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Doubly adaptive biased coin designs for balancing
competing objectives in time-to-event trials
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∗

Many clinical trials have multiple objectives and have a
time-to-event outcome that may be modeled using a Weibull
distribution. For two-arm trials, we obtain the optimal al-
locations for a few design criteria and for multi-arm trials,
we provide a general approach for finding the optimal al-
locations. These multi-objective optimal designs meet user-
defined tradeoffs among the objectives. We focus on two-
objective design problems for estimating model parameters
and discriminating whether the treatments have constant
hazard (exponential distribution) or non-constant hazard
(general Weibull distribution). To target the desired allo-
cations designs, we implement the doubly adaptive biased
coin design (DBCD) of Hu and Zhang (2004) and evalu-
ate its effectiveness. We compare performance of the vari-
ous response-adaptive allocation strategies in an exemplary
four-arm trial using a simulation study and show that our
proposed response-adaptive randomization designs gener-
ally outperform a balanced design when ethics, randomiza-
tion and estimation efficiency are incorporated at the onset.

Keywords and phrases: Dual-objective clinical trial,
Compound-optimal design, Doubly adaptive biased coin de-
sign, Ethical concern, Hazard ratio, Randomization design.

1. INTRODUCTION

Response-adaptive randomization for clinical trials has
received a lot of attention recently. The theoretical develop-
ments are covered in a monograph by Hu and Rosenberger
(2006) and a recent summary of the statistical research on
response-adaptive randomization and its applications can be
found in Pong and Chow (2011, Chapter 15) and in the re-
view paper by Rosenberger, Sverdlov and Hu (2012). Res-
ponse-adaptive randomization designs are becoming increas-
ingly popular in clinical trials because such designs are in-
creasingly viewed as being more ethical, efficient and prac-
tical than one-stage locally single-objective optimal designs
for estimating treatment effects.

Hu and Rosenberger (2003) proposed a mathematical
template for the development and evaluation of various res-
ponse-adaptive randomization procedures. For clinical trials
with two treatment arms, Jennison and Turnbull (2000) pro-
posed a general approach for deriving optimal allocations
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that minimize a weighted sum of treatment sample sizes
subject to a constraint on the asymptotic variance of the es-
timated treatment difference. Their approach led to a series
of papers proposing optimal response-adaptive randomiza-
tion designs. The main references include papers by Rosen-
berger et al. (2001), Biswas and Mandal (2004), Zhang and
Rosenberger (2006, 2007), Gwise, Hu and Hu (2008), Biswas
and Bhattacharya (2009, 2010), Bandyopadhyay and Bhat-
tacharya (2010). For implementing optimal allocations in
two-treatment trials one can use the ERADE procedure of
Hu, Zhang and He (2009), which is an asymptotically best
response-adaptive randomization procedure for two-arm tri-
als. In our work, we employ the doubly-adaptive biased coin
design (DBCD) of Hu and Zhang (2004), which is currently
a popular sequential method for finding optimal allocation
rules in a multi-arm trial with several optimal properties.

For multi-objective clinical trials with more than two
treatment arms, obtaining an optimal allocation can be chal-
lenging. Besides technical difficulties, a main difficulty is
that designs optimal under a given design criterion can have
low efficiencies under another criterion. A few design ap-
proaches have been advocated to handle this problem and
most sought to balance the trade-offs among the competing
objectives. Tymofyeyev et al. (2007) proposed an approach
for finding optimal allocations for multi-arm clinical trials
based on minimization of some clinically relevant measure
(e.g., expected number of treatment failures) subject to con-
straints on the size of the non-centrality parameter of the
chi-square test and the treatment allocation proportions.
Their approach was applied to develop optimal response-
adaptive randomization procedures (Zhu and Hu, 2009; Jeon
and Hu, 2010). For clinical trials where the primary concern
is estimation efficiency rather than hypothesis testing, the
optimality criterion can be based on the Fisher information
matrix. For example, Wong and Zhu (2008) considered nor-
mal responses with heteroscedasticity and obtained locally
DA-optimal designs that maximize efficiency for estimating
treatment contrasts. Their approach allowed different sets of
contrasts to be estimated with different levels of user-speci-
fied efficiencies, with more important ones requiring higher
efficiencies. In a similar vein, Gwise, Zhu and Hu (2011)
proposed the D-optimal and the DA-optimal biased coin
designs for multi-treatment trials with heteroscedastic out-
comes. Biswas, Mandal and Bhattacharya (2011) obtained
optimal allocations for trials with K ≥ 2 treatments and he-
teroscedastic outcomes assuming at least one and at most
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(K − 1) restrictions on the variances of the treatment con-
trasts.

Most of the aforementioned papers provide response-ada-
ptive randomization designs for binary or continuous out-
comes. Many clinical trials have censored time-to-event out-
comes and research on response-adaptive randomization de-
signs for such trials is limited. Some recent references are
Cheung et al. (2006), Zhang and Rosenberger (2007), Ban-
dyopadhyay, Biswas, and Bhattacharya (2009, 2010). Most
recently, Sverdlov, Ryeznik and Wong (2012) derived locally
D-optimal designs for multi-arm trials with a censored Wei-
bull time-to-event outcome, and proposed a way to construct
compound optimal designs that target inference efficiency
and skew more patients to more efficacious doses at the
same time. They also explored weighted optimality designs
that provide tradeoffs between several optimal allocations by
minimizing the Euclidean distance and the Kullback-Leibler
distance between the allocations. They did not further dis-
cuss how to find the “optimal” weights in the combined
criterion, except that there was a general sense that larger
weights should be given to the more important criteria.

This paper focuses on optimal designs for a multiple-arm
trial with a censored Weibull outcome and differs from the
work in Sverdlov, Ryeznik and Wong (2012) in a number of
ways. Here, we first obtain optimal allocations for a single-
objective trial with Weibull models in which efficient esti-
mation of treatment contracts is the primary concern. For a
multiple-objective trial, we provide a systematic and mean-
ingful way to select the proper weights in the convex combi-
nation of the criteria to find the optimal designs that achieve
user-specified levels of the design efficiencies. Additionally,
we provide a general formal design strategy to incorporate
multiple objectives in the trial. These objectives may include
parameter estimation, hypothesis testing, protection against
model uncertainty and ethical concerns and they may also
have different levels of importance to the researcher. We
also discuss implementation issues of the various adaptive
optimal allocation schemes using the DBCD procedure and
present a few new simulation studies for a multiple-arm
dual-objective trial with censored Weibull outcomes.

Section 2 provides the statistical background, model spec-
ification for a multi-arm trial and discusses optimality crite-
ria that includeDA-optimal allocation, trace-optimal alloca-
tion, and optimal allocation for estimating treatment hazard
ratios for Weibull models. In Section 3, we focus on differ-
ent optimal allocations for estimating treatment contrasts
in a two-arm single-objective trial and study their operat-
ing characteristics. In Section 4, we formulate the design
problem for a two-objective trial and show how to system-
atically determine dual-objective optimal designs that meet
user-specified efficiency requirements. We also discuss imple-
mentation issues using a doubly adaptive biased coin design
procedure of Hu and Zhang (2004) and compare the perfor-
mance of the various response-adaptive allocation strategies
and a balanced randomization design in an exemplary four-
arm trial. We conclude with a discussion in Section 5.

2. STATISTICAL BACKGROUND AND
OPTIMALITY CRITERIA

We consider a multi-arm clinical trial with K treatment
groups and a time-to-event outcome that comes from a
member of the family of Weibull distributions. Let Tik be
the response time from subject i in the kth treatment group.
The statistical model of interest is

(1) log Tik = μk + bWik,

where b > 0, μk represents the effect of treatment k =
1, . . . ,K and i indexes the patient within the group. The
error terms Wik are assumed to be independent and fol-
low the standard extreme value distribution with probabil-
ity density function f(w) = ew exp(−ew). The random vari-
able Tik follows aWeibull distribution with survivor function
S(t) = exp{−(e−μk t)1/b}, t > 0 and we denote all unknown
model parameters by θ = (μ1, . . . , μK , b)′.

Let Ci > 0 be the censoring time for the ith patient,
let tik = min(Tik, Ci) be the observed time and let δik =
1{tik=Tik} be the indicator of the event of interest. It is as-
sumed that Ci is independent of Tik and the total sam-
ple size n is pre-determined in advance either by cost or
the number of patients that can be realistically included in
the study. The design question is how to optimally allocate
nk ≥ 0 patients to the kth group so that n =

∑K
k=1 nk. Let-

ting zik = (log tik − μk)/b be the standardized log tik, the
log-likelihood for θ given data from all subjects in the K
treatment groups is

logL(θ)= log

K∏
k=1

nk∏
i=1

{
1

b
ezikexp (−ezik)

}δik

{exp (−ezik)}1−δik

=

K∑
k=1

nk∑
i=1

(−δik log b+ δikzik − ezik) .

The maximum likelihood estimator θ̂ = (μ̂1, . . . , μ̂K , b̂)′

of θ is obtained by solving the following system of score

equations ∂logL(θ)
∂θ = 0 numerically:

0=
∂logL(θ)

∂μk
=

nk∑
i=1

(δik − ezik)

(
−1

b

)
, k=1, . . . ,K,

0=
∂logL(θ)

∂b
=−1

b

K∑
k=1

nk∑
i=1

δik +

K∑
k=1

nk∑
i=1

(δik − ezik)
(
−zik

b

)
.

To determine the Fisher information matrix for θ, it
is instructive to work with designs defined by the pro-
portions of subjects allocated to the K groups. Let ρ =
(ρ1, . . . , ρK)′ be the design that allocates ρk proportion of
the total subjects to treatment group k, 0 ≤ ρk ≤ 1 and∑K

k=1 ρk = 1. For a trial with n patients, this means roughly
ni = nρi patients are assigned to treatment i subject to
n = n1 + · · · + nK . A direct calculation shows the Fisher
information matrix for θ = (μ1, . . . , μK , b)′ using design ρ
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is

M(ρ,θ) = E

(
−∂2logL(θ)

∂θ∂θ′

)

=
n

b2

(
diag{ρ1ε1, . . . , ρKεK} x

x′ ∑K
k=1 ρk(εk + ck)

)
.

Here x = (ρ1a1, . . . , ρKaK)′, εk = Pr(δik = 1), ak =
E(zike

zik), ck = E(z2ike
zik) and εk, ak, ck all depend on

μk, b and the censoring mechanism used in the trial.
Many design optimality criteria are formulated in terms

of the information matrix. A popular criterion for estimat-
ing all model parameters in the model is D-optimality that
requires the determinant of the information matrix to be
maximized to minimize the volume of the confidence ellip-
soid for θ. This is the same as finding a design to minimize
the determinant or some monotonic increasing function of
the determinant of the inverse of the Fisher Information
matrix given by

M−1(ρ,θ) =
b2

n

(
diag{ 1

ρ1ε1
, . . . , 1

ρKεK
}+ 1

Δyy′ − 1
Δy

− 1
Δy′ 1

Δ

)
,

where y = (a1/ε1, . . . , aK/εK)′, Δ =
∑K

k=1 ρkdk, and

dk = εk + ck − a2k
εk

> 0, k = 1, . . . ,K.

The value of dk is inversely proportional to the variance of
b̂ when b̂ is computed using data from treatment group k
alone.

In practice, we frequently wish to compare (K − 1) ex-
perimental treatments with a placebo or an active placebo.
For the (K − 1) pairwise comparisons, we want to estimate
the vector A′θ = (μ2 − μ1, . . . , μK − μ1)

′, where A′ is an
appropriately chosen (K − 1)× (K +1) matrix of contrasts.
The Fisher information matrix for A′θ is

A′M−1(ρ,θ)A

(2)

=
b2

n

(
diag

{
1

ρ2ε2
, . . . ,

1

ρKεK

}
+

1

ρ1ε1
11′ +

1

Δ
uu′

)
,

where u = (a1/ε1 − a2/ε2, . . . , a1/ε1 − aK/εK)′ and 1 =
(1, . . . , 1)′. This matrix can now be minimized in some sense
by choice of design so that we have maximal information of
A′θ. Some possibilities are:

2.1 The DA-optimal allocation

The DA-optimal allocation minimizes the criterion
|A′M−1(ρ,θ)A|. In general, it is quite challenging to find
the analytical formula for the DA-optimal allocation. To
build intuition, let us consider the case when there is no
censoring in any of the treatment groups. Then εk = 1 for

k = 1, . . . ,K and a1 = · · · = aK , and so u = 0 and the third
summand in (2) is zero. It follows that when there is no cen-

soring, we have |A′M−1(ρ,θ)A| = (b2/n)K+1(
∏K

k=1 ρk)
−1,

and it is easily found using the arithmetic-geometric mean
inequality that the DA-optimal allocation is the balanced
allocation vector ρ∗ = (1/K, . . . , 1/K)′.

In the case with censoring, let us assume that we have
K = 2 treatment groups. If we let ρ1 = p = 1− ρ2, we have

g(p)= |A′M−1(ρ,θ)A|= 1

pε1
+

1

(1− p)ε2
+

(
a1

ε1
− a2

ε2

)2

pd1 +(1− p)d2
.

To determine the DA-optimal allocation, we find the min-
imum of g(p) over the interval (0, 1). A direct calculation
shows

g′(p) = − 1

p2ε1
+

1

(1− p)2ε2
−

(d1 − d2)
(

a1

ε1
− a2

ε2

)2

(pd1 + (1− p)d2)2
,

lim
p→0+

g′(p) = −∞, lim
p→1−

g′(p) = +∞ and g′′(p) > 0 for all p

in (0, 1). This implies that there is at least one zero of g′(p)
in the interval (0, 1) and because g′(p) is strictly monotone
increasing in p, the equation g′(p) = 0 has a unique root p∗,
which is the point of minimum of g(p). The value of p∗ can
be found numerically once we have nominal values of εk, ak,
and dk, for k = 1, 2.

2.2 The trace-optimal allocation

The trace-optimal allocation minimizes trace of
A′M−1(ρ,θ)A. From (2), we have

tr{A′M−1(ρ,θ)A}

=
b2

n

{
K − 1

ρ1ε1
+

K∑
k=2

1

ρkεk
+

1

Δ

K∑
k=2

(
a1
ε1

− ak
εk

)2
}
.

If there is no censoring in any of the treatment groups,
we find the proportions ρ1, . . . , ρK that minimize

tr{A′M−1(ρ,θ)A} =
b2

n

{
K − 1

ρ1
+

K∑
k=2

1

ρk

}

subject to
∑K

k=1 ρk = 1. Using the harmonic-arithmetic
mean inequality, the trace-optimal allocation proportions
are found as

ρ∗1 =

√
K − 1√

K − 1 +K − 1
,

ρ∗k =
1√

K − 1 +K − 1
, k = 2, . . . ,K.

This is a well-known result given in Fleiss (1986, p. 96).
In the case with censoring and K = 2 treatment groups,
the trace-optimal allocation is the same as the DA-optimal
allocation described in subsection 2.1.
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2.3 Optimal designs for hazard ratio
estimation

In a survival trial with K treatment groups, the main
interest is often in estimating hazard ratios of (K − 1)
experimental treatments versus “control”. For model (1),
the hazard function in the kth treatment group is equal to
hk(y) = b−1 exp((y−μk)/b), and the hazard ratio comparing
treatment k versus treatment 1 is given by exp((μ1−μk)/b),
k = 2, . . . ,K. We are interested in estimating with maxi-
mum precision the vector of log-hazard ratios

ν(θ) =

(
μ1 − μ2

b
, . . . ,

μ1 − μK

b

)′
,

which is a nonlinear function of θ = (μ1, . . . , μK , b)′. By the
invariance property of the maximum likelihood estimates,
we have ν(θ̂) = ((μ̂1−μ̂2)/b̂, . . . , (μ̂1−μ̂K)/b̂)′ and the delta
method approximates the asymptotic variance-covariance
matrix of ν(θ̂) by

Avar
(
ν(θ̂)

)
=

(
∂ν(θ)

∂θ

)′
M−1(ρ,θ)

(
∂ν(θ)

∂θ

)
,

where the (K − 1)× (K + 1) matrix
(

∂ν(θ)
∂θ

)′
is given by

(
∂ν(θ)

∂θ

)′
=

⎛
⎜⎜⎜⎜⎝

1
b −1

b 0 · · · 0 −μ1−μ2

b2

1
b 0 −1

b · · · 0 −μ1−μ3

b2

...
...

...
...

...
...

1
b 0 0 · · · −1

b −μ1−μK

b2

⎞
⎟⎟⎟⎟⎠ .

When K = 2, we have ρ1 = p = 1 − ρ2, ν = (μ1 − μ2)/b,
∂ν
∂θ = (1/b,−1/b,−(μ1 − μ2)/b

2)′, and

Avar

(
μ̂1 − μ̂2

b̂

)
(3)

=
1

pε1
+

1

(1− p)ε2
+

(
a1

ε1
− a2

ε2
+ μ1−μ2

b

)2

pd1 + (1− p)d2
.

To minimize the asymptotic variance of the estimated haz-
ard ratio, we now find the value of p ∈ (0, 1) that minimizes
the expression in (3). This problem is similar to the problem
of finding the DA-optimal allocation in subsection 2.1 but
the optimal allocation proportions ρ1 and ρ2 for both cases
may not be the same.

In the next section, we focus on two-arm trials which are
ubiquitous in medical studies and make specific compari-
sons.

3. COMPARISON OF OPTIMAL
ALLOCATION STRATEGIES FOR

TWO-ARM TRIALS

For two-arm trials, it is possible to provide formulae for
different optimal allocation schemes. We consider a two-arm

trial in which patients are followed up during a fixed pre-
determined period of time τ > 0. We set τ = 1/(− log(0.1)),
which means that an observation occurs if the logarithm of
the event time is less than or equal to the 10th percentile of
the standard extreme value distribution, and the observation
is censored otherwise.

Before any design is implemented, it is always instruc-
tive to understand its operating characteristics and its rel-
ative performance compared with alternative designs un-
der a broad range of assumptions and different measures of
goodness. This is because design can affect the quality of
inference and its performance can vary substantially from
one criterion to another. For example, consider the Weibull
distribution with parameters b = 0.75 (increasing hazard),
μ1 = 0, and let μ2 range from −1 to 1 in a two-arm trial and
we want to compare the following six allocation strategies
using four optimality measures:

I The D-optimal allocation (Sverdlov, Ryeznik and
Wong, 2012):

ρ1 =
d1 − 2d2 +

√
d21 − d1d2 + d22

3(d1 − d2)
, ρ2 = 1− ρ1.

II The DA-optimal allocation (subsection 2.1)
III The optimal allocation for hazard ratio estimation (sub-

section 2.3)
IV The allocation minimizing the average hazard of a

Weibull distribution subject to the restriction on
the non-centrality parameter (Zhang and Rosenberger
(2007), formula (14), p. 162). For our model this allo-
cation is given by

ρ∗1 =

√
e−μ2

(
1 + c1

ε1

)
/d1√

e−μ2

(
1 + c1

ε1

)
/d1 +

√
e−μ1

(
1 + c2

ε2

)
/d2

,

ρ∗2 = 1− ρ∗1.

V The allocation minimizing the average hazard of a
Weibull distribution assuming the common constant
follow-up time for the patients (Zhang and Rosenberger
(2007), formula (15), p. 163):

ρ∗∗1 =

√
e−μ2/b

(
1 + c1

ε1

)
/d1√

e−μ2/b
(
1 + c1

ε1

)
/d1 +

√
e−μ1/b

(
1 + c2

ε2

)
/d2

,

ρ∗∗2 = 1− ρ∗∗1 .

VI The balanced allocation ρ = (1/2, 1/2)

The four optimality measures are (i)D-efficiency, (ii)DA-
efficiency, (iii) Efficiency of hazard ratio estimation, and (iv)
the size of the non-centrality parameter of the statistical test
based on the maximum likelihood estimator (μ̂1, μ̂2, b̂) for
testing the hypotheses H0 : μ1 = μ2 vs. HA : μ1 �= μ2.
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Figure 1. Operating characteristics of the various allocation strategies for a hypothetical two-arm trial with constant follow-up
time for each patient.

Figure 1 is a graphical summary of the allocations. The
upper left plot of the treatment allocation proportions shows
the D-optimal allocation (allocation I) is skewed in favor of
the treatment with a lower value of the parameter μk, k =
1, 2. In other words, ρ1 < 1/2 for μ2 < μ1 = 0 and ρ1 ≥ 1/2
for μ2 ≥ 0. In contrast, each of the allocations II, III, IV,
and V are skewed towards the treatment group with higher
value of the μk. The optimal allocations II and III seem
always closer to 0.5 than the optimal allocations IV and V.

From the three efficiency plots (D-efficiency, DA-
efficiency, and hazard ratio efficiency) we observe that each
of the allocations I, II, and III is best according to the one
criterion it optimizes. We also note than the balanced al-
location is quite efficient, and the two allocations of Zhang
and Rosenberger (2007) (allocations IV and V) exhibit sub-
stantial loss in the efficiencies as the treatment difference
increases (μ2 deviates from μ1 = 0). The plot of the non-
centrality parameter (ncp) also shows that the six allocation
strategies have similar values of the ncp when the two treat-
ments have similar performance, i.e. μ2 is close to μ1, and
as the treatment difference increases, allocations IV and V
have smaller values of the ncp, and hence are potentially less

powerful, than the other allocations. Figure 1 also demon-
strates that as the treatment difference increases, each of
these allocations can have very different efficiencies; for in-
stance, the DA-efficiencies of the allocation rules IV and V
are more than 20% lower than the DA-efficiencies of the bal-
anced design, and more than 10% lower than DA-efficiencies
of the D-optimal design as μ2 approaches ±1.

These results reinforce that design considerations are im-
portant and one should implement a design only after a
careful comparison of the alternatives. In our example, un-
surprisingly, no single allocation is best in terms of all the
four criteria. The operating characteristics of competing al-
location strategies should be evaluated under a range of hy-
pothetical experimental scenarios to appreciate the design
characteristics and tradeoff among all candidate designs.

4. OPTIMAL ALLOCATIONS FOR
DUAL-OBJECTIVE TRIALS

Nowadays, it is unrealistic that trials are designed and
carried out with only one single goal in mind. Today the ris-
ing cost of experimentation has increasingly led researchers
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to look for more efficient designs that enable them to reliably
answer multiple scientific questions at the same time with-
out raising cost. In particular, they want efficient designs
that are able to incorporate study objectives and concerns
more accurately. Frequently, not all parameters are equally
interesting and objectives may have different levels of inter-
est. For example, a researcher wants to estimate model pa-
rameters but is concerned about model inadequacy, or some
parameters in a model have more meaningful biological in-
terpretations than others and so should be estimated with
greater accuracy than the rest. A multiple-objective optimal
design incorporates these aims and practical concerns at the
design stage and delivers user-specified efficiencies for one or
more objectives.

Sverdlov, Ryeznik and Wong (2012) considered a dual-
objective optimization problem using a Weibull model for a
time-to-event trial. The first objective was to maximize in-
formation for θ = (μ1, . . . , μK , b)′, which can be achieved by
minimizing Φ1(ρ) = log |M−1(ρ,θ)|. The second objective
was to have the most accurate inference for the parameter
b by minimizing Φ2(ρ) = − logΔ over all possible alloca-
tion schemes for theK-treatment groups. For a user-selected
constant 0 ≤ α ≤ 1, they considered minimizing a convex
combination

(4) αΦ1(ρ) + (1− α)Φ2(ρ)

subject to
∑K

k=1 ρk = 1. If α = 1, we have the D-optimal
allocation, which guarantees maximum information for θ.
If α = 0, the optimization problem reduces to minimiz-
ing Φ2(ρ) = − logΔ, and the optimal allocation places all
subjects on the treatment arm with the maximum value of
dk (or assigns equal proportions if there are several such
treatments). The merits of such an allocation are two-fold.
First, it is optimal for discriminating between the exponen-
tial model (b = 1) and a general Weibull model (b �= 1).
Second, it is attractive from an individual ethics perspec-
tive in clinical trials where shorter response times are de-
sirable (e.g., time to recovery or time until pain symptoms
disappear). The matter is that for many censoring schemes
(including a censoring scheme with constant follow-up pe-
riod for each patient, considered in this paper), the dk is
monotonically decreasing in μk when b is fixed. Therefore,
the treatment group with the minimum value of μk has the
maximum value of dk, and the optimization problem with
α = 0 results in allocating all subjects to this treatment
group, thereby achieving an allocation which is “best” from
an individual ethics perspective.

If 0 < α < 1, then we have an allocation providing a
tradeoff between two optimality criteria. For 0 < α ≤ 1, the
minimizer of (4) is a vector ρ∗ = (ρ∗1, . . . , ρ

∗
K)′ whose compo-

nents satisfy the following nonlinear system of K equations:

α

ρ∗k
+

dk∑K
k=1 ρ

∗
kdk

= αK + 1, k = 1, . . . ,K,

and for k = 1, . . . ,K we have

(5)
α

αK + 1
≤ ρ∗k ≤ 1 + α

αK + 1
.

Note that the optimal allocation vector ρ∗ depends on
unknown model parameters θ = (μ1, . . . , μK , b)′ through
d1, . . . , dK , and therefore it is locally optimal, as are all op-
timal designs in Section 3.

4.1 Choosing the value of the tradeoff
parameter

An important question is how to determine the right
value of α that provides the desired tradeoff between the
objectives. One can use inequalities (5) to calculate the
lower and upper bounds on the allocation proportions for
a given value of α. For a more rigorous approach, it is use-
ful to consider the relative efficiencies under different crite-
ria.

Let ρ∗
1 denote the D-optimal allocation rule obtained by

minimizing log |M−1(ρ,θ)|, and ρ∗
2 denote the allocation

rule obtained by minimizing − logΔ. For an arbitrary allo-
cation ρ = (ρ1, . . . ρk)

′, define the efficiency of ρ relative to
ρ∗
1 as

E1(ρ) =

{
|M−1(ρ∗

1,θ)|
|M−1(ρ,θ)|

}1/(K+1)

,

and the efficiency of ρ relative to ρ∗
2 = (ρ∗21, . . . ρ

∗
2k)

′ as

E2(ρ) =

∑K
k=1 ρkdk∑K
k=1 ρ

∗
2kdk

.

If the efficiency is equal to 0.5, the design ρ has to be repli-
cated twice to do as well as the optimal design. Clearly, both
E1(ρ) and E2(ρ) are between 0 and 1 and high values are
desirable.

To find a design that delivers user-prescribed levels of effi-
ciency for the two criteria, we use the approach of Cook and
Wong (1994). They showed that when we have convex cri-
teria, two sets of optimization problems are equivalent. The
first problem considers a convex combination of the two con-
vex criteria, which is still a convex criterion. Minimizing the
new criterion is straightforward but it is not clear what is
the interpretation of the weights used in the convex combi-
nation. For each weight used in the convex combination, we
determine the compound optimal design that minimizes the
new criterion. The other problem is a constrained optimiza-
tion problem. If one objective is more important, we want
to ensure that the design has at least a certain level of user-
specified efficiency and subject to this requirement, does as
well as possible for the second objective. It follows that for
each user-specified level of efficiency for the more impor-
tant criterion, we have a constrained optimal design. Cook
and Wong (1994) showed that these two classes of optimal
design are equivalent in the sense that solving one solves
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Table 1. Compound optimal allocation vector ρ∗ = (ρ∗1, ρ
∗
2, ρ

∗
3, ρ

∗
4)

′ for different values of α in a hypothetical four-arm trial,
assuming that the parameter values are known

b = 0.5 α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

μ1 = 0 ρ∗1 0 0.085 0.130 0.157 0.174 0.186 0.195 0.202 0.207 0.211 0.215
μ2 = −0.25 ρ∗2 0 0.097 0.145 0.172 0.189 0.200 0.208 0.214 0.218 0.222 0.225
μ3 = −0.5 ρ∗3 0 0.121 0.175 0.202 0.217 0.226 0.231 0.235 0.238 0.240 0.241
μ4 = −1 ρ∗4 1 0.696 0.550 0.469 0.420 0.388 0.366 0.349 0.337 0.327 0.319

a corresponding problem in the other. The key is to find
which weight α in the convex combination corresponds to
the user-specified efficiency sought for the more important
criterion. To answer this question, they proposed using an
efficiency plot that simultaneously graphs the two efficien-
cies of the compound optimal design as a function of α. In
other words, we plot E1(ρ) and E2(ρ) versus α in the same
figure as illustrated in Wong (1995) where he considered
polynomial models and model misspecification and parame-
ter estimation were the two objectives of interest. Assuming
estimating the model parameter θ is the more important ob-
jective and the user has specified a minimal value for E1(ρ),
say e1, the value of α to use to generate the compound
optimal design is the one that corresponds to the point of
intersection of the graph of E1(ρ) and the horizontal line at
E1(ρ) = e1. This resulting compound optimal design is the
one that solves the more intuitive constraint optimization
problem formulated at the beginning of the problem with
user-specified efficiency.

To illustrate this idea, consider a trial with four treatment
arms with constant follow-up times of the patients. We first
construct locally optimal designs, for which nominal values
of the parameters are available. Later on we sequentially
estimate these parameters and perform response-adaptive
randomization of patients to the treatment groups. Here we
choose μ1 = 0, μ2 = −0.25, μ3 = −0.5, μ4 = −1, and
b = 0.5. As in Section 3, the follow-up time is chosen to
be τ = 1/(− log(0.1)). We have an observation if the event
time is less than or equal to τ ; otherwise the event time is
censored if the event time is larger than τ .

Table 1 displays the compound optimal design ρ∗ =
(ρ∗1, ρ

∗
2, ρ

∗
3, ρ

∗
4)

′ for different values of α between 0 and 1.
Figure 2 is the efficiency plot obtained by graphing E1(ρ)
and E2(ρ) versus values of α in the interval [0, 1]. The plot
provides information on the competitive nature of the two
criteria; a steep curve represents that much efficiency has to
be given up for a small gain in the efficiency of the other
criterion. Given the constrained optimization problem, the
plot finds the constrained optimal design indirectly by find-
ing the compound optimal design using the right α deter-
mined from the efficiency plot. For example, if both crite-
ria are equally important in our example, the figure shows
the correct α to use to generate the compound optimal de-
sign is α = 0.1. If one criterion is more important than
the other, then the value of α must be chosen differently.

Figure 2. Efficiency plot for the four-arm trial for estimating
θ and b, assuming that θ is known.

For instance, if estimating the vector of all model parame-
ters is the main objective, we want a design that guarantees
high efficiency for estimating θ, say e1 = E1(ρ) = 90%.
The plot shows if we draw a horizontal line at e1 = 0.90,
this line meets the graph of E1(ρ) at around α = 0.2. This
means that the constrained optimal design is found by gen-
erating the compound optimal design with α = 0.2. The
plot also shows that E2(ρ) ≈ 70% implying that the two
criteria are not very competitive. Further applications of
efficiency plots to find dual-objective optimal designs for
biomedical studies can be found in Huang and Wong (1998a,
2004).

The above designs are all locally optimal and because θ is
unknown, they cannot be implemented. One may generate
many compound optimal designs for a range of hypothet-
ical θ values and hope that they are not sensitive to the
choice of the nominal values. In our example, we changed
the nominal values of (μ1, μ2, μ3, μ4)

′ and constructed sim-
ilar plots (not shown here). The patterns were similar to
the one shown in Figure 2 while keeping τ = 1/(− log(0.1))
and b = 0.5. However, when different nominal values re-
sult in different optimal designs, alternative methods are re-
quired. One such method is the response-adaptive approach
that sequentially estimates the unknown parameters using
all currently available responses from patients to generate
the compound optimal designs.
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4.2 Implementing optimal allocations by
response-adaptive randomization

In practice the true parameter values are unknown.
Response-adaptive randomization designs can be used to
learn from accumulating data in the trial and enhance the
optimal allocations. In this subsection we present results of a
simulation study comparing several response-adaptive ran-
domization designs with a balanced randomization design.
In our simulations the true parameter vector θ is assumed
to be unknown and it will be sequentially estimated. We
consider a four-arm trial with n = 200 patients and con-
stant follow-up time τ = 1/(− log(0.1)) for each patient.
Throughout, we assume that b = 0.5, and treatment effects
vary across the four groups as signified by their mean val-
ues μ1, μ2, μ3 and μ4. In our simulation, we consider four
hypothetical dose response profiles:

A Flat dose-response: μ1 =μ2 =μ3 =μ4 =0
B Monotone dose-response: μ1 =0, μ2 = − 0.25, μ3 = − 0.5,

μ4 = − 1
C “U-shape” dose-response: μ1 =0, μ2 = −0.25, μ3 = −0.5,

μ4 = − 0.25
D “Threshold” dose-response: μ1 =0, μ2 =μ3 =μ4 = − 0.5

The following four allocation strategies will be compared
using efficiencies and also a measure based on ethical con-
siderations which will be discussed momentarily.

I A compound optimal allocation with α = 0.1
II A compound optimal allocation with α = 0.2
III The D-optimal allocation with α = 1
IV The balanced allocation ρ = (0.25, 0.25, 0.25, 0.25)′

Allocation IV is implemented using a completely random-
ized design (CRD) for which every subject is randomized to
treatment groups with equal probabilities. Due to its unpre-
dictability, the CRD mitigates the chance of selection bias
in the design. Note that the CRD balances treatment as-
signments asymptotically, but the treatment numbers may
not be perfectly balanced for a finite sample size due to
randomization in the design. However, we use the CRD as a
reference procedure in order to facilitate a comparison of the
variability of allocation proportions with response-adaptive
randomization procedures.

Allocations I, II, and III are implemented using the
doubly-adaptive biased coin design procedure (DBCD, Hu
and Zhang, 2004). For a trial with K treatment groups
(K = 4 in our case), let (ρ1, . . . , ρK) denote a target al-
location vector corresponding to one of the allocations I, II
or III. For the DBCD procedure, the (j + 1)th patient is
randomized to treatment k with probability

(6) ψj+1,k =
ρ̂k(j)

(
ρ̂k(j)

Nk(j)/j

)γ

∑K
i=1 ρ̂i(j)

(
ρ̂i(j)

Ni(j)/j

)γ , k = 1, . . . ,K,

where ρ̂(j) = (ρ̂1(j), . . . , ρ̂K(j))′ is the estimated target al-
location based on the observed data from the first j patients,

Ni(j)/j, i = 1, . . . ,K are current treatment proportions,
and γ ≥ 0 is a parameter controlling the degree of random-
ness of an allocation procedure (γ = 0 is most random, and
γ = ∞ is almost a deterministic procedure). Rosenberger
and Hu (2004) found by simulation that γ = 2 provides a
reasonable balance between randomness and optimality and
accordingly, our allocations I, II and III are implemented
using the value γ = 2.

We also evaluate these designs by their ethical value. One
common ethical measure increasingly used in the literature
is the average value of the total number of “successes” (TNS)
in the trial from the design (Rosenberger et al., 2001). In
our example we assume that short responses are clinically
favorable, and an observation is a “success” if it is less than
the threshold τ = 1/(− log(0.1)). Therefore, TNS in our
case is simply the total number of subjects in the trial with
observed (uncensored) event times, i.e.

TNS =

4∑
k=1

nk∑
i=1

1{Tik≤τ}.

A major stumbling block in implementing adaptive de-
signs is the time delay, as one needs to wait for outcomes of
currently enrolled patients before allocating the next cohort
of patients to the treatment groups. Hu et al. (2008) showed
that under widely applicable conditions, large sample results
for the DBCD procedure are unaffected by delayed response.
Simulations of adaptive survival trials with moderate sam-
ple sizes (e.g. Zhang and Rosenberger, 2007) show that when
60 percent or more of the patient’s responses accrue dur-
ing the recruitment stage of the trial, inferential properties
response-adaptive designs is negligibly affected compared to
the case when there is no delay. Clearly, response-adaptive
designs are inappropriate in trials with fast recruitment and
very long follow-up periods.

In our example we assume that recruitment is not fast so
that adaptations in the design are feasible. There are several
ways to facilitate response-adaptive randomization with de-
layed outcomes. One approach is to simulate a priority queue
data structure, assuming some distribution for patient ar-
rival times and use a continuous monitoring scheme for up-
dating history of responses from patients in the trial and im-
plementing response-adaptive allocation (Rosenberger and
Seshaiyer, 1997; Zhang and Rosenberger, 2007). Another
approach is a “cohort” response-adaptive randomization
(Chappell and Karrison, 2006), for which treatment ran-
domization probabilities are updated after cohorts of sub-
jects respond. We use the latter approach in simulations
for this section. For a trial with n = 200 patients, first 20
patients are randomized equally among the four treatment
arms. The next wave of patients are enrolled in cohorts of
20 such that every cohort of size 20 is enrolled only after all
patients in the previous cohort have responded. Thus the
model parameters and treatment randomization probabili-
ties are recalculated after every 20 patients, based on the
vector of accumulated responses.
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Table 2. Theoretical and simulated allocation proportion vector (ρ1, ρ2, ρ3, ρ4), and maximum likelihood estimates of the
model parameters (μ1, μ2, μ3, μ4, b) of designs I, II, III, and IV for scenarios A, B, C, and D, based on 1,000 simulations

Scenario A (flat dose-response)
Design ρ1 ρ2 ρ3 ρ4 μ1 μ2 μ3 μ4 b

I Theoretical 0.250 0.250 0.250 0.250 0 0 0 0 0.5
Average 0.249 0.247 0.245 0.246 0.098 0.109 0.117 0.101 0.495
S.D. 0.130 0.135 0.134 0.132 0.289 0.294 0.297 0.282 0.081

II Theoretical 0.250 0.250 0.250 0.250 0 0 0 0 0.5
Average 0.245 0.248 0.250 0.246 0.062 0.058 0.062 0.070 0.493
S.D. 0.083 0.088 0.088 0.085 0.260 0.266 0.267 0.273 0.081

III Theoretical 0.250 0.250 0.250 0.250 0 0 0 0 0.5
Average 0.247 0.247 0.247 0.248 0.045 0.037 0.037 0.035 0.499
S.D. 0.034 0.034 0.034 0.033 0.250 0.242 0.253 0.240 0.084

IV Theoretical 0.250 0.250 0.250 0.250 0 0 0 0 0.5
Average 0.250 0.249 0.251 0.250 0.016 0.021 0.019 0.030 0.497
S.D. 0.030 0.030 0.031 0.031 0.241 0.245 0.235 0.252 0.086

Scenario B (monotone dose-response)
Design ρ1 ρ2 ρ3 ρ4 μ1 μ2 μ3 μ4 b

I Theoretical 0.085 0.097 0.121 0.696 0 −0.25 −0.5 −1 0.5
Average 0.095 0.105 0.127 0.663 0.076 −0.194 −0.443 −1.000 0.497
S.D. 0.018 0.022 0.031 0.081 0.301 0.249 0.188 0.050 0.041

II Theoretical 0.130 0.145 0.175 0.550 0 −0.25 −0.5 −1 0.5
Average 0.135 0.148 0.178 0.530 0.044 −0.215 −0.483 −0.999 0.496
S.D. 0.020 0.023 0.034 0.067 0.282 0.201 0.150 0.054 0.042

III Theoretical 0.215 0.225 0.241 0.319 0 −0.25 −0.5 −1 0.5
Average 0.213 0.222 0.238 0.315 0.038 −0.243 −0.491 −1.001 0.496
S.D. 0.026 0.028 0.030 0.038 0.237 0.159 0.121 0.069 0.048

IV Theoretical 0.250 0.250 0.250 0.250 0 −0.25 −0.5 −1 0.5
Average 0.249 0.251 0.251 0.249 0.018 −0.243 −0.497 −1.002 0.499
S.D. 0.031 0.029 0.031 0.031 0.196 0.156 0.122 0.082 0.051

Scenario C (“U-shape” dose-response)
Design ρ1 ρ2 ρ3 ρ4 μ1 μ2 μ3 μ4 b

I Theoretical 0.110 0.161 0.567 0.161 0 −0.25 −0.5 −0.25 0.5
Average 0.124 0.185 0.497 0.185 0.103 −0.158 −0.473 −0.155 0.499
S.D. 0.042 0.090 0.142 0.096 0.303 0.239 0.129 0.238 0.059

II Theoretical 0.157 0.210 0.423 0.210 0 −0.25 −0.5 −0.25 0.5
Average 0.162 0.217 0.398 0.217 0.078 −0.205 −0.484 −0.205 0.499
S.D. 0.034 0.060 0.087 0.062 0.273 0.192 0.115 0.193 0.062

III Theoretical 0.226 0.246 0.282 0.246 0 −0.25 −0.5 −0.25 0.5
Average 0.226 0.243 0.278 0.244 0.032 −0.225 −0.494 −0.242 0.496
S.D. 0.026 0.030 0.034 0.030 0.240 0.172 0.122 0.163 0.065

IV Theoretical 0.250 0.250 0.250 0.250 0 −0.25 −0.5 −0.25 0.5
Average 0.250 0.250 0.250 0.250 0.020 −0.244 −0.489 −0.244 0.494
S.D. 0.031 0.030 0.030 0.030 0.220 0.174 0.128 0.169 0.064

Scenario D (“threshold” dose-response)
Design ρ1 ρ2 ρ3 ρ4 μ1 μ2 μ3 μ4 b

I Theoretical 0.103 0.299 0.299 0.299 0 −0.5 −0.5 −0.5 0.5
Average 0.111 0.288 0.295 0.296 0.093 −0.449 −0.455 −0.456 0.501
S.D. 0.030 0.125 0.128 0.131 0.309 0.156 0.161 0.164 0.055

II Theoretical 0.147 0.284 0.284 0.284 0 −0.5 −0.5 −0.5 0.5
Average 0.150 0.280 0.281 0.278 0.049 −0.477 −0.479 −0.470 0.494
S.D. 0.027 0.075 0.077 0.075 0.275 0.125 0.128 0.134 0.056

III Theoretical 0.220 0.260 0.260 0.260 0 −0.5 −0.5 −0.5 0.5
Average 0.219 0.257 0.257 0.258 0.043 −0.488 −0.493 −0.491 0.498
S.D. 0.025 0.031 0.031 0.030 0.235 0.125 0.125 0.125 0.056

IV Theoretical 0.250 0.250 0.250 0.250 0 −0.5 −0.5 −0.5 0.5
Average 0.250 0.250 0.251 0.249 0.027 −0.492 −0.496 −0.498 0.497
S.D. 0.030 0.031 0.031 0.031 0.219 0.121 0.121 0.125 0.057
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Table 3. Theoretical and simulated design efficiencies E1(ρ), E2(ρ) and the total number of successes (TNS) of the four
randomization procedures (I, II, III, IV) for the four dose response scenarios (A, B, C, D) based on 1,000 simulation runs. The

table reports the median values of E1(ρ) and E2(ρ), and the mean value of TNS, with its standard deviation in
parentheses

Dose-response scenario
A B C D

Design Theor. Sim. Theor. Sim. Theor. Sim. Theor. Sim.

I E1(ρ) 1.000 0.911 0.775 0.772 0.871 0.857 0.949 0.911
E2(ρ) 1.000 0.847 0.796 0.796 0.817 0.816 0.938 0.956
TNS 34 35 (5) 123 123 (6) 67 66 (7) 76 76 (7)

II E1(ρ) 1.000 0.978 0.913 0.913 0.964 0.960 0.983 0.974
E2(ρ) 1.000 0.809 0.696 0.697 0.753 0.754 0.912 0.818
TNS 34 35 (5) 109 109 (6) 62 62 (7) 73 74 (7)

III E1(ρ) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
E2(ρ) 1.000 0.771 0.535 0.534 0.686 0.686 0.868 0.756
TNS 34 34 (5) 87 87 (5) 57 58 (6) 70 70 (7)

IV E1(ρ) 1.000 0.998 0.990 0.990 0.997 0.997 0.998 0.997
E2(ρ) 1.000 0.759 0.483 0.485 0.669 0.673 0.850 0.735
TNS 34 34 (5) 80 80 (6) 55 55 (6) 69 69 (6)

Let us first examine the performance of the procedures
under a flat dose-response, i.e. when all four treatments are
equally effective (scenario A). From Table 2, we see that
under scenario A our adaptive designs (I, II, III) and the
completely randomized design (CRD, design IV) all con-
verged to the equal allocation. The D-optimal design (III)
had similar variability of allocation proportions compared
to CRD, whereas two compound optimal designs (I and II)
had slightly higher standard deviations of allocation propor-
tions compared to CRD. From Table 3, theD-optimal design
yielded higher median values of efficiencies E1(ρ) and E2(ρ)
compared to CRD; the two compound optimal designs had
higher median values of E2(ρ), but lower values of E1(ρ)
compared to CRD. The key message here is that when we
have flat dose-responses from the four groups, our adap-
tive designs generally have comparable characteristics with
CRD; however, due to response-adaptive randomization in
the design, our designs under scenario A are somewhat in-
ferior to the “ideal” equal allocation which divides patients
equally among 4 arms. In the latter case, both efficiencies
E1(ρ) and E2(ρ) are 100% under scenario A.

Table 2 also gives a summary of the designs’ character-
istics under scenarios B, C, and D, when treatment effects
vary across the treatment arms. The conclusions from these
scenarios are generally similar and so we discuss the com-
mon findings using scenario B as an illustrative case when
we have a monotone dose-response. One can see that un-
der scenario B, all four designs converged successfully to
their corresponding target allocations. The compound opti-
mal designs with α = 0.1 and α = 0.2 (designs I and II) were
skewed away from the balanced allocation more than the
D-optimal design (III). For the adaptive designs, treatment
groups with lower proportions of subjects had smaller stan-
dard deviations of allocation proportions than treatment

groups with higher proportions of subjects. Since our adap-
tive designs place more subjects at the doses with shorter
event times, the estimation at these doses is more accurate
with adaptive designs than with the balanced design. In par-
ticular, all four designs estimated the values of μ4 = −1 and
b = 0.5 unbiasedly, but the adaptive designs had smaller
standard deviations compared to the balanced design. Fig-
ures 3 and 4 show simulated distributions of the maximum
likelihood estimators (μ̂1, μ̂2, μ̂3, μ̂4) and b̂, respectively. In
theory, maximum likelihood estimators are strongly consis-
tent and asymptotically normal (Hu and Zhang, 2004). From
the plots it is clear that all the designs estimated the true
parameters consistently, although the distributions of the
estimates in some cases are slightly right-skewed.

Table 3 shows theoretical and simulated (median) values
of efficiencies E1(ρ) and E2(ρ), and Figure 5 shows distribu-
tions of these efficiencies based on 1, 000 simulations. From
Table 3, design III had higher median values of E1(ρ) and
E2(ρ) compared to CRD; designs I and II provided trade-
offs between the two efficiency criteria and had consistently
higher median values of E2(ρ) than CRD, which implies that
these designs were more efficient estimating the underlying
hazard pattern (via the parameter b) than the balanced de-
sign. It is important to note that for all four designs, sim-
ulated median values of E1(ρ) and E2(ρ) were close to the
corresponding theoretical values from the local optimal de-
signs. In our additional simulations (not reported here) we
increased the sample size from n = 200 to n = 400 patients,
and we observed that with the increased sample size, me-
dian values of E1(ρ) and E2(ρ) were getting even closer to
the theoretical values. Further, with n = 400 patients, the
standard deviations of both allocation proportions and the
maximum likelihood estimated were smaller than in the case
with n = 200 patients.
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Figure 3. Distributions of the maximum likelihood estimators μ̂1, μ̂2, μ̂3, μ̂4 for the four randomization procedures based on
200 patients and 1,000 simulations with μ1 = 0, μ2 = −0.25, μ3 = −0.5, μ4 = −1 and b = 0.5.

Figure 4. Distributions of the maximum likelihood estimator b̂
for the four randomization procedures based on 200 patients
and 1,000 simulations with μ1 = 0, μ2 = −0.25, μ3 = −0.5,

μ4 = −1 and b = 0.5.

Finally, we note that under each of the scenarios B, C,
and D, the balanced design (IV) was least ethical among
the four designs (Table 3). For instance, under scenario B,
on average, the D-optimal design (III) resulted in 7 more
successes; the design with α = 0.2 (design II) had 29 more
successes; and the design with α = 0.1 (design I) had 43
more successes than the balanced design. All four designs
had similar standard deviations of TNS.

The overall conclusion from the simulation study is that
the proposed adaptive designs are fully randomized and do
a good job targeting optimal allocations. At the same time,
our adaptive designs achieve the prescribed levels of effi-
ciency and tend to allocate more patients to the more effi-

Figure 5. Distributions of the two efficiencies E1(ρ) and
E2(ρ) for the four randomization procedures based on 200
patients and 1,000 simulations with μ1 = 0, μ2 = −0.25,

μ3 = −0.5, μ4 = −1 and b = 0.5.

cacious doses. Our examples here also show that adaptive
designs, when properly implemented, can outperform bal-
anced randomization designs in terms of efficiency and eth-
ical criteria.

5. DISCUSSION

In this paper, several design issues have been addressed
for multi-arm time-to-event clinical trials with censored
Weibull outcomes. We explored several optimality criteria
for estimating treatment contrasts, includingDA-optimality,
trace-optimality, and optimality for estimation of treatment
hazard ratios. If there is no censoring in the model, the opti-
mal allocations are easily found. Unfortunately, matters are
not so mathematically neat when censoring is present. In the
K = 2 treatment case, we found optimal allocations numer-
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ically by minimizing objective functions which depend on
model parameters. Numerical studies show that optimal al-
locations are very close to 0.5, the balanced allocation. These
results are consistent with some previous findings in the lit-
erature on efficiency of balanced allocation for an exponen-
tial model and Cox’s proportional hazards model (Kalish
and Harrington, 1988).

For trials withK ≥ 2 treatment arms we discussed how to
select weights in a compound optimality criterion to gener-
ate allocations that achieve prescribed levels of two selected
efficiency criteria. The resulting designs are locally optimal.
We used response-adaptive randomization to sequentially
target selected optimal allocations in a hypothetical clini-
cal trial with four treatment arms. Simulations show that
the doubly-adaptive biased coin design procedures (DBCD;
Hu and Zhang, 2004) converge well to the selected optimal
targets and thereby achieve the desired levels of statisti-
cal efficiency. The described methodology may be useful in
planning phase II dose ranging studies with primary time-
to-event outcomes where smaller event times signify higher
treatment efficacy (e.g. recovery).

The design approach discussed here can be extended to
problems for more than two objectives and the objectives
have unequal interest to the researcher. After formatting all
objectives as convex functional of the information matrix
and prioritizing the objectives in terms of their importance,
the researcher specifies the efficiencies required for each cri-
terion. The most important one should have the highest ef-
ficiency requirement, followed by the next most important
criterion and so on. Of course the sought optimal design
may not exist if all the efficiencies are unreasonably high
and the objectives are competitive. The researcher does not
have to specify the efficiency required for the least important
criterion because it is only determined after all the more im-
portant objectives have met their efficiencies requirements.
Computationally, no technical problems arise because the
compound optimal design for the multiple-objective prob-
lem is still found straightforwardly by minimizing a con-
vex combination of convex criteria. The only issue is the
interpretation of the weights used in the convex combina-
tion, i.e. which convex combination corresponds to the set
of user-specified efficiency requirements? We can resort to
a high dimensional efficiency plot and used the same tech-
nique as for a dual-objective optimal design problem. How-
ever, appreciating high dimensional graphics can be both
tricky and difficult and so there are still implementing and
interpreting issues for finding multiple objective optimal de-
sign problems. Some work in this direction are Huang and
Wong (1998b), and Zhu and Wong (2001).

We close with a note that we dealt with the problem of
finding optimal allocation proportions for a multi-arm trial.
An obvious analog of the design problem just discussed is to
have the K treatment groups be different dose levels of the
same drug. In this case, it is sensible to select the best doses
on a continuous scale, rather than finding the best propor-
tions. This is a promising research topic for the future work.
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