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Futility stopping in clinical trials

Pei He, Tze Leung Lai
∗
and Olivia Y. Liao

Early stopping due to futility, also referred to as a go/no-
go decision, during interim analysis has become an impor-
tant feature of clinical trial designs. Current methods for fu-
tility stopping in literature are mostly based on conditional
power or predictive power in conjunction with the theory
of stochastic curtailment or group sequential design. They
have certain drawbacks that have been noted in literature.
Herein we describe a new approach to futility stopping in
clinical trial designs and the statistical theory underlying
this approach. Simulation studies and theoretical analysis
show the advantages of the approach in both parametric
and nonparametric problems.
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ondary 62F03.
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1. INTRODUCTION

Since the late 1970s, interim analyses of the accumulat-
ing data in a long-term clinical trial have become increas-
ingly popular and are now standard in clinical trial designs
to compare a new treatment with a control. While there
have been many important advances in group sequential
tests with prescribed type I error probability of falsely re-
jecting the null hypothesis that treatment is not better than
control, theoretical developments in futility stopping (as op-
posed to early stopping for efficacy that may inflate the type
I error) seem to have lagged behind. The seminal paper of
Lan, Simon and Halperin [16] introduced the conditional
power approach and provided a fundamental bound on the
loss of power at a given alternative due to futility stopping
by considering the conditional power at that alternative.
The need to choose an alternative in the condtional power
approach was subsequently circumvented by using the pre-
dictive power approach or by using maximum likelihood or
other methods to estimate the actual parameter at interim
analysis so that the estimate can be used to substitute for
the alternative in the conditional power approach. Section 2
gives a review of the conditional power and predictive power
approaches to futility stopping and certain issues with both
approaches.
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Section 3 develops a statistical theory for futility stop-
ping, which relates futility to evidence against the hypoth-
esis that treatment is better than control by at least some
prescribed amount. For testing the one-sided null hypothe-
sis H0 : u(θ) ≤ u0 in a multiparameter exponential family,
this theory formulates futility stopping via rejection of the
hypothesis u(θ) ≥ u1, in which u1 is an “implied alterna-
tive,” that is, the alternative at which the reference test of
H0, with type I error α and taking no more than M observa-
tions, has power 1− α̂. Using this formulation, we describe
in Section 3 a new methodology for futility stopping, first
in the exponential family setting and then in nonparametric
and semiparametric models. Further complications for time-
sequential trials with survival endpoints, which have been
pointed out in [15, 18], are also addressed by an extension
of the basic approach. Simulation studies are given in Sec-
tion 4 and show the advantages of the proposed approach to
futility stopping. Further discussion and concluding remarks
are given in Section 5.

2. CONDITIONAL AND PREDICTIVE
POWER APPROACHES

The motivation underlying conditional and predictive
power is to forecast the outcome of a given test, called a
reference test, of a statistical hypothesis H0 from the data
Dt up to the time t when such a prediction is made. Since
the outcome is binary (i.e. whether to reject H0 or not),
the forecast can be presented as the probability of rejecting
H0 at the end of the study given Dt. However, this proba-
bility has to be evaluated under some probability measure.
In the context of hypothesis testing in a parametric family
{Pθ, θ ∈ Θ}, [16] proposed to consider the conditional power

(1) pt(θ) = Pθ(RejectH0|Dt).

Subsequently, [5] and [21] found it more appealing to put a
prior distribution on θ and consider the posterior probability
of rejecting H0 at the end of the trial given Dt, and therefore
advocated to consider the predictive power

(2) Pt = P (RejectH0|Dt) =

∫
pt(θ)dπ(θ|Dt)

where π(θ|Dt) is the posterior distribution of θ. This idea
had been proposed earlier by Herson [9].

For the problem of testing the one-sided hypothesis H0 :
θ ≤ θ0, the predictive power approach to futility stopping
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terminates the study if Pt ≤ γ, for some threshold 0 < γ <
1
2 , at time t of interim analysis. Similarly the conditional
power approach chooses an alternative θ1 > θ0 and stops the
study if pt(θ1) ≤ γ. It is shown in [16] that if the reference
test, which may be sequential, has power 1 − β at θ1, then
adding such futility stopping feature to the test at all times
of interim analysis still has power ≥ (1−β)/(1−γ); see also
[12, p. 206–207].

While the conditional power approach to futility stop-
ping requires specification of an alternative θ1, the predictive
power approach requires specification of a prior distribution
π. It is often difficult to come up with such a specification in
practice. On the other hand, one can use Dt to estimate the
actual θ by maximum likelihood or other methods, as sug-
gested by Lan and Wittes [17]. For normal observations Xi

with common unknown mean θ and known variance σ2, us-
ing Lebesgue measure on the real line as the improper prior
for θ yields the sample mean X̄t, as the posterior mean and
also the MLE. In this case, for the fixed sample size test
that reject H0 : θ = 0 if

√
nX̄n ≥ σzα, this predictive power

is

(3) Φ

(√
t

n− t

(√
n

σ
X̄t − zα

))
,

and the conditional power is

(4) pt(X̄t) = Φ

(√
n

n− t

(√
n

σ
X̄t − zα

))
;

see [12, p. 211]. Here and in the sequel, we use Φ to denote
the standard normal distribution function and zα = Φ−1(1−
α).

Although using the conditional or predictive power to
guide early stopping for futility is intuitively appealing,
there is no statistical theory for such choice of the stopping
criterion. In fact, using the MLE as the alternative already
pre-supposes that the MLE falls outside the null hypothesis,
and a widely used default option is to stop when the MLE
belongs to H0, which is consistent with (4) that falls below
the type I error α in this case. However, this ignores the un-
certainty in the estimate and can lose substantial power due
to premature stopping, as shown in the simulation studies
of [2, 3] on adaptive designs that use this kind of futility
stopping. Pepe and Anderson [20] have proposed to adjust
for this uncertainty by using X̄t + σ/

√
t instead of X̄t to

substitute for θ1 in the conditional power approach.
Instead of estimating the alternative during interim anal-

ysis, one can focus on a particular alternative θ1 and con-
sider the conditional power pt(θ1) or the predictive power
with a prior distribution concentrated around θ1. Although
[16] has shown that adding futility stopping to the reference
test of H0 : θ ≤ θ0 if pt(θ1) ≤ γ does not decrease the
power of the reference test at θ1, by more than a factor of
γ/(1 − γ), there is no statistical theory justifying why one
should use a conditional instead of an unconditional test of

θ ≥ θ1. Furthermore, as noted earlier, this approach leaves
open the problem of how θ1 should be chosen for stopping
a study due to futility.

3. FUTILITY STOPPING THEORY

In this section we develop a statistical theory of early
stopping for futility. To fix the ideas, consider a confir-
matory trial sponsored by a pharmaceutical company to
demonstrate the efficacy of a new drug for its approval.
The null hypothesis assumed by the regulatory agency is
H0 : u(θ) ≤ u0, where θ is a parameter vector and u is a
smooth function of θ so that H0 represents that the treat-
ment is not efficacious. For example, θ = (p1, p2) in the case
of binary responses, where p1 is the response probability of
the new treatment and p2 is that of the standard treatment,
and u(θ) = p1 − p2, u0 = 0. This formulation also includes
nonparametric tests by allowing θ to be infinite-dimensional,
e.g., θ = (F1, F2) with Fi being the distribution function of
the new (i = 1) or standard (i = 2) treatment. Here smooth-
ness of u means that it is compactly differentiable; see [6].
In Sections 3.1 and 3.2, we focus on the parametric case in-
volving exponential families for which we can apply results
from the theory of [14] on efficient group sequential tests.
Section 3.3 provides extensions to nonparametric and semi-
parametric tests, and Section 3.4 addresses additional issues
for time-sequential trials with survival endpoints.

3.1 Alternative implied by the maximum
sample size constraint

Because of time and resource constraints, the sample
size of a clinical trial cannot exceed some prescribed up-
per bound M . Lai and Shih [14] introduced the concept
of an “implied alternative,” which is the alternative im-
plied by this constraint, for testing H0 : θ ≤ θ0 based on
i.i.d. observations X1, X2, . . . from a one-paramter expo-
nential family with density fθ(x) = eθx−ψ(θ). In this set-
ting, application of the Neyman-Pearson lemma yields the
fixed sample size test that rejects H0 if SM ≥ cα as the
uniformly most powerful (UMP) level-α test for every al-

ternative θ > θ0, where SM =
∑M

i=1 Xi and cα is chosen
such that Pθ0(SM ≥ cα) = α. In particular, it has maximal
power, among all level-α tests (including sequential ones)
that take no more than M observations, at the implied al-
ternative θ(M) where the above level-α test has prescribed
power 1− α̃. In fact, the sample size M can be determined
by Pθ1(SM ≥ cα) when θ1 = θ(M) is given.

The successful outcome of the trial, from the pharma-
ceutical company’s viewpoint, is rejection of the one-sided
hypothesis H0 by using a test that maintains the specified
type I error. Although stopping early for futility would not
increase the type I error, it would decrease the power of the
test. In paticular, adding futility stopping to the test that
rejects H0 if SM ≥ cα would lose the UMP property. Since
the UMP test has the desired power 1−α̃ at θ(M), we would
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like the power to be still around 1 − α̃ at θ(M) when such
futility stopping is introduced. Thus, in this one-parameter
exponential family setting, one can study futility stopping
via the problem of testing H0 : θ ≤ θ0 versus H1 : θ ≥ θ(M),
with type I error α and type II error slightly more than α̃
and taking no more than M observations.

3.2 Group sequential testing theory

For the problem of testing H0 : θ ≤ θ0 versus H1 : θ ≥ θ1
in the one-parameter exponential family, Lai and Shih [14]
start by extending Hoeffding’s lower bound [10] for the ex-
pected sample size Eθ(T ) with error probabilities α at θ0
and α̃ at θ1 to the group sequential setting, in which stop-
ping can only occur at times of interim analysis with sample
sizes n1 < · · · < nk = M . They show that this lower bound
can be attained asymptotically as the error probabilities ap-
proach 0 by a group sequential version of Lorden’s 2-SPRT
[19], which runs simultaneously the sequential probability
ratio test (SPRT) of the simple null θ0 versus the simple
alternative θ and the SPRT of θ1 versus θ, and which stops
as soon as one of the SPRTs rejects the corresponding null
hypothesis. They then modify this test to allow sequential
updating of θ by maximum likelihood during the course of
the trial. The likelihood ratio of θ to θj is replaced by the

generalized likelihood ratio (GLR) of θ̂ni to θj , (j = 0, 1) at
the ith interim analysis. In particular, the test stops early
at the ith interim analysis (1 ≤ i ≤ k − 1) and rejects
H1 : θ ≥ θ1 if

(5) θ̂ni < θ1 and niI(θ̂ni , θ1) ≥ b̃,

where b̃ is chosen such that

(6) Pθ1{(5) holds for some 1 ≤ i ≤ k − 1} = εα̃

for some 0 < ε < 1
2 , in which I(θ, λ) is the Kullback-Leibler

information number (θ−λ)ψ′(θ)−{ψ(θ)−ψ(λ)} and there-

fore niI(θ̂ni , θ1) is the logarithm of the GLR of θ̂i to θ1.
Note that (5) can be regarded as testing θ1 against the MLE

θ̂ni < θ1 and that rejection of H1 is the same as acceptance
of H0, so the sequential GLR test of H1 is used for futility
stopping in testing H0.

Early stopping for efficacy, with H0 rejected, occurs if

(7) θ̂ni > θ0 and niI(θ̂ni , θ1) ≥ b.

In case stopping does not occur in the first k − 1 analyses,
reject H0 if Snk

≥ c, where b and c are so chosen that the
test has error probability α at θ0 of falsely rejecting H0.
Note that Snk

≥ c can be written in the form (7) with i = k
and b replaced by c̃, and that (7) can be regarded as testing

θ0 against the MLE θ̂ni > θ0. With θ1 = θ(M), Theorem
3 of [14] shows that the test, which is called the modified
Haybittle-Peto test, has asympototically minimal expected
sample size Eθ(T ) at the true parameter θ and has power

1− α̃−κεα̃+o(α̃) at θ1 as α+ α̃ → 0, where κε is a constant
depending on ε.

Section 3.4 of [14] has extended this group sequential test-
ing theory to the multiparameter exponential family fθ(x) =

eθ
Tx−ψ(θ) and to multi-arm settings. The null hypothesis has

the more general form H0 : u(θ) ≤ u0. The Kullback-leibler
information number becomes (θ−λ)T∇ψ(θ)−{ψ(θ)−ψ(λ)},
where ∇ is the gradient vector. Suppose I(θ, λ) is increasing
in |u(λ) − u(θ)| for every fixed θ. Then we can still define
the alternative u1 implied by the maximum sample size M
and the type II error probability α̃ of the reference test. Let
u1 = u1(M) be such tht the fixed sample size GLR test of
H0 with type I error probability α and sample size M has
power

(8) inf
θ:u(θ)=u1

Pθ(GLR test rejects H0) = 1− α̃;

see [3, Section 2.1]. Therefore futility stopping can again be
carried out as before, using the sequential GLR test of H1 :
u(θ) ≥ u1. In multi-arm clinical trials, for which different
numbers of patients are assigned to I different treatments,
the GLR statistic at the jth interim analysis is eΛj , where

Λj =

I∑
i=1

nij{θ̂Ti,nij
X̄i,nij − ψ(θ̂i,nij )}

− sup
u(θ1,...,θI)=u0

I∑
i=1

nij{θTi X̄i,nij − ψ(θi)},

in which nij is the total number of observations from the
ith population up to the time of the jth interim analy-
sis. Let nj = n1j + · · · + nIj . The asymptotic theory for
the modified Haybittle test is extended in Section 3.4 of
[14] to the case that uses adaptive randomization such that
nij = pinj +Op(

√
nj) under u(θ) = u0 or under u(θ) = u1,

in which p1, . . . , pI are nonnegative constants that sum up
to 1 and can differ for the cases u0 and u1. Zhu and Hu [23]
have recently demonstrated the advantages of using adap-
tive randomization over traditional equal randomization in
group sequential trials.

3.3 Extensions to nonparametric and
semiparametric tests

In many confirmatory clinical trials, M is large and the
treatment effect is assumed to belong to the framework of
“local alternatives” for sample size calculation that justi-
fies the choice of M . These local alternatives lead to “lo-
cally asymptotically normal” (LAN) families for the sam-
pling distributions of the parametric, or nonparametric, or
semiparametric test statistics used; see [1]. Because of its
proximity to H0, the MLE of a local alternative has sub-
staintial probability of falling in H0, and therefore one can
lose considerable power by replacing a local alternative by
its MLE in the conditional power pt(θ), as pointed out in
Section 2.
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We first consider nonparametric group sequential tests
of H0 : u(F,G) ≤ 0, where F is the distribution function
of the outcome of a new treatment and G is that of the
standard treatment (or placebo), and u(F, F ) = 0. Let n′

i

be the sample size of the new treatment and n
′′

i be that of
the standard treatment at the ith interm analysis so that
ni = n′

i + n′′
i , and let X1, . . . , Xn′

i
and Y1, . . . , Yn′′

i
be the

corresponding outcomes. Let F̂n′
i
be the empirical distribu-

tion function ofX1, . . . , Xn′
i
, and Ĝn′′

i
be that of Y1, . . . , Yn′′

i
.

As shown in [13], commonly used two-sample nonparamet-
ric test statistics can be written in the form of a generalized
Chernoff-Savage statistic

(9) Ti =

∫ ∞

−∞
Ji(F̂n′

i
(x), Ĝn′′

i
(x))dF̂n′

i
(x),

where Ji:{0, 1/n′
i, 2/n

′
i . . . 1}×{0, 1/n′′

i , 2/n
′′
i . . . 1} → R sat-

isfies

(10)
1

n′
i

n′
i∑

l=1

sup
y∈{1/n′′

i ,...,1}

∣∣∣∣Ji
(

1

n′
i

, y

)
− J

(
1

n
, y

)∣∣∣∣ → 0

as n′
i → ∞, and J : [0, 1]× [0, 1] → R is twice continuously

differentiable except possibly at (0, 0) and (1, 1) and satisfies
certain regularity conditions near (0, 0) and (1, 1). In this
case, the function u(F,G) in H0 : u(F,G) ≤ 0 is given by

(11) u(F,G) =

∫ ∞

−∞
J(F (x), G(x))dF (x).

Since subjects are randomly assigned to the new or standard
treatment,

(12) n′
i/ni

p→ 1/2, i.e., n′′
i = n′

i(1 + op(1)).

Under (12), Ti has the representation

Ti = u(F,G) +
1

n′
i

n′
i∑

l=1

(ψ(Xi)− Eψ(Xi))(13)

+
1

n′′
i

n′′
i∑

l=1

(ψ∗(Yi)− Eψ∗(Yi)) +Ri

where Ri = op(1/
√

n′
i) and

ψ(x) = J(F (x), G(x))−
∫ x

0

∂J

∂x
(F (t), G(t))dF (t),

ψ∗(y) = −
∫ y

0

∂J

∂y
(F (t), G(t))dF (t);

(14)

see [4] and [13], which sharpens the proof in [4], to obtain
a stronger result on Ri. For the present application, the
convergence result Ri = op(1/

√
n′
i) suffices. Therefore, un-

der equal randomization to the two treatments, n′
iTi be-

haves asymptotically like a normal random walk under H0

and under local alternatives, and the problem of testing
H0 : u(F,G) ≤ 0 versus H1 : u(F,G) ≥ δ can be approx-
imated by that of group sequential testing of H ′

0 : μ ≤ 0
versus H ′

1 : μ ≥ δ based on i.i.d. normal random variables
Z1, Z2, . . . with mean μ = u(F,G) and variance

(15) σ2 = VarF=G(ψ(X)) + VarF=G(ψ
∗(Y )),

where ψ and ψ∗ are given by (14). Note that F = G is
the boundary case of H0 and that F (X) and G(Y ) are
Uniform(0, 1) random variables. Under local alternatives,
the asymptotic variance of Ti is the same as that under
F = G, and therefore the variance formula (15) still holds
for local alternatives. Further details and examples are given
in Section 4.2.

The limiting normal random walk model and the more
general Gaussian process model with independent incre-
ments have been derived by [11] and [12, Chapter 11] for
efficient score statistics in parametric and Cox regression
models. We have shown above that the limiting joint dis-
tribution holds generally for nonparametric test statistics,
which may not be efficient score statistics, under the null
hypothesis and local alternatives. Similarly, in the normal
linear models considered by Jennison and Turnbull [11, Sec-
tion 3], we can replace the normal models for the random
errors by nonparametric models, leading to semiparamet-
ric regression models. When the regression parameters are
estimated by least squares in this case, the score statistics
or Wald statistics used for testing the regression parame-
ters are not efficient, but the asymptotic joint normality of
the test statistics at interim analysis still holds for the local
alternatives. Therefore the theory for futility stopping de-
veloped in the preceding section for the exponential family
(which includes the normal family) can be extended to the
nonparametric or semiparametric setting. This is analogous
to how group sequential tests developed for the prototypical
normal case are extended to more general settings in [12].

3.4 Futility stopping in time-sequential trials
with survival outcomes

Scharfstein, Tsiatis and Robins [? ] have extended the
preceding results under the null hypothesis and local alter-
natives to efficient time-sequential score tests in semipara-
metric models. In particular, in the Cox regression model
with regression parameter β, the efficient score statistic
Sn(t), which is the first derivative of the partial likelihood
ratio statistic with respect to β, is locally asymptotically
normal. Here n is the sample size and t is the time of an
interim analysis. Specifically, n−1/2Sn(t) converges in dis-
tribution, as n → ∞, to a Gaussian process with indepen-
dent increments with variance V (t) under the null hypoth-
esis β = 0 and local alternatives. The mean of the limiting
Gaussian process is 0 under β = 0 and is δV (t) under lo-
cal alternatives in the proportional hazards (or Cox) regres-
sion model. Therefore, the null variance of Sn(ti), which is
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approximately nV (ti) at the ith interim analysis takes the
place of the sample size ni in the preceding discussion.

The power calculations at the design stage of a time-
sequential trial with survival endpoint typically assume a
working model of survival functions F̄ = 1 − F and Ḡ =
1−G, the accrual pattern and the censoring rates per year.
The working model embeds the null case F̄ = Ḡ in a semi-
parametric family whose parameters are fully specified for
the alternative hypothesis, under which the study duration
and sample size of the two-sample semiparametric test are
shown to have some prescribed power. Illustrative exam-
ples are given in Section 4.3. The two-sample test statistic
Sn(t) is usually chosen to be an efficient score statistic or
its asymptotic equivalent in the working model. Unlike the
nonparametric two-sample test of H0 : u(F,G) ≤ 0 con-
sidered above, in which the asymptotic variance of n′

iTi is
proportional to the sample size n′

i ≈ ni/2 at the ith interim
analysis in view of (13), the asymptotic null variance nV (ti)
of Sn(ti) depends not only on the survival distribution but
also on the accrual rate and the censoring distribution up
to the time ti of the ith interim analysis. The observed pat-
terns, however, may differ substantially from those assumed
in the working model for the power calculations at the de-
sign stage. In addition, the working model under which the
test statistic is semiparametrically efficient (e.g., the propor-
tional hazards model when a logrank test is used) may not
actually hold. In this case, as the sample size n approaches
∞, the limiting distribution of

√
nSn(t) is still normal with

mean 0 and variance V (t) under F = G and has indepen-
dent increments, but under local alternatives, the mean μ(t)
of the limiting normal distribution of

√
nSn(t) may not be

linear in V (t), and may level off or even decrease with in-
creasing V (t); see [7].

For the futility stopping decision at interim analysis, we
can consider local alternatives, which suggest using the test
H0 : μ(ti) ≤ 0 for 1 ≤ i ≤ k versus Hδ : μ(ti) ≥ δV (ti) for
some i, as discussed in the first paragraph of this section.
We choose the same δ as that used in the design stage to de-
termine the sample size and trial duration, since we do not
want to have substantial power loss at or near the alternative
assumed at the design stage. Even when the working model
does not actually hold, for which μ(t)/V (t) may vary with
t, using it to determine the implied alternative for futility
stopping only makes it more conservative to stop for futil-
ity because μ(t) tends to level off or even decrease instead
of increasing linearly with V (t). It remains to consider how
to update, at the ith interim analysis, the estimated value
of the “maximum information” nV (t∗) (and also nV (tj) for
j > i if the reference test is time-sequential) after observing
accrual, censoring and survival patterns that differ substan-
tially from those assumed at the design stage. Our strategy
is to replace V (t) by the estimated V̂ (t) for t > ti in the
efficient score test of Hδ that involves these values, but not
to estimate μ(t) for t > ti because we are in the setting of
local alternatives with small δ (of the order 1/

√
n).

Bayesian modeling provides a natural updating scheme
for estimating at time ti of interim analysis based on obser-
vations up to ti, the null variance Vn(t) of the score statistic
Sn(t) for t > ti. Following [22], we use Dirichlet process
priors for the distribution function (F + G)/2 and for the
censoring (i.e., patient withdrawal or loss in follow-up) dis-
tribution. Note that the null variance Vn(t) is generated by
the accrual rate, the censoring distribution, and the survival
distributions F and G that are assumed to be equal. The pa-
rameter α, which is a finite measure on R+ = (0,∞), of the
Dirichlet process prior for 1−H, where H = (F̄ + Ḡ)/2, can
be chosen to be some constant times the assumed paramet-
ric model, that is used for power calculation at the design
stage, where the constant is α(R+) that reflects the strength
of this prior measure relative to the sample data. At the ith
interim analysis, let ni be the total number of subjects who
have been accrued and let

Z
(i)
j = min(Tj , ξj , ti − τj), δ

(i)
j = I{Z(i)

j =Tj},

j = 1, . . . , ni, where Tj is the actual survival time of the jth
patient, τj is the patient’s entry time and ξj is the censoring
time. By re-arranging the observations, we can assume with-

out loss of generality that Z
(i)
1 , . . . , Z

(i)
k are the uncensored

observation, and let Z
(i)
[k+1] < · · · < Z

(i)
[m] denote the distinct

ordered censored observations. Let

Ni(u) =

ni∑
j=1

I{Z(i)
j ≥u}, N+

i (u) =

ni∑
j=1

I{Z(i)
j >u},

λi(u) =

ni∑
j=1

I{Z(i)
j =u,δj=0}, Z

(i)
[k] = 0, Z

(i)
[m+1] = ∞.

As shown in [22], for Z
(i)
[l] ≤ u < Z

(i)
[l+1], the Bayes estimate

of H(u) at the ith interim analysis is given by

Ĥi(u) =
α(u,∞) +N+

i (u)

α(R+) + ni

(16)

×
l∏

j=k+1

⎧⎨
⎩

α[Z
(i)
[j] ,∞) +Ni(Z

(i)
[j] )

α[Z
(i)
[j] ,∞) +Ni(Z

(i)
[j] )− λi(Z

(i)
[j] )

⎫⎬
⎭ .

Similarly, for updating the estimate Ĉ of the censoring
distribution, we can interchange the roles of Tj and ξj above
and replace α by αc that is associated with the specification
of the censoring distribution at the design stage. The ac-
crual rates for the period prior to ti have been observed
and those for the future years can use what is assumed at
the design stage. Since Vn(t) = Vn(ti) + [Vn(t)− Vn(ti)], we
can estimate Vn(t) by Vn(ti) + E[V ∗

n (t) − V ∗
n (ti)|Ĥ, Ĉ], in

which the expectation E assumes the updated accrual rates
and can be computed by Monte Carlo simulations to gen-
erate the observations (Z∗

j , δ
∗
j ) that are independent of the
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Table 1. Comparative study in normal case

θ FSS CP(MLE) CP(MLE+se) PP GLRf GLRe,f

Power Power E(#) Power E(#) Power E(#) Power E(#) Power E(#)

0 0.05 0.03 1.60 0.04 2.32 0.03 1.79 0.05 3.15 0.05 3.10
θ1 = 0.13 0.80 0.57 3.58 0.72 4.41 0.62 3.88 0.79 4.80 0.78 3.74
1.2θ1 0.91 0.69 3.95 0.84 4.64 0.75 4.21 0.90 4.90 0.89 3.42
2θ1 1.00 0.95 4.81 0.99 4.97 0.97 4.89 1.00 5.00 1.00 1.97

Table 2. Comparative study in nonparametric case

θ FSS CP(MLE) CP(MLE+se) PP GLRf GLRe,f

Power Power E(#) Power E(#) Power E(#) Power E(#) Power E(#)

0 0.05 0.03 1.59 0.04 2.31 0.03 1.66 0.05 3.16 0.05 3.11
θ1 = 0.13 0.77 0.53 3.49 0.68 4.32 0.55 3.58 0.75 4.77 0.74 3.83
1.2θ1 0.88 0.66 3.86 0.82 4.59 0.68 3.94 0.87 4.88 0.86 3.56
2θ1 1.00 0.92 4.70 0.98 4.95 0.93 4.72 0.99 4.99 1.00 2.20

Table 3. Time-sequential example

Hazard rate of F FSS GLRf GLRe,f

Power Power E(#) Power E(#)

(1) λ0 = 1/3 (F = G) 0.05 0.05 3.35 0.05 3.31
(2) λ0/1.4 0.82 0.81 4.90 0.80 3.72
(3) λ0/1.5 0.92 0.91 4.94 0.91 3.37
(4) λ0/1.65 0.98 0.98 4.98 0.98 2.85
(5) λ0/4 for 0 ≤ s ≤ 1,

λ0 for s > 1 0.93 0.93 5.00 0.97 1.55
(6) λ0/5 for 0 ≤ s ≤ 1,

λ0 for s > 1 0.96 0.96 5.00 0.99 1.35
(7) λ0/4.5 for s ≤ 1 or s ≥ 6,

λ0/0.9 for 1 < s < 6 0.84 0.84 5.00 0.95 1.55

(Z
(i)
j , δ

(i)
j ) observed up to time ti. Note that we can use the

limiting independent increments property of Vn(t)/n to sim-
plify these computations and those for the stopping bound-
aries.

4. SIMULATION STUDIES

This section describes simulation studies of the futility
stopping approach developed in Section 3. The results are
given in Tables 1, 2 and 3; each result is based on 10,000
simulations. The reference test has a fixed sample size. We
also consider in the last column of each table the case where
the test can stop early for either efficacy or futility. Tables 1
and 2 compare the proposed methods in Sections 3.2 and 3.3
with the conditional power methods of [17] and [20]. These
conditional power methods are denoted by CP(MLE) and
CP(MLE + se), respectively, and use the stopping criterion
CP(·) ≤ γ = 0.3 suggested by [20]. For comparison with the
predictive power (PP) method described in Section 2, we
replace conditional power by the predictive power associated
with the flat prior. Table 3 considers the time-sequential
setting in Section 3.4, for which the reference test has fixed
sample size and study duration.

4.1 A comparative study for the prototypical
normal mean case

This simulation study considers the prototypical normal
case in which the outcomes of the treatment arm and the
placebo arm follow N(μX , 1) and N(μY , 1), respectively.
The problem is to test H0 : θ = μX − μY ≤ 0, with type I
error α = 0.05 and power 1 − α̃ = 0.8 when μY = 1.5. The
trial involves M = 1, 000 subjects randomized to both arms
with probability 1/2 each, and interim analyses are planned
with ni = 200, 400, 600, and 800 subjects, for i = 1, 2, 3, 4.
The fixed sample size test has power 0.8 at the alternative
0.13, which is the implied alternative θ(M) and will be de-
noted simply by θ1. We apply the group sequential GLR test
described in the first paragraph of Section 3.2 with ε = 1/3
to perform futility stopping. This test will be denoted by
GLRf , in which the subscript f stands for early stopping
for futility. Similarly, GLRe,f denotes the group sequential
GLR test involving both efficacy and futility stopping. For
GLRe,f we use a non-binding futility boundary that does
not consider the possibility of futility stopping in deter-
mining the efficacy boundary. Table 1 gives the power and
the expected number of groups E(#) for GLRf or GLRe,f .
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Figure 1. Futility stopping thresholds.

Since the group size is 200, the expected sample size is
200E(#).

The first row (θ = 0) of Table 1 shows that applying fu-
tility stopping reduces E(#) from 5 to 1.6−3.15. The other
rows show the performance of each test at the implied alter-
native θ1 and at the larger alternatives 1.2θ1 and 2θ1. Com-
pared to the fixed sample size test, the group sequential
GLR tests only lose 1%−2% power, while the conditional
power and predictive power tests lose much more power, al-
though they have smaller E(#). This fact is also illustrated
in Fig. 1. The stopping criterion of the conditional or predic-
tive power test and the group sequential GLRf test can be
transformed into thresholds for the standardized z-statistics

X̄ni/2 − Ȳni/2√
4/ni

≤ ZF (ni),

assuming approximately equal assignments of the ni sub-
jects to the two treatments. In Fig. 1, ZF (ni) is plot-
ted against sample size ni for F = PP, CP(MLE),
CP(MLE + se),GLRf . It shows that ZF (ni) is markedly
smaller for F = GLRf than the other methods and that
CP(MLE + se) has the second smallest value. Moreover,
it is possbile to lower the threshold for CP(MLE + se) by
using a smaller value of the threshold γ to trigger futility
stopping when CP(·) falls below the threshold. In fact, re-
placing γ = 0.3 by γ = 0.05 brings the performance of
CP(MLE+se) close to that of GLRf in terms of power and
E(#). Moreover, the steeper slope of ZCP(MLE+se)(ni) re-
flects the adjustment for the uncertainty of the MLE, and
such adjustment results in almost 20% more power than
CP(MLE) in some cases.

4.2 Futility stopping for two-sample
Wilcoxon tests

The second simulation study uses the fixed sample size
Wilcoxon test ofH0 : F = G as the reference test. In view of
(13), we can approximate the two-sample Wilcoxon statistic
by a sum of normal random variables Z1, Z2, . . . with mean

P (X < Y ) and variance 1/12 under H0 and local alterna-
tives. The simulation study uses the same design, sample
size, and parameters as those described in Section 4.1, and
assumes the distribution F to be χ2 with 2 degrees of free-
dom, and G to be a location shift of F , i.e., G(x) = F (x−θ).
The implied alternative θ = 0.182 is the distance of the lo-
cation shift, at which the fixed sample size test has power
80% using the aforementioned normal approximation. Ta-
ble 2 shows results similar to those in Table 1, and in par-
ticular, that the conditional and predictive power tests tend
to stop earlier for futility at the expense of substantial power
loss when compared to the fixed sample size test.

4.3 Futility stopping in time-sequential trials
with survival outcomes

The third simulation study is a continuation, with some
modifications, of an example in [7]. The simulation study
involves n = 450 patients who arrive independently and
uniformly over a 3-year interval and are randomized to
the treatment and placebo arms. There are k = 5 analy-
ses at 1.5, 2.5, 3.5, 4.5 years and at 5.5 years when the
trial is scheduled to end. Hence the expected study dura-
tion is the expected number of stages E[#] plus 0.5. Cen-
soring due to loss of follow-up is assumed to be exponen-
tially distributed with rate 1/6. The failure-time distribu-
tion G for the placebo arm is assumed to be exponen-
tial with hazard rate λ0 = 1/3, so the median survival is
of 3 years. Simulations are conducted under the null hy-
pothesis F = G (case 1) and under proportional hazards
alternatives in which F is exponential with hazard rate
λ = λ0/1.4, λ0/1.5, λ0/1.65 (cases 2–4). Besides propor-
tional hazards alternatives, three other stochastically or-
dered alternatives are also considered and listed in Table 3
as cases 5–7. In cases 5 and 6, the hazard rate of F is lower
than that of G in the first year. In case 7, the hazard rate
of G only exceeds that of F in years one to six.

Futility stopping via the sequential GLR method de-
scribed in Section 3.4 saves almost half of the time in case 1,
while losing less than 1 percent of the power compared to the
fixed sample size and fixed duration test. For proportional
hazards alternative, GLRe,f has power similar to that of
GLRf but saves 1–2 stages (years), since the trial is allowed
to stop early for efficacy. It even improves the power and
reduces substantial study duration by 3.4–3.6 years in cases
5–7. This phenomenon has been explained by [7]; the ex-
pected value of Sn(t) may actually decrease with increasing
t, therefore allowing GLRe,f to achieve both savings in time
and increase in power over fixed-duration tests.

As pointed out in Section 3.4, our approach to futility
stopping via GLRf or GLRe,f requires updating the esti-
mate of V (t∗), with t∗ = 5.5, at each interim analysis. We
assume exponential densities 2, 000e−0.6t and 2, 000e−0.33t

for the Dirichlet process priors of (F +G)/2 and of the cen-
soring distribution, respectively, for updating the Bayesian
estimate V̂ti(t

∗) at time ti of interim analysis, as described
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Figure 2. Box-plots of relative errors of V̂ti(t
∗).

in Section 3.4. To see how V̂ti(t
∗) improves with increasing

i that accumulates more data, one can consider the relative
error |V̂ti(t

∗) − V (t∗)|/V (t∗). Figure 2 gives the box-plot
of these relative errors over the 10,000 simulations for the
ith interim analysis, i = 1, 2, 3, 4, in case 1 (F = G). It
shows the decreasing trend of these relative errors with i.
For the other cases, even though the relative errors become
larger, with mean values ranging between 0.3 and 0.4, their
decreasing trend with i are similar, showing that the esti-
mates become more accurate with more data.

5. DISCUSSION

Unlike efficacy stopping, early stopping for futility during
interim analyses does not inflate the type I error of the refer-
ence test. On the other hand, it may substantially decrease
the power, or equivalently, substantially inflate the type II
error if it is not carried out carefully. In particular, we have
shown that the conditional power approach may have sub-
stantial power loss when it does not take into consideration
the uncertainty of the estimated alternative. Whereas effi-
cacy stopping is associated with rejection of H0 : θ ≤ θ0 at
interim analysis, we can view futility stopping as rejection
of the hypothesis Hθ(M) : θ ≥ θ(M) associated with the
implied alternative θ(M). This viewpoint enables us to use
group sequential testing theory to develop a new approach
to futility stopping. Simulation studies and asymptotic the-
ory presented herein have shown its advantages over tradi-
tional conditional power and predictive power approaches,
especially at the marginal alternatives.

Time sequential trials with survival outcomes have posed
additional challenges to futility stopping. Lan and DeMets
[15] have noted the difficulties due to the two time scales
in these trials, namely calendar time and information time.
The modified Haybittle-Peto approach we use in Section 3
circumvents the difficulties they cause for the commonly
used error spending approach [12, Chapter 7]. As noted by
Lin, Yao and Ying [18] for the logrank test, an additional

challenge besides these two time scales is that the number
of failure events observed during the course of the trial can
substantially differ from that assumed at the design stage
for determining the sample size and study duration of the
trial, and it is useful to re-estimate this number, or more
generally the maximum information V (t∗) in the setting of
Section 3.4, for futility decisions at interim analysis. An-
other useful contribution of the paper, therefore, is the new
method proposed in Section 3.4 for updating the estimates
of V (t∗).

ACKNOWLEDGEMENTS

T. L. Lai’s research was supported by the National Sci-
ence Foundation grant DMS-085879 and the National Can-
cer Institute grant 1 P30 CA 124435-01. The research of Pei
He and Olivia Liao was supported by the National Institutes
of Health grant 4R37EB002784.

Received 25 October 2011

REFERENCES
[1] Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N.

(1993). Statistical Models Based on Counting Process. Springer,
New York. MR1198884

[2] Bartroff, J., and Lai, T. L. (2008a). Efficient adaptive designs
with mid-course sample size adjustment in clinical trials. Stat.
Med. 27, 1593–1611. MR2420330

[3] Bartroff, J., and Lai, T. L. (2008b). Generalized likelihood
ratio statistics and uncertainty adjustments in efficient adaptive
design of clinical trials. Sequential Anal. 27, 254–276. MR2446902

[4] Chernoff, H., and Savage, R. (1958). Asymptotic normality
and efficiency of certain nonparametric test statistics. Ann. Math.
Statist. 29, 972–994. MR0100322

[5] Choi, S. C., Smith, P. J., and Becker, D. P. (1985). Early
decision in clinical trials when treatment differences are small.
Contr. Clin. Trials. 6, 280–288.

[6] Gill, R. D. (1989). Non- and semi-parametric maximum likeli-
hood estimators and the von Mises method. I. Scand. J. Statist.
16, 97–128. MR1028971

[7] Gu, M., and Lai, T. L. (1998). Repeated significance testing with
censored rank statistics in interim analysis of clinical trials. Sta-
tistica Sinica 8, 411–428. MR1624347

[8] Halperin, M., Lan, K. K. G., Ware, J. H., Johnson, N. J., and
DeMets, D. L. (1982). An aid to data monitoring in long-term
clinical trials. Contr. Clin. Trials. 3, 311–323.

[9] Herson, J. (1979). Predictive probability early termination plans
for Phase II clinical trials. Biometrics 35, 775–783.

[10] Hoeffding, W. (1960). Lower bounds for the expected sample
size and the average risk of a sequential procedure. Ann. Math.
Statist. 31, 352–368. MR0120750

[11] Jennison, C., and Turbull, B. W. (1997). Group-sequential
analysis incorporating covariate information. J. Amer. Statist.
Assoc. 92, 1330–1341. MR1615245

[12] Jennison, C., and Turbull, B. W. (2000). Group Sequential
Methods 1. Chapman & Hall, New York.

[13] Lai, T. L. (1975). Cherno-Savage statistics and sequential rank
tests. Ann. Statist. 3, 825–845. MR0388615

[14] Lai, T. L., and Shih, M. (2004). Power, sample size and adapta-
tion considerations in the design of group sequential clinical trials.
Biometrika 3, 57–528. MR2090619

[15] Lan, K. K. G., and DeMets, D. L. (1989). Group sequential
procedures: Calendar versus information time. Statist. Med. 8,
1191–1198.

422 P. He, T. L. Lai and O. Y. Liao

http://www.ams.org/mathscinet-getitem?mr=1198884
http://www.ams.org/mathscinet-getitem?mr=2420330
http://www.ams.org/mathscinet-getitem?mr=2446902
http://www.ams.org/mathscinet-getitem?mr=0100322
http://www.ams.org/mathscinet-getitem?mr=1028971
http://www.ams.org/mathscinet-getitem?mr=1624347
http://www.ams.org/mathscinet-getitem?mr=0120750
http://www.ams.org/mathscinet-getitem?mr=1615245
http://www.ams.org/mathscinet-getitem?mr=0388615
http://www.ams.org/mathscinet-getitem?mr=2090619


[16] Lan, K. K. G., Simon, R., and Halperin, M. (1982). Stochasti-
cally curtailed tests in long-term clinical trials theory. Commun.
Statist. C 1, 207–219. MR0685474

[17] Lan, K. K. G., and Wittes, J. (1988). The B-value: A tool for
monitoring data. Biometrics 44, 579–585.

[18] Lin, D. Y., Yao, Q., and Ying, Z. (1999). A general theory on
stochastic curtailment for censored survival data. Joul. Amer.
Statist. Assoc. 94, 510–521. MR1702321

[19] Lorden, G. (1976). 2-SPRTs and the modied Kiefer-Weiss prob-
lem of minimizing an expected sample size. Ann. Statist. 4, 281–
291. MR0405750

[20] Pepe, M. S., and Anderson, G. L. (1992). Two-stage experimen-
tal designs: Early stopping with a negative result. App. Statist.
41, 181–190.

[21] Spiegelhalter, D. J., Freedman, L. S., and Blackburn,

P. R. (1986). Monitoring clinical trials: Conditional or predictive
power? Contr. Clin. Trials. 7, 8–17.

[22] Susarla, V., and Ryzin, J. V. (1976). Nonparametric bayesian
estimation of survival curves from incomplete observations. J.
Amer. Statist. Assoc. 71, 897–902. MR0436445

[23] Zhu, H., and Hu, F. (2010). Sequential monitoring of response-
adaptive randomized clinical trials. Ann. Statist. 38, 2218–2241.
MR2676888

Pei He
390 Serra Mall Sequoia Hall
Stanford University, Stanford, CA 94305
USA
E-mail address: hepei@stanford.edu

Tze Leung Lai
390 Serra Mall Sequoia Hall
Stanford University, Stanford, CA 94305
USA
E-mail address: lait@stanford.edu

Olivia Y. Liao
390 Serra Mall Sequoia Hall
Stanford University, Stanford, CA 94305
USA
E-mail address: yuehwen@stanford.edu

Futility stopping in clinical trials 423

http://www.ams.org/mathscinet-getitem?mr=0685474
http://www.ams.org/mathscinet-getitem?mr=1702321
http://www.ams.org/mathscinet-getitem?mr=0405750
http://www.ams.org/mathscinet-getitem?mr=0436445
http://www.ams.org/mathscinet-getitem?mr=2676888
mailto:hepei@stanford.edu
mailto:lait@stanford.edu
mailto:yuehwen@stanford.edu

	Introduction
	Conditional and Predictive power approaches
	Futility stopping theory
	Alternative implied by the maximum sample size constraint
	Group sequential testing theory
	Extensions to nonparametric and semiparametric tests
	Futility stopping in time-sequential trials with survival outcomes

	Simulation studies
	A comparative study for the prototypical normal mean case
	Futility stopping for two-sample Wilcoxon tests
	Futility stopping in time-sequential trials with survival outcomes

	Discussion
	Acknowledgements
	References
	Authors' addresses

