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Predicting acute hypotensive episodes from
ambulatory blood pressure telemetry

KuN JiIN®T AND NORMAN STOCKBRIDGE*

The biological data collected from intensive care units
contain signal and noise. To extract information that will
be useful for predicting or discriminating the cases likely to
develop an acute hypotensive episode (AHE), we begin by
applying a spline-based smoothing method to the observed
mean arterial pressure (MAP) curves. The coefficients of
the fitted spline model form a discretization matrix of the
continuous MAP curves. A rank-based discriminant analysis
and a cross-validation method are developed to find the best
prediction subset in the training set. The selected best sub-
sets are used to predict AHE in the test sets. This work is
from participation of PhysioNet/Computers in Cardiology
Challenge 2009: Predicting Acute Hypotensive Episodes.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62P10, 62-
07; secondary 65D07, 65D10.

KEYWORDS AND PHRASES: B-spline smoothing, Rank anal-
ysis, Cross validation, Acute hypertensive episode, Ambula-
tory blood pressure telemetry.

1. INTRODUCTION

An acute hypotensive episode (AHE), which is defined
as any period of 30 or more minutes during which at least
90 percent of mean arterial blood pressure measurements
are less than 60 mmHg, requires urgent intervention to pre-
vent ischemic complications at the intensive care unit (ICU).
False positive alarms, however, waste care resources and
drive up costs of medical care. The goal of Computers in
Cardiology Challenge 2009 (Moody and Lehman, 2009) was
to predict AHEs occurring within a 60-minute window fol-
lowing a day of observation. The Challenge provided three
datasets: a training set and test sets A and B. The training
set has data collected from 60 patients, of whom 30 patients
developed an AHE during the 60-minute forecast window.
Test set A has data from 10 patients, and one is supposed
to predict the 5 patients who had AHEs from this set. Test
set B has data from 40 patents, and one is supposed to pre-
dict the 10 to 16 patients who had AHEs from this set. The
detailed description of the datasets can be found at http://
www.physionet.org/challenge/2009/ .

*The views expressed in this manuscript are those of the authors and
not necessarily those of the Food and Drug Administration.
fCorresponding author.

All datasets include continuous telemetric data for heart
rate, systolic and diastolic pressure, and mean arterial blood
pressure (MAP), and other clinical information on vital
signs, concomitant medications, etc. In this article, only the
mean blood pressure data were used to predict AHE. Fig-
ure 1 plots four patients’ data from the Training Set. The
top two plots are mean blood pressure curves for patients
who developed an AHE in the forecast window with the
starting point Ty. The bottom two are patients who had no
AHE. The data were collected from intensive care units at
hospitals; there are significant segments of missing data, for
example, in the bottom two curves. In the Training Set, all
but one patient has at least 656 minutes of continuous data
immediately before the starting point 7. The missing data
are interruptions in telemetry for unknown reasons. In this
paper, no attempt was made to impute missing data. Our
aim was to predict episodes with existing data only.

In this paper, we propose a two-stage approach to this
challenge. The first step is to approximate the mean arterial
blood pressure curve by cubic B-Splines. The resulting co-
efficients corresponding to the bases are considered to be a
discretization of the continuous MAP. The second step is to
find the “best subset” of the discretization from the training
set that discriminates patients having an AHE. This “best
subset” is then used to predict who has an AHE from the
two test sets.

2. CUBIC B-SPLINES AND
DISCRETIZATION

Cubic B-Splines (de Boor, 2001) with equally spaced
knots are used to approximate MAP curves. The selection
of B-Splines is more or less arbitrary. It is anticipated sim-
ilar approximation methods, such as wavelets, could do as
well as B-Splines. Figure 2 plots a cubic B-spline basis with
three internal knots. With appropriate empirical parame-
ter selection, B-Splines approximate target curves well and
can capture local features of the target curve (Jin, 1992).
Technically, the t-axis of original MAP curves is inverted
so that ¢ = 0 at Ty, the starting point of the prediction
window.

Let Bi(t), k = 1 K be bases with K knots. De-
note ABPM;(t;), j ,n; to be " MAP curve.

Zfil @, By (t;) is used to approx1mate the MAP curve and


http://www.intlpress.com/SII/

150 200 250

mmHg

100

4000 6000

minute

C

0 2000

150 200 250

mmHg

100

o
) J
o 4

0 1000

2000 3000 4000 5000 6000

minute

o
3
« :
o :
o A :
[3Y) :
8 :
o L7 .
I :
£ :
E g :
3 1 ' J :
T :
o :
0 500 1000 1500
minute
C
o
3
o
o
S |
N
o
o 2
I
£
g 8
o |
3 | :
‘ 0 :
o 1 -
0 5000 10000 15000
minute

Figure 1. Plot of mean blood pressure in mmHg vs time in minute. Ty is the starting point of the forecast window. The top
plots are of patients who developed AHE (H) after T,. The bottom plots are of patients who did not have AHE (C).
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Figure 2. Plot of cubic B spline basis with three internal knots.

;) is the least square estimate by minimizing

Uz

K 2
> <Z ik By (tj) — ABPMi(tj)>
k=1

To select the smoothing parameter, a generalized cross
validation criterion GCV,;(K) = RSS(i,K)/(n; + 1 —
2.5(K — 1))? is calculated for each i, i = 1,..., N, where

Uz

K 2
RSS(i,K) = @ik Bi(t;) — ABPM;(t;)
k=1

and 2.5 is a penalty parameter (Stone et al., 1997). The
smoothing parameter K is selected by minimizing
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ZZ].VZI @i(K), where N is 70 to predict Test Set A by
adding Test Set A to the training set, and N is 100 to
predict Test Set B. Because of the different lengths of
the training datasets, the smoothing parameter selection
is done first on the minimal common interval of length
of T = 656. The remaining intervals are then assigned
equally spaced knots generated from the common inter-
val.

The Training Set, Test Set A and Test Set B are fitted
with the selected K, and the result of matrices (a;x) are
denoted as (@)§; ., (@)fy  and (@)F) x, respectively.

These matrices are considered to be a discretization of the
MAP curves and will preserve the features of these curves
that can be used to carry out discrimination analysis.



3. RANK-BASED DISCRIMINATION

A simple rank-based discrimination was developed from
the Training Set and used to predict Test Set A. We first
select those columns in (a)f, x that have high discriminat-
ing power to distinguish AHE cases. We rank each column
separately and then look at the distribution of AHE and
non-AHE cases. Those columns with a high concentration
of AHE or non-AHE cases at the top or bottom are consid-
ered to have high discriminatory power.

Let I = (i1,...,%60), where i; = —1, for j = 1,...,30
and 1 otherwise; o7k = (a1p, - -, agor) be the k" column of
(O‘)GTO,K- Define (1(k),...,60(k)) as the order statistic gen-
erated from 07;, where i(k) is the original location of cv;(x)
in o?k.

Then Iy = (i1(k), - - -, 60(k)) is a transformation of (Zﬁ
where the entries of ordered 07;)C become —1 for those cor-
responding to AHE cases and 1 for non-AHE cases. Large
absolute values of Z?il j(k) and 25131 j(k) indicate a high
concentration of similar groups at the top or bottom. A dis-
criminant test statistic is defined as d; = |Z§’il j(k) —
Z?igl j(k)| for k. A large value of &, will indicate a high

. . . . —
discrimination power of ay.

3.1 Application to Test Set A

Here the rank base approach was applied to the Test
Set A. To find which columns have the highest discrimi-

Table 1. 6y, from a6TO7K

0820162416 27 11271224 24 16 24 20 8 8 420 7 16
81216 24 16 12 16 28 16 12 20 20 24 28 16 16 24 16 24
16 20 16 24 16 20 12 16 15 18 22 10 21 13 13 13 5 21 13
16 1511 231923 192218 18 22 10 18 17 16 12 16 12 4
81114101612471595128151495919571515
31531562656844044841239132106106
1719926214344429511533103377113
3373331223556333337712222226663
1351317331063133315551851257571
737101712263313266622131555515

nation power from the training matrix («)%, 5, o was cal-
culated for each column. The result is in Table 1.

The largest d;’s are associated with columns 5, 7, 9, 11,
12, 14, 25, 29, 34, 35, 38, 40, 44, 63, 65. The corresponding
columns from matrix (0‘)140, x were then selected and ordered
separately. The results from application to Test Set A are
displayed in Table 2. Except for column 29, every ordered
column puts cases 101, 102, 104, 109 and 110 at the top
portion and predicts them as AHE cases. In column 29, cases
101, 102, 108, 109, 110 are predicted as AHE cases. The
entry for Test A received a full score on the first attempt.

4. LOGISTIC REGRESSION AND
CROSS-VALIDATION

For Test Set B, the ranking approach did not generate a
conclusive result. Therefore, a different approach was taken.
By assigning 1 to AHE cases and 0 to non-AHE cases, the
status could be naturally linked to ()%, 5 with logistic re-
gression. The problem becomes how to search for columns
from (a)Z, jc that could be used to predict the outcome, a
classical “best subsets” selection problem. There are many
potential algorithms (Burnham and Anderson, 2002); here,
we used a double cross-validation approach. Only about 650
minutes of data immediately preceding T; were used in this
prediction since logistic regression has difficulty with missing
data. A possible future extension would be to see whether
imputing these missing data will improve the prediction.

4.1 Leave a row out

First, we will define criteria that could be used to select
appropriate columns.

Denote Y = (y1,...,¥60)" and (a)gy x = (a1.,..., a60.)",
where y; = 1 if ith patient is AHE, or 0 otherwise and
;. is a vector of coefficients of i** MAP curve. For each i,
remove y; from Y, o, from (a)go,x. Fit the remainder Y_;
to ()t , with logistic regression; the coefficient is denoted
as B_;. Then, y; can be predicted by g; = exp(B_;c;.)/(1+
exp(B_iar).

Repeating this procedure for all 7, i@ = 1,...,60 in
the Training Set, we obtain the prediction of Y by Y =
(gla s aQGO)'

Table 2. Ordering the corresponding columns in Test Set A matrix (a)f‘oy - The predicted “H” is in bold

(K= 5[ 7]

9] 1] 12] 14] 25 29| 34] 3] 38] 40] 4] 63] 65
110 [ 110 ] 110 ] 110 ] 102 | 110 [ 101 | 101 [ 101 | 101 [ 101 | 101 [ 101 [ 102 | 104
109 | 101 | 101 | 102 | 109 | 101 [ 109 [ 110 | 109 | 110 | 102 | 109 | 109 | 104 | 101
104 [ 104 | 109 [ 101 | 110 | 109 | 110 | 109 | 110 | 109 | 109 | 110 | 104 | 101 | 110
101 [ 109 | 104 [ 109 | 104 | 102 | 104 | 102 | 102 | 104 | 110 | 102 | 110 | 109 | 109
102 | 102 | 102 | 104 | 101 | 104 [ 102 [ 108 | 104 | 102 | 104 | 104 | 102 | 110 | 102
108 [ 108 | 108 | 108 | 107 | 108 [ 108 | 104 [ 108 | 108 | 108 | 108 | 108 [ 105 | 105
107 [ 107 | 105 105 | 108 | 107 [ 107 | 107 [ 107 | 107 [ 107 | 107 [ 105 | 108 | 107
105 [ 105 | 107 [ 107 [ 105 | 105 [ 105 | 105 [ 105 | 103 | 103 [ 105 | 107 [ 107 | 108
103 103 | 103 | 103 | 103 | 103 [ 103 | 103 | 103 | 105 | 105 | 103 | 103 | 103 | 103
106 [ 106 | 106 [ 106 [ 106 | 106 [ 106 | 106 [ 106 | 106 [ 106 [ 106 | 106 [ 106 | 106
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Table 3. Prediction of status of Test Set B and the true status. The true status was known after competition closed. Thirty
three out of 40 were correctly predicted

| Case ][ 201] 202] 203 ] 204] 205[ 206 | 207] 208 209 210] 211 [ 212] 213[ 214 215] 216] 217] 218[ 219] 220]

Prediction][ C[ C[ H] C[ C[ C[ C] C] H[ C[ C[ C] C[ H[ C] C] H[ H[ C[ C
True|| C| H| H[ C[ C| C| H[ C[ H| C| c|[ c¢[ ¢ H|] c¢| c¢[ H[ H] C| C
| Case|| 221] 222] 223] 224 225] 226] 227 228] 229 230 231 232] 233] 234 235] 236 237 238] 239 240
Prediction]| C[ C[ H] C[ H[ H[ H|] C] C[ C[ €] C] C[ H[ C] C] C] H[ C[ C
True|| C| H| H[ H[ H| C| C[ C[ c¢] c| c¢[ c¢[ ¢ H|] c| c¢[ ¢[ H] H|] C

We then define C'V F.(a) = mean|Y —Y | and CV Fy(a) =
number of §; such that |y; — g;| < 0.5. CVF,(«a) is a con-
tinuous measure for closeness of ¥ to Y, while the discrete
measure of CV F4(a) counts how many correct predictions
are made if we assign 1 if §; > 0.5 and 0 otherwise.

These two statistics will be used to guide the selection of
columns from (a)gQ K-

4.2 Leave a column out

Starting with full columns of (a)GTO’ x> we delete less opti-
mized columns repeatedly until no further improvement can
be made.

Denote ()fy x = (a.1,..
umn. For each k = 1,..., K, remove a. from (a)gQK and
the remainder is (a)_i. CVF4(a_i) and CVF.(a_y) are
then calculated for the remainder matrix(«)_. This proce-
dure will generate vectors (CV Fy(a—1),...,CVFi(a_k))
and (CVF.(a_1),...,CVF.(a_k)). From Section 4.1, the
largest CV Fy(a—y), or smallest CV F.(a_j) indicates that
removing the corresponding column will produce a better
prediction. We start with full columns and delete a col-
umn each time with the following strategies: 1) remove
the column with the largest CV Fy(a_y); 2) if there are
ties, remove the column with the smallest CV F.(a_p).
This procedure removes one column, say k; with recorded
CVFd(Oé.kl), (CVFC(Oé.kl)).

The procedure is repeated for each remainder ma-
trix until no further improvement can be made in
CVFi(ag,),CVFg(ak,),.... The remaining columns are
considered to be the best prediction columns and the re-
mainder matrix is denoted as (&)go, ki where | columns are
removed. A logistic regression of Y on (a)eg x—; is carried
out to get coefficient Bx_;. Let (oz)fo7K_l be the reminder

., ), where a., is k*" col-

matrix that resulted from (o)) z-, where the same I columns
are removed. Y B is then predicted by

(1)

YB = e(o‘)fo‘K—lﬁK*l/(l + e(a)fo,K—zﬁKfl)

4.3 Application to Test Set B

One curve was removed from the training set because
of a large missing segment near the beginning time point.
Thus, 59 curves were used in the cross-validation process.
The initial leave-a-row-out procedure returns the largest
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CVFy(as) = 48. Column 40 was first removed. Sequen-
tially, columns 26, 33, and 44 were removed. The procedure
returns CV Fy(age) = 58. After removing column 22, the
next run did not provide further improvement.

Denote [ = (22,26,33,44). The prediction Y2 was then
calculated with formula 1 in Section 4.2.

Simply predicting AHE cases by |y? — 1| < 0.5 overesti-
mated the number of AHE cases, the predicted AHE cases
were over the limit specified in the competition instruction.
For all y? € [0.485,0.515], we used the rank analysis, as
discussed in Section 3, to window the number of predicted
AHE cases. The prediction of status for each case in Test Set
B is presented in Table 3. The procedure correctly predicts
33 out of 40 and our entry scored eighth in the competition.

5. FURTHER EXPLORATION
POST-COMPETITION

In previous sections, predictions for Test Sets A and B
were made using different methods. After the competition,
the true status was available for both test sets. Nevertheless,
we attempted to find a method able to predict both sets well.

The logistic regression approach in Section 4 used only
common-length data proximal to T because of missing data.
The length of the data segment was about 656 minutes.
Thus, a large amount of information was available but not
used in the analysis. To use more information and with the
insight that the magnitude of the MAP likely plays an im-
portant role in the prediction of Test Set A, we added 5%,
15%, 256%, 50%, and 75% quantiles of each curve to the
discretization matrices (a)%}uo (a)ﬁ)’K and (Oé)fo,K» respec-
tively. To each matrix was added an additional five columns,
making the total number 52.

It is a well known fact that in model selection, the best
set might be biased toward the training set (Burnham and
Anderson, 2002). Therefore, we selected the second or third
best subsets in the cross validation process.

In the cross validation to determine the best fit, we used
a “one out N” approach for predicting Y. In the literature,
various “m out N” approaches are discussed as a way to
improve the accuracy of prediction (Breiman and Spector,
1992). We thought this might be suitable here, since the final
prediction was carried out for a group of patients. However,
the requirement for a non-singular matrix in the logistic



Table 4. Prediction of status of Test Set B post competition. Thirty five out of 40 were correctly predicted

| Case || 201] 202] 203] 204 205[ 206 207 ] 208 209

| 210] 211 212] 213] 214 215[ 216 217 218] 219 220]

Prediction[[ C[ H[ H| C|] C[ H[ H|] C] H[ C[ C][ C][ C[ H[ C[ C[ H] H[ C[ C
True| C| H|[ H| C| C| C| H[ C[ H| €| C| C| C¢| H[ C[ c¢| H| H| C| C
| Case || 221 222] 223 ] 224] 225[ 226 227] 228] 229 230[ 231 ] 232] 233[ 234 235] 236 ] 237] 238[ 239 240]
Prediction C| H| H| H C| H C C C| H C C C| H| H C C| Hl H C
True|| C[ H[ H| H| H| C][ C[ C[ C| C|] C| C] C] H[ C[ C¢[ ¢| H| H| C

regression limits m to not more than 6. We attempted m = 3
here. To try out all possible combinations of 3 out of 52
columns would be infeasible, so the following sets were used.

Let, s; = (4,20 + 4,40 4+ ¢), ¢ = 1,...,20. Similar to Sec-
tion 4.1, For each 4, remove y;, from Y, a,, from (o)e0,x-
Fit the remainder Y_,, to (@)’ , with logistic regression;
the coefficient is denoted as B_s,. Then, ys, can be pre-
dicted by §s, = exp(B_s,as;)/(1+exp(B_s,as,). CVEF(a) =
mean|Y — Y| and C'V Fy(a) are defined as same as in Sec-
tion 4.1 by just replacing ¢ with s;.

Then we followed the same procedure in Section 4.2,
but each time we removed the column with the second-
best fit or third-best fit instead of the best fit. Here the
best fit used the smallest C'V F,(«), while the second- or
third-best fit used the second or third smallest CV F,(«).
We found that removing the column with the third-best fit
yielded the best fit with the column subset of (2,3, 10, 14,
16,19, 24, 26,27, 35, 36, 37, 38, 39, 42,43, 44, 45,47) and col-
umns corresponding to the 5%, 15%, and 25% quantiles.
With this subset, we can predict correctly all outcomes in
Test Set A and 35 out of 40 in Test Set B. The result is
shown in Table 4.

6. CONCLUSION REMARKS

This manuscript proposes a two-stage method for predict-
ing AHE from continuous MAP data. In statistical litera-
ture, most two-stage approaches can eventually be improved
by joining two steps into a simultaneous process. The two-
stage approach proposed here is different from these types
of approaches. B-Spline fitting is used to find the best fit
for the curve, and the second stage finds the best predic-
tors from the fitted coefficients. The best predictors may
not necessarily be the best base to fit the curve.

The proposed approach has the potential to be employed
in searching for hidden clinical features that may not be eas-
ily seen from a digitized wave dataset. Indeed, our approach
does not assume any prior knowledge about the dataset or
its clinical interpretation.

It may be possible to do much better in predicting clinical
events if we utilize other available clinical telemetry data—
heart rate, systolic and diastolic pressure—but we have not
explored how much these add, or even if MAP was the op-
timal single channel.

In addition, the proposed methods could be further im-
proved by careful consideration of how to assess variances
in the datasets and estimates.

The training datasets have various lengths, from 656 to
14,986 minutes. The logistic regression and cross-validation
methods we used require each dataset to be the same length.
Therefore, only limited data segments with a common min-
imum length were used in the logistic regression and cross-
validation. This limitation can probably be overcome in fu-
ture work.

Received 20 December 2010

REFERENCES

Mooby, G. B. and LEHMAN, L. H. (2009). Predicting acute hypoten-
sive episodes: The 10th annual PhysioNet/Computers in Cardiology
Challenge. Computers in Cardiology 36.

DE BOOR, C. (2001). A Practical Guide to Splines. Springer, New York.
MR1900298

JiN, K. (1992). Empirical smoothing parameter selection in adaptive
regression. Ann. Statist. 20 1844—1874. MR1193315

SToNE, C. J., HANSEN, M., KOOPERBERG, C., and TRUONG, Y. K.
(1997). Polynomial splines and their tensor products in extended
linear modeling. Ann. Statist. 25 1371-1425. MR1463561

BurNHAM, K. P. and ANDERSON, D. R. (2002). Model Selection and
Multimodel Inference: A Practical Information-Theoretic Approach,
2nd ed. Springer, New York. MR1919620

BREIMAN, L. and SPECTOR, P. (1992). Submodel selection and eval-
uation in regression: The X-random case. International Statistical
Review 60 291-319.

Kun Jin

Division of Biometrics |

FDA/CDER, WO21, Rm 4622

10903 New Hampshire Ave

Silver Spring, MD 20993

USA

E-mail address: kun. jin@fda.hhs.gov

Norman Stockbridge

Division of Cardiovascular and Renal Products
FDA/CDER

10903 New Hampshire Ave

Silver Spring, MD 20993

USA

E-mail address: norman.stockbridge@fda.hhs.gov

Predicting acute hypotensive episodes from ambulatory blood pressure telemetry 429


http://www.ams.org/mathscinet-getitem?mr=1900298
http://www.ams.org/mathscinet-getitem?mr=1193315
http://www.ams.org/mathscinet-getitem?mr=1463561
http://www.ams.org/mathscinet-getitem?mr=1919620
mailto:kun.jin@fda.hhs.gov
mailto:norman.stockbridge@fda.hhs.gov

	Introduction
	Cubic B-Splines and discretization
	Rank-based discrimination
	Application to Test Set A

	Logistic regression and cross-validation
	Leave a row out
	Leave a column out
	Application to Test Set B

	Further exploration post-competition
	Conclusion remarks
	References
	Authors' addresses

