10 0.1276 0.0987 0.0987 0.2805 0.2479 0.2479 0.6117 0.6117 0.6117
0.15 0.1117 0.0856 0.0856 0.2308 0.1782 0.1782 0.4387 0.3751 0.3751
0.25 0.0941 0.0841 0.0841 0.1727 0.1575 0.1575 0.2837 0.2590 0.2590

30 0.10 0.1223 0.1174 0.1223 0.3236 0.3220 0.3236 0.8106 0.8106 0.8106
0.15 0.1162 0.0977 0.1150 0.2627 0.2422 0.2623 0.5230 0.5136 0.5230
0.25 0.1076 0.0887 0.0913 0.2147 0.1811 0.1940 0.3698 0.3265 0.3534

50 0.10 0.1863 0.1438 0.1863 0.5678 0.489 0.5678 0.9944 0.9944 0.9944
0.15 0.152 0.129 0.152 0.3963 0.3445 0.3963 0.7736 0.7188 0.7736
0.25 0.1274 0.1006 0.1165 0.2779 0.2417 0.2689 0.5023 0.4587 0.4969

4. AN EXAMPLE

Consider the same example data of comparing two di-
agnostic procedures MRI and CTAP for liver lesions used
by Hsueh et al. [4] and Sidik [6]. Let δ0 = 0.05, then the
asymptotic test statistic Z is −1.1291 with p-value 0.1294.
Sidik [6] gave the p-value of PZ, PZ = 0.1441. Now, we give
the p-value of PBZ, PBZ = 0.1415. If δ0 = 0.10 is used,
then Z = −1.8359 with p-value 0.0332, PZ = 0.0444 and
PBZ = 0.0335.

5. CONCLUSIONS

In this paper, we propose a new non-inferiority test using
an approximate p-value based on a restricted Bayesian es-
timation for a 2× 2 matched-pairs sample. Our new test is
based on only one point of the two-dimension nuisance pa-
rameter space and Bayesian estimation in order to improve
both statistical accuracy and computation time.

The sizes and powers of the existing asymptotic test Z,
Sidik’s PZ test and our test PBZ were discussed. According
to our simulation studies, we found that the MSE of our
restricted Bayesian estimation was smaller in mass. We also
found that our test PBZ and Sidik’s PZ test seemed the
same when the sample size was small, such as n = 15 or
20. But Sidik’s PZ test seemed conservative for data with
average or even moderately large sample size, while our test
PBZ performed better.

The asymptotic normal test Z [2, 3] can not control the
type I error rates well when sample sizes are small or mod-
erately large. Sidik’s PZ test [6] and Chris J. Lloyd’s exact
test [8] are complex in computation, while our test PBZ is
much easier to compute and it costs less time to implement.
Because the PZ test searches the supremum over the bound-
ary of H0, its average time will be as about hundredfold as
that of our approach.

APPENDIX A. APPENDIX SECTION

Now give the proof of (6).

According to (3), (4) and (5), we have

θ̃B =

(∫ 1−δ0
2

0

n!

x01!x10!(n− x01 − x10)!
θx10+1(θ + δ0)

x01

× (1− 2θ − δ0)
n−x01−x10

2

1− δ0
dθ

)

/

(∫ 1−δ0
2

0

n!

x01!x10!(n− x01 − x10)!
θx10(θ + δ0)

x01

× (1− 2θ − δ0)
n−x01−x10

2

1− δ0
dθ

)
.

Then we let t = 2
1−δ0

θ, and we know that (t+ 2δ0
1−δ0

)x01 =∑x01

i=0 C
i
x01

ti( 2δ0
1−δ0

)x01−i, so we have

θ̃B =
1− δ0

2

(∫ 1

0

[
x01∑
i=0

Ci
x01

(
2δ0

1− δ0

)x01−i

tx10+1+i

× (1− t)n−x01−x10

]
dt

)

/

(∫ 1

0

[
x01∑
i=0

Ci
x01

(
2δ0

1− δ0

)x01−i

tx10+i

× (1− t)n−x01−x10

]
dt

)

=
1− δ0

2

(
x01∑
i=0

[
Ci

x01

(
2δ0

1− δ0

)x01−i ∫ 1

0

tx10+1+i

× (1− t)n−x01−x10dt

])

/

(
x01∑
i=0

[
Ci

x01

(
2δ0

1− δ0

)x01−i ∫ 1

0

tx10+i
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Figure 3. MSEs of θ̃B and p̃10 for δ0 = 0.05 based on 10,000 simulations.
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× (1− t)n−x01−x10dt

])
.

And we know that n− x01 − x10 + 1 > 0, so

θ̃B =
1− δ0

2

(
x01∑
i=0

Ci
x01

(
2δ0

1− δ0

)x01−i

×B(x10 + i+ 2, n− x01 − x10 + 1)

)

/

(
x01∑
i=0

Ci
x01

(
2δ0

1− δ0

)x01−i

×B(x10 + i+ 1, n− x01 − x10 + 1)

)

=
1− δ0

2

(
x01∑
i=0

x10 + i+ 1

n+ i+ 2− x01
· Ci

x01

(
2δ0

1− δ0

)x01−i

×B(x10 + i+ 1, n− x01 − x10 + 1)

)

/

(
x01∑
i=0

Ci
x01

(
2δ0

1− δ0

)x01−i

×B(x10 + i+ 1, n− x01 − x10 + 1)

)
.

Therefore, (6) is proved.
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