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Adaptation in clinical development plans and
adaptive clinical trial designs
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At the planning stage of clinical trials or of an encompass-
ing clinical development plan for drug development, there is
usually inadequate information about essential parameters
for designing the Phase I, II and III clinical trials or for op-
timizing the sequence of clinical trials in an overall plan. It
is therefore inevitable that strong assumptions need to be
made at the planning stage to come up with over-simplified
plans and designs. In this paper we describe novel statistical
methods that can adapt these “initializing” designs or de-
velopment plans to the sequential information accumulated
during the development process. We show that the adaptive
version of the initializing design/plan performs similarly to,
or even better than, the initializing counterpart if the un-
derlying assumptions actually hold, but can perform much
better if the initial assumptions differ substantially from re-
ality. We also describe how to maintain the prescribed type I
error probability in these adaptive designs, thereby remov-
ing a major barrier to their use for regulatory approval of a
new treatment.

AMS 2000 subject classifications: Primary 62L05; sec-
ondary 62F03.
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1. INTRODUCTION

In the development of a new drug, an important compo-
nent of the effort and costs involves clinical trials to provide
clinical data to support a beneficial claim of the drug, and
in case this is not valid, to support the termination of its
development. The clinical trials progress in steps and are
labeled Phase I, II and III trials. A project team steers the
operations in which intensity, cost, and duration increase
with the phase; in particular, Phase III often involves over
3,000 professionals, several years to reach completion, and
over $100 million in cost. In addition, there is a core team
that makes decisions guided by a clinical development plan
(CDP). The CDP maps out the clinical development path-
way, beginning with first-in-man studies and ending with
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submission to the regulatory agency or termination of de-
velopment. It defines the number and type of clinical stud-
ies and their objectives, determines the time sequence of
the studies, some of which may be carried out in parallel,
identifies major risk areas, and sets key decision points and
go/no-go criteria. An important objective of the CDP is to
build a clinical data package to support a beneficial claim
(which we refer to as “success data”) or to support termi-
nation of further development (referred to as “termination
data”). These data should start to be collected from Phase I
dose ranging/selection studies, and provide evidence in fa-
vor of stopping or continuing at various decision points in
subsequent Phase II and III trials.

The creation of a CDP involves team effort, with rep-
resentation from R&D scientists, biostatisticians, project
managers and the marketing department. To create the
plan, the team faces many choices such as deciding among
different paths, different clinical trial designs and endpoints.
There are also choices concerning indications, which are
related to disease sub-types and stages and patient sub-
populations. Although it may be easier to establish efficacy
for some indications, commercial implications should also be
considered since earlier approval for the “easier” indications
may not be the most profitable. Julious and Swank [20] have
noted that statistical methods for clinical trial design have
focused primarily on “optimizing individual clinical trials”
but are lacking “at a more global level in the optimization
of clinical development plans”, which consist of sequenced
experiments, some of which may be run in parallel, and “go”
or “no-go” decisions. They use decision trees to compute the
net present value of a clinical development plan (CDP) and
thereby provide a method to optimize competing CDPs; see
also [9]. In practice, however, it is often difficult to spec-
ify in advance the cost of each clinical trial in the sequence
and the prior probabilities of a go or no-go decision result-
ing from the trial. In Section 2, we use ideas from adaptive
statistical methods to resolve this and other difficulties in
developing CDPs. An important method which is of much
current interest is adaptive design of randomized clinical tri-
als. Although confirmatory Phase III trials are built on the
information gained from previous phases, such information
is often inadequate for designing a Phase III trial because
the earlier-phase trials have relatively small sample sizes due
to the overall cost and time constraints, besides operational
constraints such as study centers and patient accrual. Adap-
tive designs that can use information acquired during the
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Figure 1. Decision tree of CDP for RA drug development.

course of the trial to update the design features have there-
fore attracted increasing interest from the pharmaceutical
industry. Anticipating increasing use of these designs by the
industry, the European Medicines Agency and the Food and
Drug Administration in the United States have recently is-
sued guidelines [10, 13] on adaptive trial designs. The main
point of the guidelines is that the adaptive features offered
by these innovative clinical designs should not inflate the
probability of a false positive conclusion, i.e., the type I er-
ror probability of a confirmatory Phase III trial. Most of
the methodological developments, therefore, have focused
on the problem of controlling the type I error probability
in adaptive designs. Section 3 gives a brief review of recent
developments in seamless Phase II/III adaptive designs and
considers one such design in particular, which it uses to il-
lustrate the advantages of including adaptation in a CDP
for a rheumatoid arthritis drug.

2. CONSIDERATIONS IN PLANNING
CLINICAL DEVELOPMENT

2.1 Identifying the time and cost constraints

The time and cost constraints in clinical development of
a new drug should be specified in its associated CDP. Deci-
sion trees of the type in [20] have been proposed for CDP
teams to make decisions, as illustrated in Figure 1 on the
development of a new drug to treat rheumatoid arthritis
(RA). The Phase I study assesses the safety and tolerability
of the drug in the patient population and compares several
doses; it is often called a Phase IIA study. It uses a random-
ized, double-blind, placebo-controlled, parallel-arm design,
with three active dose groups and one placebo group, and
is expected to enroll 30 patients per arm. The active drug
is an add-on therapy to the Standard of Care. The Phase

II study in the plan is a parallel-arm design with two active
dose groups and one placebo group, involving 80 patients
per arm to achieve approximately 90% power to detect a
20% improvement in response rate over the placebo, which
has a 50% response rate. Results from the Phase II study
will be used to compare each dose’s performance so that
one dose can be selected for further testing in the Phase III
study. The primary objective of the Phase III study is to
demonstrate the efficacy and safety of the drug and file for
its approval by the regulatory agency.

The decision tree in [20] also includes estimated costs of
the clinical trials, together with prior probabilities of the
outcomes of the Phase I, II and III trials. The expected
cost of the trial can then be calculated and compared with
those of other competing plans. However, despite the sim-
ple appearance of this decision tree in Figure 1, these cost
estimates and prior probabilities are difficult to pin down.
They can be based on previous experience and projections
into the future, and on reported results scattered in medi-
cal literature and related studies, but there is usually a lack
of reliable information at the time when a CDP is devised.
No data from human subjects have been collected from the
clinical trials yet to be performed, and there are many un-
known factors that may affect outcomes and patient accrual.
Moreover, during the course of development of the drug, un-
foreseen problems concerning patient subgroups, safety and
efficacy may arise, and assumptions that yield a priori es-
timates may turn out to be overly simplistic. All these un-
certainties can lead to inconclusive results at the end of the
development process. On the other hand, much of the lack-
ing information at the planning stage will be revealed in the
development process. If the plan could be adapted to the
accumulating information, the trial would end with conclu-
sive results instead. Taking into consideration the time and
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cost constraints, an adaptive CDP can take advantage of
the accumulating information to optimize the outcome of
the overall process subject to these constraints.

2.2 Indications and levels of proof
There are four levels of proof of a drug’s benefit: level 1

relates to the target exposure, level 2 to the target mecha-
nism, level 3 to biomarkers that correlate with the clinical
endpoints, and level 4 to the clinical or surrogate endpoints
accepted by the regulatory agency. Biomarkers can be very
helpful in clarifying the scientific understanding of the ob-
served outcomes of the treatment in study subjects. They
can be used to demonstrate mechanisms and to obtain early
proofs of activity and safety, or lack thereof, and to control
variability by allowing a wider range of hypothesis formu-
lation that includes patient types and disease stages. More-
over, unfavorable pharmacokinetic (PK) and pharmacody-
namic (PD) results provide evidence for early termination.
The overall plan should be able to coordinate multiple stud-
ies at different stages after analysis of the data accumulated
so far. Sequential learning from these studies can fine-tune
dose selection and determine endpoints for the Phase III
trial so that the new drug can at least be approved for
some indication(s). In an example from our experience in
the development of a neurologic drug, potential indications
are migraine or neuropathic pain, multiple sclerosis, seizure
and Parkinson’s disease. Each indication is expensive to test
through Phase II and III clinical trials. The mechanism was
known for seizure (epilepsy), but there was little knowledge
for the other indications. The sponsor tried Parkinson’s dis-
ease, pain and seizure, but did not get significant results
from the trials that were all on low doses. Results from the
seizure patients showed no safety issues, suggesting that the
dose could have been chosen to be higher. It was then de-
cided to test seizure patients in two Phase III trials, using a
2–3 fold higher dose. Both showed significant results, with
acceptable safety. Although much money had been wasted
on negative trials with the three indications, the approval
of the drug for seizure provided revenue for continuing the
study for the other indications.

2.3 Regret and adaptation
Despite the sequential nature of Phase I, II and III trials

in an overall development plan, the trials are often planned
separately, each trial being treated as an independent study
whose design depends on the results of previous studies. An
advantage of this is that the reproducibility of the results
of the trial can be evaluated on the basis of the prescribed
design, without worrying about the statistical variability of
the results of the earlier-phase trials that determine the pre-
scribed design. However, an important disadvantage is that
the sample sizes of the trials are often inadequate because
of the separate planning; moreover, it is difficult to optimize
the trial designs subject to the overall cost and time con-
straints of the drug’s development. Experience has shown
that many studies end in failure but their results are not
negative. A way to address this issue is efficient integration

of the sequenced trials in an overall development plan that
expands a trial seamlessly from one phase to the next.

As an anecdotal illustration, a CDP was developed for
a new drug to treat severe sepsis by suppressing the im-
mune response to allow the body to prepare for the sepsis
reaction. The CDP used the traditional Phase I, II and III
framework for clinical trials. The Phase II trial was small
and single-arm, giving a go-decision for Phase III which
was a larger randomized trial involving about 2,000 sub-
jects and took seven years. The protocol did not stipulate
early stopping for futility; early stopping was stipulated by
the Data and Safety Monitoring Committee only for major
safety concerns. The final outcome was negative. After ex-
amining the data, this conclusion could have been reached
after the first year since the final conclusion was consistent
with the first 300 patients accrued. An important finding
of the trial was that choosing a covariate-based treatment
strategy (such as determining the time to initiate treatment
based on the type of infections and other patient character-
istics) could have shown the drug to be efficacious. However,
this was post-hoc analysis and could only suggest future tri-
als for an improved treatment strategy. After wasting seven
years with no positive indication for the drug, the remaining
patent life was too short to conduct such trials.

The regret of a CDP, which is the difference between the
expected reward (market value of the approved drug minus
the development cost) of the “oracle CDP”, which assumes
knowledge of the optimal treatment strategy, and that of
the actual CDP can be greatly reduced if adaptive designs
were used for the sequenced trials in the CDP, as will be ex-
plained in Section 3. The concept of regret was introduced
by Lai and Robbins [22] in the classical “multi-arm” ban-
dit problem. Let Πj , j = 1, . . . , k denote statistical popula-
tions specified, respectively, by the density function f(x; θj),
where the θj are unknown parameters belonging to some set
Θ. Suppose μθ = Eθ(X) is finite for all θ ∈ Θ. How should
we sample x1, . . . , xn sequentially from the k populations in
order to maximize the expected value of Sn = X1+· · ·+Xn?
This is called the “multi-arm bandit problem” and the name
derives an imagined slot machine with k ≥ 2 arms. When
an arm is pulled, the player wins a random reward. For
each arm j, there is an unknown probability distribution Πj

of the reward. The problem is to choose n pulls on the k
arms so as to maximize the total expected reward. There
is an apparent dilemma between the need to learn from all
populations about their parameter values and the objective
of the sampling only from the best population. The oracle
policy assumes θ = (θ1, . . . , θk) to be known samples from
the population with the largest μθ and has reward nμ(θ∗),
where θ∗ = argmax1≤i≤kμ(θi). The regret of a given policy
is defined in [22] by

Rn(θ) = nμ(θ∗)− EθSn

=
∑

j:μ(θj)<μ(θ∗)

(μ(θ∗)− μ(θj))EθTn(j),
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where Tn(j) is the number of observations that the given
policy samples from Πj up to stage n. Whereas the tradi-
tional equal randomization scheme that randomly assigns
each pull to the k arms with equal probability 1/k has a
regret of order n, [22] have shown that an adaptive random-
ization scheme can attain the asymptotically minimal order
of log n for its regret:

Rn(θ) =
∑

j:μ(θj)<μ(θ∗)

(
μ(θ∗)− μ(θj)

I(θj , θ∗)
+ o(1)

)
log n,

where I(θ, λ) = Eθ log (f(X; θ)/f(X;λ)) is the Kullback-
Leibler information number.

Regarding a CDP as a policy consisting of a sequence
of decisions involving sequenced clinical trials that generate
data concerning a new drug to support its approval by the
regulatory agency or to terminate further development, an
optimal adaptive policy in this problem is clearly much more
complicated than that in the multi-armed bandit problem.
Nevertheless, similar principles still apply and the advan-
tages of adaptation are even more pronounced. Incorporat-
ing adaptation in a CDP can self-tune the plan to increasing
information about unknown parameters for optimal choice
of decisions at various phases of its execution. In Section 3
we describe an adaptive alternative to the CDP in Figure 1
that integrates the Phase II trial involving dose selection
into the Phase III trial on the selected dose. By appropri-
ately using the Phase II (internal pilot) data in the final
analysis, this design reduces the sample size and saves the
study time since it avoids the long time lag between Phase II
and Phase III trials. Because of the lack of information on
the magnitude and sampling variability of the treatment
effect at the design stage, there has also been increasing
interest in adaptive designs that can adapt to information
acquired during the course of the trial. Incorporating adap-
tation in a CDP can likewise self-tune the plan to increasing
information at various stages of the development process.

3. ADAPTIVE DESIGN METHODOLOGY

As drug development has become increasingly costly and
challenging, there has been increasing interest from the bio-
pharmaceutical industry in adaptive designs that can self-
tune a clinical trial to the information acquired during the
course of the trial. In the FDA document [12] on the criti-
cal path to new medical products, it is recognized that to-
day’s advances in biomedical science offer new possibilities
to treat many diseases but that the number of new drug and
biologic applications submitted to the FDA has been declin-
ing. Innovative clinical trial designs and improvements in ef-
ficiency and cost effectiveness are needed for the biomedical
advances to reach their full potential in treating diseases.
In this section we first review some recent developments
in adaptive designs towards this goal and then introduce
a seamless Phase II/III design that leads to an adaptive
modification of the CDP in Figure 1.

3.1 Efficiency under type I error and
maximum sample size constraints

Most of the literature on adaptive design methodology
focuses on the prototypical problem of testing a normal
mean or difference between two normal means, beginning
with Bauer [4], who introduced adaptive strategies for mul-
tiple testing, and Wittes and Brittain [36] who considered
internal pilot studies. Depending on the topics covered, the
term “adaptive design” in the literature is sometimes re-
placed by “sample size re-estimation”, “trial extension” or
“internal pilot studies.” Much of the literature is about find-
ing ways to adjust the test statistics after mid-course sam-
ple size modification so that the type I error probability
is maintained at the prescribed level. In standard clinical
trial designs, the sample size is determined by the power at
a given alternative, but in practice, it is often difficult for
investigators to specify a realistic alternative at which sam-
ple size determination can be based. Although a standard
method to address this difficulty is to carry out a prelimi-
nary pilot study, the results from a small pilot study may
be difficult to interpret and apply, as pointed out by Wittes
and Brittain [36] who proposed to treat the first stage of a
two-stage clinical trial as an internal pilot from which the
overall sample size can be re-estimated.

The basic idea of these two-stage designs dates back to
Stein [33] who introduced a two-stage test of the hypothesis
H0 : μX = μY versus the two-sided alternative μX �= μY

for the mean of two independent normal populations with
common, unknown variance σ2, and based on i.i.d. observa-
tions X1, X2, . . . ∼ N(μX , σ2) and Y1, Y2, . . . ∼ N(μY , σ

2).
In its first stage, Stein’s test samples n0 observations from
each of the two normal populations and computes the usual
unbiased estimate s20 of σ2. In the second stage, the test
samples up to

(1) n1 = n0 ∨
[
(t2n0−2,α/2 + t2n0−2,β)

2 2s20
δ2

]

observations from each population, where α is the pre-
scribed type I error probability, 1−β is the prescribed power
at the alternatives satisfying |μX−μY | = δ, and tν,a denotes
the upper α-quantile of the t-distribution with ν degrees of
freedom. The null hypothesis H0 : μX = μY is rejected if

(2)
|X̄n1 − Ȳn1 |√

2s20/n1

> t2n0−2,α/2

Stein [33] showed that the use of the initial variance
estimate s20 in the final test statistics (2) ensures that the
test has type I error probability α and power at least 1− β.
However, this feature also diminishes the practical appeal
of the test. Instead of s20, it is more efficient to estimate
σ2 by the variance s21 based on 2n1 observations. Wittes
and Brittain [36] and subsequent authors develop critical
values of the modified test statistics so that the type I error
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probability is approximately satisfied, as reviewed by Shih
[31] and Whitehead et al. [37].

Without specifying δ, Fisher [14] proposed an adaptive
design that uses the first-stage data to estimate θ = μX−μY

when the variance σ2 is assumed known. Without loss of
generality, let σ2 = 1/2. Suppose the trial is designed to
have a fixed sample size, with n observations per group.
After rn pairs of observations (0 < r < 1), letting S1 =∑rn

i=1(Xi − Yi), we have n−1/2S1 ∼ N(rθ
√
n, r). If it is now

desired to change the second-stage sample size from (1−r)n
to γ(1−r)n for some γ > 0, then letting S2 =

∑n∗
i=rn+1(Xi−

Yi), where n∗ = rn+γ(1−r)n is the new total per treatment
sample size, we have conditional on the first-stage data

(3) (nγ)−1/2S2 ∼ N((1− r)θ
√
γn, 1− r).

Note that under H0 : θ = 0, (3) has the N(0, 1 − r) distri-
bution regardless of the choice of γ, showing that the test
statistic n−1/2

(
S1 + γ−1/2S2

)
has aN(0, 1) distribution un-

der H0. The corresponding test has been called the variance
spending test because the variance 1 − r of (3) is the re-
maining part of the total variance 1 not spent in the first
stage. Shen and Fisher [30] gave a multistage version of this
procedure based on S1, S2, . . . , Sk in which the sample size
updated at each stage may be data-dependent. Working in
terms of the z -statistics that divides S by its standard de-
viation, Proschan and Hunsberger [27] noted that any non-
decreasing function C(z1) with range [0, 1] can be used as a
conditional type I error function to define a two-stage pro-
cedure, as long as it satisfies

(4)

∫ ∞

−∞
C(z1)φ(z1)dz1 = α,

and suggested certain choices of C. Having observed the
first-stage data Z1, H0 : θ = 0 is rejected in favor of θ > 0
after stage two if Z2 > Φ−1(1 − C(z1)). The condition (4)
ensures that the type I error probability of any test of this
form is α. The test proposed earlier by Bauer and Kőhne [6]
can be represented in this common framework, as noted by
Posch and Bauer [26].

Cui, Hung and Wang [11] discussed the issue of increasing
the maximum sample size after interim analyses in a group
sequential trial. They cited a study protocol, which was re-
viewed by the Food and Drug Administration, involving a
Phase III group sequential trial for evaluating the efficacy
of a new drug to prevent myocardial infarction in patients
undergoing coronary artery bypass graft surgery. During in-
terim analyses, the observed incidence for the drug achieved
a reduction that was only half of the target reduction as-
sumed in the calculation of the maximum sample size M ,
resulting in a proposal to increase the maximum sample size
to M̃ (Nmax in their notation). Cui, Hung and Wang [11]
and Lehmacher and Wassmer [24] extended the sample size
re-estimation approach to adaptive group sequential trials
by adjusting the test statistics as in [27] and allowing the

future group sizes to be increased or decreased during in-
terim analyses so that the overall sample size does not ex-
ceed M̃(>M) and the type I error probability is maintained
at the prescribed level.

Jennison and Turnbull [19] found from simulation stud-
ies that the two-stage tests of [11], [14] and [30] perform
poorly in terms of efficiency and power in comparison to
group-sequential tests. Tsiatis and Mehta [34] independently
came to the same conclusion, attributing this inefficiency to
the use of non-sufficient weighted statistics S1 + r−1/2S2 to
combine data from the two stages. Bartroff and Lai [2, 3]
used efficient generalized likelihood ratio (GLR) statistics
to address this issue in testing the composite null hypothe-
sis H0 : u(θ) ≤ u0 in a multiparameter exponential family

fθ(x) = eθ
Tx−ψ(θ), where u is a smooth real-valued function

such that the Kullback-Leibler information number

(5) I(θ, λ) = (θ − λ)ψ̇(θ)− {ψ(θ)− ψ(λ)}

is increasing in |u(λ)−u(θ)| for every fixed θ. Here and in the
sequel, we use ψ̇ to denote the gradient vector of the partial
derivative of ψ with respect to the components of θ and ψ̈ to
denote the Hessian matrix of second partial derivatives. The
GLR statistic Λi,j for sample size ni at stage i has the form

(6) Λi,j = inf
θ:u(θ)=uj

niI(θ̂ni , θ).

It estimates the unknown parameters in the likelihood ratio
statistics by maximum likelihood, or constrained maximum
likelihood estimates under the null hypothesis. To adjust
for the uncertainties in these estimates, [2] and [3] used a
3-stage test that stops and rejects H0 at stage i ≤ 2 if

(7) ni < M, u(θ̂ni) > u0 and Λi,0 ≥ b.

Early stopping for futility (accepting H0) can also occur at
stage i ≤ 2 if

(8) ni < M, u(θ̂ni) < u1 and Λi,1 ≥ b̃.

The test rejects H0 at stage i = 2 or 3 if

(9) ni = M, u(θ̂M ) > u0 and Λi,0 ≥ c,

accepting H0 otherwise. The sample size n2 of the
three-stage test is given by

(10) n2 = m ∨ {M ∧ �(1 + ρm)n(θ̂m)�},

with

n(θ) = min

{
| logα|

infλ:u(λ)=u0
I(θ, λ)

,
| log α̃|

infλ:u(λ)=u1
I(θ, λ)

}
,

where ρm > 0 is an inflation factor to adjust for uncertainty
in θ̂m. As pointed out in [3], the right-hand side of (10) with

n(θ̂n) replaced by n(θ) is an approximation to Hoeffding’s
lower bound [15] for the expected sample size, at the pa-
rameter value θ, of any test that has type I error probability
≤ α and type II error probability ≤ α̃ at alternatives λ
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satisfying u(λ) = u1. Details on the choice of b, b̃ and c are
given in [2, 3], and [3] also developed adaptive designs for
mid-course modification of the maximum sample size in a
group sequential trial, using efficient GLR statistics instead
of the weighted statistics of [14] and [11].

3.2 Seamless Phase II-III designs involving
multiple endpoints

The usefulness of seamless Phase II-III designs for clini-
cal trials with bivariate short-term response and long-term
survival endpoints is widely recognized, but how to design
such trials has been a long-standing problem. Although ran-
domized Phase II trials are common in other therapeutic
areas, in oncology the majority of Phase II studies leading
to Phase III studies are single-arm, and the most commonly
used Phase II designs are Simon’s single-arm two-stage de-
signs [29] for testing H0 : p ≤ p0 versus H1 : p ≥ p1.
Whether the new treatment is declared promising in a
single-arm Phase II trial, however, depends strongly on the
prespecified p0 and p1. As noted by [38], uncertainty in the
choice of p0 and p1 can increase the likelihood that (a) a
treatment with no viable positive treatment effect proceeds
to Phase III, for example, if an artificially smallp0 is chosen
to inflate the appearance of a positive treatment effect when
one exists; or (b) a treatment with positive treatment effect
is prematurely abandoned at Phase II, for example, if an
optimistically large p1 is chosen. To circumvent the prob-
lem of choosing p0, Vickers et al. [38] and Rubinstein et al.
[28] have advocated randomized Phase II designs. In partic-
ular, it is argued that randomized Phase II trials are needed
before proceeding to Phase III trials. However, the major
barriers to randomization in Phase II cancer trials are that
randomized designs typically require a much larger sample
size than single-arm designs and that there are multiple re-
search protocols competing for a limited patient population.
Being able to include the Phase II study as an internal pilot
for the confirmatory Phase III trial may be the only fea-
sible way for a randomized Phase II cancer trial of such a
sample size and scope to be conducted. Although tumor re-
sponse is an unequivocally important treatment outcome,
the clinically definitive endpoint in Phase III cancer trials
is usually time to event, such as time to death or time to
progression. The go/no-go decision to Phase III is typically
based on tumor response because the clinical time-to-failure
endpoints in Phase III are often of long latency, such as
time to bone metastasis in prostate cancer studies. These
failure-time data, which are collected as censored data and
analyzed as a secondary endpoint in Phase II trials, can be
used for planning the subsequent Phase III trial. Further-
more, because of the long latency of the clinical failure-time
endpoints, the patients treated in a randomized Phase II
trial carry the most mature definitive outcomes if they are
also followed in the Phase III trial.

Although seamless Phase II-III designs can overcome the
major barriers to randomization in Phase II cancer trials and

have additional advantage mentioned above, only Bayesian
methodologies introduced by Inoue et al. [18] and Huang
et al. [16] have been developed until the recent work of
Lai et al. [21]. The Bayesian approach assumes a paramet-
ric model that relates survival to response. Let Zi denote
the treatment indicator (0 = control, l = experimental),
Ti denote survival time, and Yi denote the binary response
for patient i. The Bayesian approach assumes that the re-
sponses Yi are independent Bernoulli variables and the sur-
vival times Ti given Yi follows an exponential distribution,
denoted Exp(λ) in which 1/λ is the mean:

Yi|Zi = z
i.i.d∼ Bernoulli(πz),(11)

Ti| {Yi = y, Zi = z} i.i.d∼ Exp(λz,y),(12)

and also assumes independent prior gamma distributions for
λz,0 and λz,1 (z = 0, 1) and beta distributions for π0 and
π1. Each interim analysis involves updating the posterior
probability p̂ = P (μ1 > μ0| data) and checking whether p̂
exceeds a prescribed upper bound pU or falls below a pre-
scribed lower bound pL, which is less than pU . If p̂ > pU
(or p̂ < pL), then the trial is terminated, rejecting (accept-
ing) the null hypothesis that the experimental treatment is
not better than the standard treatment; otherwise the study
continues until the next interim analysis or until the sched-
uled end of the study. The posterior probabilities are com-
puted by Markov chain Monte Carlo, and simulation studies
of the frequentist operating characteristics under different
scenarios are used to determine the maximum sample size,
study duration and the thresholds pL and pU .

Note that (11) and (12) imply that the conditional dis-
tribution of Ti given Zi is a mixture of exponentials:

(13) Ti|Zi = z
i.i.d∼ πzExp(λz,1) + (1− πz)Exp(λz,0),

for which the hazard ratio of the treatment group (z = 1)
to the control group (z = 0) is not constant over time. The
assumption of exponential survival times in (11) and (12)
in the Bayesian approach seems overly restrictive and semi-
parametric methods such as Cox regression are often pre-
ferred because of relatively large sample sizes in Phase III
studies. Lai et al.[21] recently replaced (12) and (13) by the
Cox regression model

(14) λ(t|Y, Z) = λ0(t) exp(αY + βZ + γY Z).

The exponential model (11) and (12) is a special case of
(14), with λ0(·) being the constant hazard rate of an ex-
ponential distribution. Let π0 = P (Y = 1|Z = 0), π1 =
P (Y = 1|Z = 1), and let a = eα, b = eβ and c = eγ . A
commonly adopted premise in the sequenced trials to de-
velop and test targeted therapies of cancer is that the treat-
ment’s effectiveness on an early endpoint such as tumor re-
sponse would translate into long-term clinical benefit asso-
ciated with a survival endpoint such as progression-free or
overall survival, and conversely, that failure to improve the
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early endpoint would translate into lack of definitive clinical
benefit. This explains why the go/no-go decision to Phase
III made in a conventional Phase II cancer trial is based on
the response endpoint. Under this premise, [21] also shows
that the complement of the set of parameter values defining
an efficacious treatment corresponds to the null hypothesis
H0 = HR

0 ∪HS
0 , where HR

0 : π0 < π1 and

HR
0 : π0 < π1 and π0a+ (1− π0) ≤ π1abc+ (1− π1)b.

In view of this decomposition of the null hypothesis, [21] uses
a group sequential design that focuses on testing HR

0 in the
interim analyses and then switches to testing HS

0 after HR
0

is rejected. It uses Lai and Shih’s modified Haybittle-Peto
test [23] involving GLR statistics to testHR

0 and extends the
methodology to maximum partial likelihood ratio statistics
to test HS

0 after HR
0 is rejected.

3.3 A CDP using Phase II-III design

As a chronic and symptomatic disease, rheumatoid
arthritis (RA) can lead to various outcomes with diverse
severities and therapeutic effects. Typically, the first claim
to be tested for labeling and regulatory approval of a RA
treatment is a reduction in signs and symptoms, which can
be evaluated by the American College of Rheumatology 20%
criterion (ACR20). ACR20 is a binary endpoint that cate-
gorizes patients’ response to a treatment within a six-month
follow-up period as success or failure. Another potential
claim of the clinical benefits of the treatment in terms of
disease modification is the prevention of structural damage.
The claim can be supported by testing a radiographic in-
dex, such as the Sharp score which measures inhibition of
radiographic progression by comparing the measurements
taken one (or two) year(s) after treatment with those taken
prior to treatment. As mentioned in the FDA’s guidelines for
the pharmaceutical industry, the inhibition of radiographic
progression according to the Sharp score is usually consid-
ered after the treatment benefit has been demonstrated by
ACR20 to relieve signs and symptoms of RA.

The testing problem, therefore, is similar to that in Sec-
tion 3.2. Both problems involve a binary endpoint and con-
sider the other endpoint only after the treatment has been
shown to have significant benefits for the binary endpoint.
However, there are three major differences between the two
problems. First, the survival outcome in Section 3.2 requires
long-term follow-up and is the clinically definitive endpoint
in the sense that the treatment cannot gain regulatory ap-
proval without demonstrating survival benefits. In contrast,
the binary endpoint ACR20 is the clinically definitive end-
point for RA treatments and the 1-year Sharp score only
needs 6 additional months of follow-up time for each sub-
ject and is fully observable, unlike survival times that may
be censored. Secondly, while survival trials need a Data and
Safety Monitoring Committee (DSMC) to monitor the trial

periodically and a group sequential design is natural as in-
terim analysis can be carried out at the monitoring meet-
ings, the RA trials do not need monitoring by DSMC and
are usually designed as fixed sample size trials rather than
group sequential trials, as in Figure 1. Thirdly, unlike the
Phase II-III trial in Section 3.2 that uses only one dose,
which is the maximum tolerated dose determined at the end
of the Phase I cancer trial, the Phase II RA trial in Figure 1
involves dose selection for Phase III. In fact, for RA treat-
ments, dose selection is a difficult but important problem
and needs comparison of large enough samples of ACR20
scores of patients treated at several doses.

A seamless Phase II-III design that aims at interweaving
the Phase III trial with the Phase II trial, in which several
doses of a new drug are compared to a control or placebo
with the goal of deciding whether to stop or to continue de-
velopment with a selected dose for Phase III, is an active
area of current research in adaptive design of clinical trials.
The Bayesian approach uses posterior probabilities to select
arms in an adaptive multi-arm trial that starts with multiple
treatment arms and makes a mid-course decision concerning
which arm is appropriate to carry forward for confirmatory
testing; see [7, Ch. 5]. Instead of using posterior probabili-
ties, the frequentist approach selects mid-course the appar-
ently better of the two leading arms to carry forward to the
scheduled end of the trial, and either uses the asymptotic
normality of a weighted statistic of the type (3), or the ex-
act or approximate sampling distribution of a more efficient
test statistic under the null hypothesis to control the type I
error probability of falsely rejecting the null hypothesis that
the new treatment with the selected dose is better than the
control (or placebo); see [5, 8, 17, 32, 35].

In summary, an adaptive counterpart of the separate
Phase II and Phase III trials, which involve only the ACR20
endpoint in Figure 1 for the development of the RA drug, is
a seamless Phase II-III design involving ACR20 and Sharp
score as a bivariate endpoint, similar to that in Section 3.2,
and carrying out mid-course dose selection as in references
cited in the preceding paragraph. However, unlike these ref-
erences, we use efficient test statistics and stopping rules
similar to those introduced by Bartroff and Lai [2, 3] de-
scribed in Section 3.1. Figure 2 gives the decision tree of the
adaptive modification of the CDP in Figure 1.

3.4 A Phase II-III design to test ACR20 and
Sharp score improvement

The Phase II-III trial in Figure 2 begins with two doses
for the new treatment. Since ACR20 is a binary variable
taking the value of 1 or 0, the associated test statistic for
the treatment with dose j, which we shall call treatment
arm j, is the normalized difference

(15) Δi,j =
p̂ij − p̂i0

{p̂ij(1− p̂ij)/nij + p̂i0(1− p̂i0)/ni0}1/2
,
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Figure 2. Decision tree of adaptive CDP.

where nij is the sample size of treatment arm j at the ith
interim analysis and p̂ij is the proportion of ACR20 respon-
ders to treatment arm j among the nij subjects, in which
treatment arm 0 refers to the placebo. In practice, there is
an upper bound M on the total sample size of the Phase II-
III trial because of funding and time constraints and because
there are other trials that compete for patients, investiga-
tors, and resources. Lai and Shih [23, p. 511] have pointed
out that M implies constraints on the alternatives that can
be used in power calculations to determine the sample size.
Specifically, here we use the alternative δ “implied” by M ,
in the sense that M can be determined as the total sam-
ple size of the level-α test with power 1− α̃ at δ, using the
normal approximation for (15) in testing the null hypoth-
esis HR

0 : max(p1 − p0, p2 − p0) ≤ 0; here the superscript
R stands for ACR20. Alternatively, δ can be specified as a
clinically relevant or anticipated effect size based on previ-
ous experimental or observational studies.

Although we use stopping rules similar to those in (7)–(9)
to test HR

0 , we use in (7) and (9) the Wald statistics (15)
instead of GLR statistics (6). The first stage of the Phase
II-III design is the same as Phase II design in Figure 1, with
a total of n(1) = n10+n11+n12 = 240 patients randomized
to the three arms. The first interim analysis, performed at
the end of this stage, chooses the apparently better dose
J = argmaxj=1,2Δ1,j to test the treatment in subsequent
stages. Based on the effect size of dose J, the analog of (10)
is n(2) = (n(1)−n1J′)∨{(M − n1J′) ∧ �(1 + ρm)n̂�} , where
J′ = argminj=1,2Δ1,j is the dose eliminated from further
study and

(16)
n̂ = 2min

{
| logα|

(p̂1J − p̂10)2/v̂
,

| log α̃|
(p̂1J − p̂10 − δ)2/v̂

}
,

v̂ = p̂1J(1− p̂1J) + p̂10(1− p̂10).

The n(2)−n(1) subjects in the second stage are randomized
to treatment (with dose J) and placebo. This explains the
factor 2 in the first line of (16).

At stage i = 1 or 2, the test rejects HR
0 if

(17) n(i) < M − n1J′ and Δi,J > b.

The Wald statistic corresponding to Λi,1 in (8) is

(18) Δ̃i,J =
p̂iJ − p̂i0 − δ

{p̂iJ(1− p̂iJ)/niJ + p̂i0(1− p̂i0)/ni0}1/2
.

The test accepts HR
0 and terminates the trial for futility at

stage i ≤ 2 if

(19) n(i) < M − n1J′ and Δ̃i,J < b̃ < 0.

If neither (17) nor (19) occurs, the test does not stop early
and rejects HR

0 if

(20) Δ3,J > c,

accepting H0 otherwise. The Wald statistic Δ3,J in (20) is

based on M −n1J′ observations and the thresholds b, b̃, and
c are defined by the equations
(21)
Pmax(p1,p2)=p0+δ {(19) holds for i = 1 or 2} = ε̃α̃,

Pp1=p2=p0 {(17) holds for i = 1 or 2} = εα,

Pp1=p2=p0 {(17) does not hold for i ≤ 2, and (20) holds}
= (1− ε)α,

which can be computed by using the asymptotic joint nor-
mality of the Wald statistics and recursive numerical inte-
gration; see the next section for details.

As pointed out in Section 3.3, besides the six-month
ACR20, the one-year Sharp scores are also measured from
patients in the trial. If HR

0 is rejected, the CDP would pro-
ceed to check if the Sharp scores data support a benefi-
cial claim of the treatment’s efficacy in inhibiting structural
damage. Note that in this connection smaller Sharp scores
are associated with better outcomes. Because Sharp scores
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are markedly non-normal, the Wilcoxon test based on the
sum S of the ranks of the Sharp scores from the treatment
group in the combined sample (consisting of both the treat-
ment and the placebo groups) is often used to test the null
hypothesis of no improvement in Sharp scores for the treat-
ment. The standardized Wilcoxon statistic at the ith interim
analysis after selecting dose J for the treatment is
(22)

Wi,J = (ni0niJ/2− Si,J)/ {ni0niJ(ni0 + niJ)/12}1/2 ,

which can be used to replace the GLR statistics in (7) and
(9). Futility stopping is based on ACR20 and not on Sharp
scores, so we do not have to consider the counterpart of
(8) for Sharp scores. Hence, to test HS

0 : max(p1, p2) >
p0 and P (Y ≤ Xj) ≥ 1/2 for j = 1, 2, where Y is a ran-
domly selected Sharp score from the placebo population and
Xj is that from the treatment population (receiving dose j),
let I be the stage at which the three-stage trial stops and
let wobs be the observed value of WI,J. After rejecting HR

0 ,
we reject HS

0 if wobs > 0 and

(23) Pp̂0,p̂1,p̂2;HS
0+
(W ∗

I∗,J∗ > wobs) ≤ α.

The probability measure in (23) refers to that which sub-
stitutes the unknown parameters p0, p1, p2 by their maxi-
mum likelihood estimators at stage I and assumes HS

0+ :
P (Y ≤ X1) =

1
2 = P (Y ≤ X2). W use asterisks for the ran-

dom variables I∗, J∗and W ∗
I∗,J∗ to denote that these ran-

dom variables are generated from the aforementioned prob-
ability measure, independently of how the observed sample
(I,J,WI,J) was generated. Note that (p̂0, p̂1, p̂2) satisfies
max(p̂1, p̂2) > p̂0, otherwise the trial would not have pro-
ceeded to test HS

0 whose max(p1, p2) > p0 requirement is
already satisfied by (p̂0, p̂1, p̂2). The probability in (23) can
be evaluated by recursive numerical integration after using
the normal approximation for the normalized statistics Δi,j

and Wi,j ; details are given in the next section.

3.5 Implementation and a simulation study

The probability in (23) can be decomposed into

Pp̂0,p̂1,p̂2;HS
0+
(W ∗

I∗,J∗ > wobs)

=

3∑
i=1

2∑
j=1

Pp̂0,p̂1,p̂2;HS
0+
(I∗ = i, J∗ = j, W ∗

i,j > wobs),

in which each summand can be evaluated by a trivari-
ate extension of the recursive numerical integration algo-
rithm of Armitage, McPherson and Rowe [1] using the
joint asymptotic normality of Δi,j and Wi,j . For exam-
ple, for i = j = 1, the summand can be expressed as
Pp̂0,p̂1,p̂2;HS

0+
(Δ∗

1,1 > Δ∗
1,2, Δ

∗
1,1 > b, W ∗

1,1 > wobs), in which

(Δ∗
1,1,Δ

∗
1,2,W

∗
1,1) is asymptotically normal with covariance

matrix (vhk)1≤h,k≤3 such that vkk = 1, v12 = 1/2, v13 = r1
and v23 = r2. For j = 1, 2, rj can be estimated by the
sample correlation coefficient of ACR20(j) - ACR20(0) and

IX0≤Xj , in which ACR20(j) and Xj are the ACR20 value
and Sharp score, measured at stage i, of a subject receiving
the treatment at dose j, and ACR20(0) and X0 are those
of a subject receiving the placebo. Note that the correlation
coefficient is computed from nIknI0 pairs of subjects from
the treatment (with dose j) and placebo groups.

We can use a similar decomposition to compute the prob-
ability in (21). For example, Pp1=p2=p0{(17) holds for i =
1 or 2} can be decomposed into

2∑
j=1

[Pp1=p2=p0{Δ1,j ≥ Δ1,j′ and Δ1,j > b}(24)

+ Pp1=p2=p0{b ≥ Δ1,j ≥ Δ1,j′ and Δ2,j > b}] ,

in which j′ denotes the other dose that is not j. The first
term in the sum can be evaluated by using the asymptotic
normality of (Δ1,1,Δ1,2). The second term in the sum can be
evluated by a bivariate extension of the recursive numerical
algorithm of [1]; see [3, p. 260]. Specifically, using the nor-
mal approximation, [3] shows how p(x) = Pp1=p2=p0{Δ2,j >
b|Δ1,j = x} can be expressed in terms of a normal cumula-
tive distribution function (cdf). Moreover, the density func-
tion of Δ1,j is approximately that of a normal density ψ.
Hence, the second term in (24) can be expressed as

∫ b

−∞
Pp1=p2=p0{Δ1,j′ ≤ x|Δ1,j = x}p(x)ψ(x)dx,

in which the conditional probability can be approximated
by that of a normal cdf.

We use the preceding implementation for a simulation
study comparing the clinical trial design in the CDP in Fig-
ure 1, which will be called Plan A, with the Phase II-III
design in Section 3.4 for the CDP in Figure 2, which will
be called Plan B. The simulation study assumes that the
Sharp score is conditionally N(μ, σ2) given ACR20 = 1 and
N(μ̃, σ̃2) given ACR20 = 0. It considers five scenarios, the
first of which is labeled S1 and assumes that the placebo and
the two treatment groups have the same μ, σ, μ̃ and σ̃ and
also the same probability p of ACR20 taking the value 1. The
other four scenarios, labeled S2, . . . , S4, let p, μ, σ, μ̃, σ̃ vary
over the placebo and treatment arms 0, 1, 2. These values
are shown in Table 1, in which S2 uses the results in Table 4
of [25]. For each scenario, patients are assumed to arrive uni-
formly with a recruitment rate of 200 patients per year. For
the Phase II-III design in Section 3.4, the significance level
is set at α = 0.05 and the power is 1 − α̃ = 0.8. The maxi-
mum sample size constraint M = 680 leads to n(1) = 240,
which is the same as that of the Phase II trial in Plan A,
and n(3) = 680. We choose ε = 1/2 and ε̃ = 1/3 in (21), fol-
lowing [2, 3]. Of particular interest for the CDP in Figure 2
is the probability of success of the trial, in which success
means a positive claim for the ACR20 endpoint, with prob-
ability P (R) shown in Table 2; a bigger success would be a
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Table 1. Parameter settings for five scenarios

p μ σ μ̃ σ̃

S1 0.5 0.7 5.5 2.6 10.7

S2
0 0.5 0.7 5.5 2.6 10.7
1 0.5 1.5 7.2 1.1 4.7
2 0.62 0.1 3.8 0.2 3.4

S3
0 0.45 0.2 4 0.75 4
1 0.55 0.3 4 0.75 4
2 0.55 0.3 4 0.75 4

S4
0 0.5 0.5 4 3.5 4
1 0.5 −0.57 4 2.43 4
2 0.5 −0.57 4 2.43 4

S5
0 0.45 0.5 2 3.5 2
1 0.45 0.5 2 3.5 2
2 0.57 −0.14 2 2.86 2

positive claim for both ACR20 and Sharp score, with proba-
bility P (R&S) shown in the table. The efficiency of the trial
is measured by savings in expected sample size E(N) and
the expected duration E(T ) over the separate fixed sample
size Phase II and III trials in the CDP of Figure 1. Table 2
also gives E(N) and E(T ) in the five scenarios. Each result
is based on 5,000 simulation runs.

For comparison, Table 2 also considers the CDP in Fig-
ure 1, labeled Plan A. The total sample size is M = 680 if
the Phase II trial ends with a “go” decision for Phase III;
it is 240 if the Phase II trial ends with a “no-go” decision,
which is guided by the same futility stopping criterion (19)
used by Plan B. Plans A and B use the same maximum sam-
ple size for comparison purpose. Table 2 also gives the total
expected sample size E(N) for Plan A, taking into account
of potential “no-go” decisions for Phase III. The analog of
E(T ) is more subtle. Usually there is a long delay in start-
ing a Phase III trial after analyzing the Phase II data, and
the time delay adds to the total time needed to carry out
the CDP from the Phase I trial to the new drug application.
Since the seamless Phase II-III trial does not incur this time
delay, we define T for Plan A as the duration from the be-
ginning of the Phase II trial to the end of the Phase III trial,
minus the time delay between the two trials, if the Phase II
trial ends with a go decision; we define T as the duration of
the Phase II trial if it ends with a no-go decision. Unlike the
adaptive design in Figure 2, the Phase III trial in Figure 1
is intended to test the Sharp score as a secondary endpoint,
similar to traditional designs. This means separate tests for
the null hypotheses pJ ≤ p0 and P (X0 ≤ XJ) ≥ 1

2 , where
J is the dose selected at the end of the Phase II trial. No
Bonferroni or other multiple testing adjustments are made
to maintain the overall type I error probability. The proba-
bility P (R&S) in Table 2 for Plan A should be interpreted
in this more liberal sense of separate tests for the primary
and secondary endpoints, which the regulatory agency may
not accept as sufficient evidence in favor of the claim that

Table 2. Probabilities of positive claims, E(N) and E(T ) for
Plans A and B

P (R) P (R&S) E(N) E(T )

S1
A 0.04 0.003 593 4.27
B 0.05 0.003 522 3.26

S2
A 0.75 0.51 670 4.83
B 0.80 0.50 542 3.74

S3
A 0.68 0.04 676 4.87
B 0.83 0.04 516 3.62

S4
A 0.04 0.03 594 4.28
B 0.05 0.04 529 3.31

S5
A 0.73 0.73 617 4.84
B 0.82 0.68 538 3.73

the treatment improves the Sharp score when the secondary
analysis rejects the null hypothesis P (X0 ≤ XJ) ≥ 1

2 .

4. DISCUSSION

Table 2 shows the advantages of the seamless Phase II-
III trial over conventional Phase II and Phase III trials. The
scenarios S1 and S4 belong to HR

0 . While the two treat-
ment doses in S1 have the same distribution of Sharp scores
as that of the placebo population, they both have smaller
(and therefore better) mean Sharp scores than the placebo
in S4. The adaptive design (Plan B) maintains the type I
error probability of 5% in both scenarios, and so does the
traditional design (Plan A). For the other three scenarios,
Plan B has a higher probability of reaching a positive claim
and yet a smaller expected sample size than Plan A. Note
that in S3, the Sharp scores of both treatment arms tend
to be larger (worse) than those of the placebo, explaining
why P (R&S) is small. On the other hand, in S5, treatment
arm 2 has marked improvements in the mean Sharp score
for both ACR20 responders and non-responders, and Plan B
has an about 70% chance of positive claims for both ACR20
and Sharp score endpoints and an 80% chance of a positive
claim for ACR20 alone. The probability of positive claims
for both endpoints drops to 50% in S2 in which the treat-
ment arm 2 has smaller improvements in the mean Sharp
score over the placebo. In S2 and S5, both plans almost al-
ways choose dose 2, the actual better dose, when making a
positive claim for ACR20. The reduction in the duration of
the development process in all scenarios is an even greater
advantage of Plan B over Plan A. The two plans have simi-
lar chances of stopping at n(1) for futility (i.e., for the no-go
decision) since they use the same stopping rule (19). How-
ever, Plan B has a markedly smaller expected sample size
because it carries out efficient sample size re-estimation for
the second stage. As pointed out in the last paragraph of
Section 3.5, the E(T ) of Plan A shown in Table 2 does not
take into consideration the time delay between Phase II and
Phase III trials. For the RA drug, this was estimated to be

440 T. L. Lai, O. Y.-W. Liao and R. G. Zhu



at least one year. The time savings were most appealing to
the CDP team.

In the literature reviewed in Section 1, most existing
methods, such as [32] and [35], deal with only one endpoint
for multiple arms. Our design deals with bivariate endpoints
besides multiple arms. It should be noted that, unlike the
decision trees in [20], no cost estimates are attached to Fig-
ures 1 and 2. In practice, for the team to arrive at the CDP
choice and to present it to senior management, costs and
prior probabilities of success together with estimates of the
market value of the drug if approved have to be incorpo-
rated into the decision tree, as in [20]. At the planning stage,
there is a lot of uncertainty in these estimates and in those
for planning the trials. Standard clinical trials designs, such
as those in Figure 1, which are well understood and rela-
tively simple to present may be a good way to start. Because
of the uncertainties and the strong assumptions underlying
the “simplified” CDP, its adaptive version can be used for
the development process which involves adaptive designs in
place of the standard designs in the simplified CDP. Ta-
ble 2 and other simulation studies not reported here show
that the adaptive modification of the original CDP performs
similarly to, or better than, the original CDP if the assump-
tions underlying the CDP actually hold, but can perform
much better if they differ substantially from reality. A major
barrier to the acceptance of adaptive designs by regulatory
agencies is that adaption may substantially inflate the type
I error probability. However, as we have shown in Section 3,
important advances have been made in the past decade to
remove this barrier, and the time is now ripe for using adap-
tive methods not only in clinical trials but also in clinical
development plans for drug development.
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