STATISTICS AND ITS INTERFACE Volume 5 (2012) 381-390

Statistical performance of group sequential
methods for observational post-licensure medical
product safety surveillance: A simulation study
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In order to improve post-licensure drug and vaccine safety
surveillance, new systems are being developed that prospec-
tively monitor observational health care data from large
health plans. Continuous sequential testing has been pro-
posed in this setting to facilitate rapid detection, but group
sequential methods commonly used in randomized clinical
trials (RCTs) have received less consideration. We propose
a group sequential approach tailored for safety and to ac-
count for complications like confounding that arise in this
non-randomized setting and thus have not been previously
examined in RCTs. For comparability with prior continuous
monitoring applications, we use a likelihood ratio statistic
and historical controls. We compute sequential boundaries
using Monte Carlo simulation and show how they can ac-
commodate unequal between-test sample sizes and changes
in confounder distributions among accruing subjects over
time. We evaluate via simulation the performance of this
approach across sequential designs suited for safety and not
previously addressed by simulation studies evaluating RCT
boundaries. Such designs include much higher frequency
testing and designs that employ early conservatism followed
by frequent testing. Contrary to prior RCT simulations, we
found major differences in the average time-to-surveillance-
end and overall power. We apply this methodology to safety
data on a new pediatric combination vaccine.

KEYWORDS AND PHRASES: Medical product safety, Obser-
vational study, Post-licensure surveillance, Sequential test-
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1. INTRODUCTION

Pre-licensure clinical studies and traditional post-
licensure safety surveillance systems often do not provide
a complete safety profile for a newly licensed medical prod-
uct. In fact, gaps in this safety evidence base have led to the
approval and widespread use of some medical products that
were later found to be unsafe and removed from the market.
A well-known example is the drug rofecoxib (Brand Names:
Vioxx or Ceoxx), a nonsteroidal antiflammatory medication
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prescribed to treat osteoarthritis and acute pain conditions.
Rofecoxib was licensed by the US Food and Drug Adminis-
tration (FDA) in 1999, prescribed to over 80 million people
worldwide, and then removed from the market in 2004 after
a colon cancer prevention trial designed to examine rofe-
coxib as a chemopreventative agent detected a doubling of
cardiovascular risk among rofecoxib users [20]. High profile
withdrawals, like that of rofecoxib, have increased public
concern about the health risks of approved drugs and led to
Congressional legislation and a national strategy aimed to
detect safety problems in a more timely manner before large
populations are exposed [3, 21].

One statistical methodology that has gained considerable
traction for use in post-licensure safety surveillance is se-
quential testing. For example, the Centers for Disease Con-
trol and Prevention (CDC) Vaccine Safety Datalink (VSD)
is a national project that weekly links and updates admin-
istrative patient information on demographics, immuniza-
tions, and adverse event diagnoses assigned during outpa-
tient, emergency department, and hospital visits from eight
managed care organizations (MCOs) covering 8.8 million
people (3% of the U.S. population) [2]. With these data,
the VSD has pioneered the use of a sequential monitoring
approach called the maximized sequential probability ratio
test (MaxSPRT) [10] to conduct near real-time surveillance
for targeted safety outcomes of interest for newly licensed
vaccines since 2005 [4, 6, 9, 13, 23]. MaxSPRT is a contin-
uous sequential test based on the likelihood ratio statistic.
Continuous monitoring using other sequential generalized
likelihood ratio tests has also been recommended for use in
post-licensure safety settings [19]. In the VSD, MaxSPRT
has had demonstrated successes, including the identification
of an increased risk of seizure among infants after receipt of
the newly licensed measles, mumps, rubella, and varicella
(MMRV) combination vaccine compared to age-similar in-
fants who received separate injections of measles, mumps,
and rubella (MMR) vaccine and varicella vaccine. This find-
ing led to changes to the Advisory Committee on Immuniza-
tion Practices’ (ACIP) national policy recommendations [9].

Although continuous sequential testing appears promis-
ing and can facilitate early detection, such highly frequent
testing may not be feasible or desirable in many practi-
cal circumstances. When more periodic interim testing is
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desired, group sequential methods can offer a flexible and
powerful approach. And while group sequential testing is an
established approach in randomized clinical trial (RCT) set-
tings, it has received little consideration in the post-licensure
safety monitoring arena. In RCTs, the number of sequen-
tial tests performed during a study is generally small (e.g.,
half-yearly over a 2-year study period), and the main study
objective is to evaluate efficacy, which often implies use of
a conservative stopping boundary (e.g., an O’Brien-Fleming
boundary which is higher at early tests) [15]. In contrast, in
observational post-licensure safety surveillance, researchers
and policy-makers have advocated for much more frequent
testing and a larger total number of tests (e.g., weekly over
a 2-year study period). Further, the primary goal is to mon-
itor rare and serious adverse events, which may motivate
the use of a lower boundary at earlier tests to avoid miss-
ing a critical safety concern. Thus, although the statistical
performance of many group sequential designs has been well-
studied in RCT settings with efficacy endpoints, the perfor-
mance of designs geared to address safety hypotheses in ob-
servational settings has not been systematically evaluated.
For example, Pocock et al. (1982) [18] found there is little
statistical advantage in undertaking more than five interim
analyses during the course of a trial, since there is very little
extra reduction in ASN (average sample number) in going
from a five-group to a 20-group design. However, they did
not consider the wide spectrum of designs that might be
considered important in a safety setting, such as a design
that employs early conservatism and then follows with very
highly frequent testing. Providing such information could
help researchers begin to develop a formal statistical frame-
work for optimally designing group sequentially-monitored
observational safety studies.

In this paper, we propose a group sequential approach tai-
lored for safety and modified to account for the many com-
plications that arise in this non-randomized post-licensure
setting [14], complications that do not exist and thus have
not been previously examined in RCTs. We conduct a sim-
ulation study that compares the statistical performance of
these safety-customized group sequential designs with the
performance of the currently used continuous sequential test
MaxSPRT. Specifically, in Section 2 we briefly review exist-
ing sequential methods used both in RCTs and in obser-
vational studies, and we then describe how to extend the
use of group sequential methods to an observational set-
ting. This involves addressing a major challenge present in
observational studies and not in RCTs: confounding. In Sec-
tion 3, we conduct a simulation study to compare the sta-
tistical power and the time-to-detection of a safety problem
of several continuous and group sequential stopping bound-
aries, including custom-designed choices that are specifically
geared to address safety objectives. In Section 4 we apply
and compare a variety of safety-tailored sequential designs
using vaccine safety data from the VSD. We conclude in
Section 5 with a discussion.
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2. GROUP SEQUENTIAL TESTING
METHODS

In both RCTs and observational studies it is desirable
to examine the data over time as information accumulates
instead of waiting until the end of the pre-defined study pe-
riod to conduct formal statistical analyses. Sequential test-
ing methods have been proposed to allow such interim anal-
yses while taking into account the multiple testing issue by
explicitly holding a desired Type I error across all tests.
These methods can be broadly categorized into continuous
and group sequential methods. In this manuscript we fo-
cus on group sequential testing and treat continuous testing
as a special case, where the group is one observation. In
the following sections we briefly summarize some existing
group sequential methods that have been applied in both
randomized and observational study designs with an em-
phasis on observational post-licensure surveillance applica-
tions.

2.1 Group sequential data and testing
framework

Group sequential testing methods analyze data after a
new group of observations enters the study at specific time
points t (t =1,...,T), where T is the total number of tests,
n; is the sample size accrued between tests ¢t — 1 and ¢, and
Ny = 22:1 ng is the cumulative sample size observed up to
time t. In post-licensure safety surveillance, the purpose is to
test for elevated rates of adverse outcomes among recipients
of a drug or vaccine of interest relative to an expected rate.
Expected rates may be estimated using concurrent control,
historical control, or self-control information. To enhance
comparability with previous post-licensure continuous mon-
itoring applications [10, 19] and without loss of generality,
we focus on a sequential likelihood ratio test applied in a his-
torical control setting. Similar methods and conclusions can
be generalized for other test statistics (e.g., a relative risk
or risk difference) and settings (e.g., designs using concur-
rent controls). Further, we investigate a single adverse event
occurrence, but we address the issue of multiple events in
Section 5.

Assume that at each time point ¢, each subject’s data
consists of a binary outcome, Y;, defined as 1 if subject 4
(i = 1,...,N;) has the adverse outcome of interest and 0
otherwise, and a vector of confounders, Z;, such as age, gen-
der, and comorbidities. We further assume that the statistic
Y(t) = Zf\[:tl Y; has the following conditional distribution,

Y (t)|Z1, ...

yZn, ~ Poisson(Bui(Zy,...,Zy,))

where Y (¢) is the observed number of adverse outcomes up
to time ¢, p¢(Z, ..., Zy,) is the expected number estimated
from historical control data and the observed confounders of
interest, Zy,...,Zy,, and 3 is the relative risk of Y for the
vaccine or drug recipients compared to historical controls.



We will discuss how to estimate p¢(Zy, ..., Zy,) from histor-
ical control information later. A Poisson distribution is used
because adverse events monitored in post-licensure safety
studies are usually rare, and we are making comparisons to
expected rates among historical controls. In other settings,
different distributions appropriate to the data could be con-
sidered, such as a binomial distribution when observed rates
are compared to rates among concurrent controls [14]. The
hypotheses of interest are Hy : § = 1 versus Hy : 5 > 1.
We use the log likelihood ratio statistic, which has been
previously used by the MaxSPRT method in observational
post-licensure surveillance [10]:

0 V()
(1e)Y O /Y ()!
e P (But)y(t) )
e ()Y ( .

(1)

LLR; = log (max

1227

B is estimated as max(1,Y (t)/p:(Zq,...,
maximum likelihood estimation. Hence,

Zy,)) using the

(2) LLR, ) YD >

0
{m—yw+ywba$

Note that the sequential probability ratio test (SPRT,
[22]) was originally proposed for a simple hypothesis, Hy4 :
B8 = Po, and the MaxSPRT extends the SPRT with a one-
sided composite hypothesis, H4 : 5 > 1.

2.2 Sequential testing boundary

In this manuscript, we use a unifying family of bound-
aries [5, 8, 16], which includes the Pocock [17] and O’Brien-
Fleming [15] boundaries as special cases. We have chosen
this flexible boundary framework to facilitate comparisons
of a range of standard boundaries used in RCTs and to
enable the construction of other boundaries specifically cus-
tomized to the post-licensure surveillance setting.

The boundary is defined as b(t) = au(t), where wu(t)
is a function dependent on ¢ and is from the unifying
boundary family. On the Z-statistic (i.e., standard normal
distribution) scale the Pocock boundary is constant, and
the O’Brien-Fleming boundary is proportional to \/Np/N;.
Since 2LLR(t) ~ X3, its square root \/2LLR(t) is a stan-
dard Z-statistic. We use u(t) = (N7/N;)' =22 on the scale
of the log likelihood ratio statistic, where A € [0,1/2] is a
parameter controlling the shape of the boundary, and the
critical value a is chosen to hold the overall Type I error at
the desired level a.. For LLR(t), a Pocock boundary is given
by A =1/2 (u(t) = 1), while A = 0 (u(t) = Np/N;) gives
the O’Brien-Fleming boundary. There are multiple methods
available to solve for the critical value a. We used the fol-
lowing simulation framework [8] rather than using a normal
approximation to solve for a [1], as this approximation may
not work well in the rare event setting:

Step 1: Simulate data under Hy and expect p; adverse
events (i.e., Y (t) ~ Poisson(u) for (t =1,...,T)).
Step 2: Compute LLR;, t = 1,...,T on the simulated
dataset.

Step 3: Compare LLR; with au(t), t =1,...,T. If for any
t € [1,T], LLR; > au(t), set the rejection indicator
S; = 1; otherwise S; = 0.

This process is repeated a large number of times (Ngp ).
The estimated Type I error « for this boundary is calcu-
lated across the simulated datasets as & = Z 0" S5 /Nsim.
Repeat the simulation changing the value of a untll a=aq.
Given the critical value a, one can compute the bound-
ary b(t), and determine its power and timeliness for dif-
ferent values of the relative risk, 8, by repeating the simu-
lation process with data simulated under H,4 (i.e., Y (t) ~
Poisson(But)).

This boundary formation has several advantageous fea-
tures. First, by allowing the expected number of events, ,
to be a flexible function of time ¢, the boundary can properly
incorporate the potential changes over time in the expected
counts. Changes in expected counts may be needed over the
course of the study because the observed study population
may change dramatically with respect to its confounder dis-
tributions (e.g., subjects from a new study site where uptake
of a new product is slower may enter during the course of
the study with different demographics and thus different ex-
pected event rates). These changes in the population over
time in turn affect the variance of Y (¢) and the Type I error
a, and so they need to be appropriately accommodated by
the boundaries. This represents a distinguishing and compli-
cating feature of observational studies compared with RCTs
as population characteristics are relatively well-controlled
and usually stable over time in an RCT. Second, this ap-
proach does not assume that the between-test sample sizes
ng, t=1,2,...,T, are equal. This is important since obser-
vational data may accrue in highly irregular quantities, or
we may want to purposely manipulate the testing frequency
by design to achieve specific study objectives (e.g., delay the
first test to avoid false signals at early phases of the study
when data are fewer and less reliable). In the next section
we will discuss in more detail the design choices and con-
siderations that are particularly relevant for post-licensure
surveillance.

2.3 Sequential design choices for
post-licensure safety surveillance

We have alluded to the existence of several additional
challenges for sequential methods that are faced by ob-
servational surveillance studies compared to well-controlled
RCTs, most notably confounding and unequal between-test
sample sizes. Nelson et al. [14] provide a broader review and
examination, including examples of these complications in
practice for a sequentially-monitored vaccine safety study.
We now address several of these issues in more depth.
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First, confounding can be a major issue for observational
post-licensure surveillance since characteristics of users and
non-users of a new drug or vaccine can be quite different.
Existing sequential methods that have been applied in the
post-licensure surveillance setting handle confounding by us-
ing either matching [10] or stratification [12]. We propose to
adjust for confounding through stratification in the estima-
tion of ;. For example, assume that gender is a confounder,
and we estimate the event rates in females and males to be
Ar and Ajps, respectively, using information from historical
controls. At the t*" test, there are nf” newly observed females
and nM males. The estimate of ju; controlling for gender
would be 1| (M, F) = fii_1+Apnl +AynM fort =1,...,T
and figp = 0. Through this approach, we estimate the ex-
pected number of the adverse outcomes using historical rates
weighted by the observed numbers of subjects in the corre-
sponding strata. Since the expected number is updated at
each test, boundaries need to be adjusted accordingly. At
each test, we first compute the expected number of events
given the observed data and historical event rates of each
stratum, and then we update the critical value a for current
and future tests based on this information, through Monte
Carlo simulation to maintain the overall Type I error. We
assume the future critical values and covariate distributions
are the same as those observed up to the current test. Note
that we do not update critical value a for previous tests.
As a result, although at a specific test ¢, t =1,2,...,T, we
assume a boundary b(.) with a constant critical value a and
estimate it by a; through simulation, the estimated value ax,
t=1,2,...,T, can be different for different ¢ to reflect the
changing covariate distribution of new observations. Note
this extends the method used in MaxSPRT [10], where the
critical value a is constant and preset at the onset of the
study.

Another complication for post-licensure surveillance is
the occurrence of unequal between-test sample sizes over the
course of the study, either by design or by the unpredictable
nature of the observational data. For instance, investigators
may want to delay the first test for a variety of reasons.
Administratively, it may take several months after a new
product is licensed to test the data collection systems and
get surveillance started, which would delay the study start.
Scientifically, we may want to delay the first test to avoid
early signaling when sample size is relatively small and data
are less stable. In addition, since multiple RCTs have al-
ready been conducted prior to licensure, to conserve power
it may be desirable not to test the data until at least a com-
parable sample size as was observed in pre-licensure studies
is obtained post-licensure. Delaying the first test can result
in a much larger first between-test sample size than between
subsequent tests.

Another common reason for unequal between-test sam-
ple sizes is that the rate of uptake for a new vaccine or
drug may change over time. For instance, uptake might be
slow at the beginning of the study and increase steadily af-
ter a couple months. If tests are planned based on calendar

384 S. Zhao et al.

time (e.g., monthly), the unifying family of boundaries can
account for potential between-test sample size differences.
An alternative approach is to space tests evenly according
to sample size. In other words, one would not test until a
pre-specified number of subjects enter the study. This pre-
specified number is computed at the beginning of the study
to achieve the desired power under the chosen alternative
hypothesis. Spacing tests evenly by sample size may result
in less frequent testing (in calendar time) at the beginning of
the study if initial uptake is slow. In practice, however, new
data may only be available for analysis periodically (e.g.,
weekly rather than continuously), and so for a given analy-
sis we may not observe the exact number of subjects between
tests as planned. For example, assume that we have planned
to conduct a test after every 500 subjects, and the cumula-
tive observed weekly sample sizes for the first 6 weeks are
as follows: 300, 600, 900, 1,300, 2,100, 2,600. In this case,
we will perform an analysis the first week at or after the
planned number of subjects are observed. Specifically, we
will only test the data on week 2, 4, 5 and 6. Also notice
that in this example that we skip one planned test at 1,500
subjects because of an unexpectedly large increase in sample
size at week 5. Thus, since the actual numbers of subjects
and tests may differ from the original plan, we propose to
update the boundary at each test to account for these dif-
ferences and maintain the overall Type I error. The unifying
family of boundaries that we propose can be used to accom-
plish this.

3. SIMULATION STUDY

Drawing from the vast experience of group sequential
methods used in RCTs, we have proposed a group sequen-
tial approach tailored for safety and to accommodate the
special features of observational safety surveillance. In this
section, we present a simulation study to evaluate our pro-
posed sequential testing framework and to explicitly assess
design choices oriented toward post-licensure surveillance
studies. As we will describe in detail shortly, the general
trends in performance that we observe here are not unex-
pected as they parallel similar tendencies seen in RCTs. The
key difference in our work is that we evaluate a broader
range of design options that are specifically customized to
address safety in the post-licensure setting and, in partic-
ular, consider options that allow both for higher frequency
testing and for more flexibility in testing frequency than
usually found in a RCT setting. We also explain the im-
portance of the patterns we observe in the context of post-
licensure safety, which is not the typical orientation of a
RCT.

3.1 Simulation set-up

Without loss of generality, we assumed the study period
was two years (730 days) and that every subject was equally
likely to have an event (i.e., no confounding). We investi-
gated two boundary shapes (Pocock and O’Brien-Fleming



boundaries) and two testing frequency scenarios (equally-
spaced testing and a delayed first test followed by equally-
spaced subsequent tests). The delayed first test scenario
assumed that a large bolus of data was observed before
the first test, and then equally-spaced tests with a smaller
between-test sample size were performed thereafter (n; = ¢
for t =2,...,T and ny; > c¢). We examined both a 1/4 year
delay (ny/Nr = 1/8) and a 1/2 year delay (ni/Np = 1/4).
We varied the between-test sample size, n;, by varying how
often we tested the data from daily, weekly, monthly to quar-
terly. Note that MaxSPRT, which tests continuously (i.e.,
after each new subject enters the study), is approximated
by our daily testing scenario. We chose to approximate
MaxSPRT because in practical settings continuous testing
is not generally feasible (e.g., the VSD actually tests on a
weekly basis). In this simulation, for simplicity we assumed
that subjects entered the study evenly throughout the study.
Specifically, for equally-spaced testing (i.e., with no delay),
daily testing implied T' = 730 and n;/Np = 1/730, weekly
implied T' = 104 and n;/Np = 1/104, and so on. For the
delayed first test design, the first test occurred either at day
91 (1/4 year delay) or at day 182 (1/2 year delay) with
daily, weekly, monthly and quarterly thereafter (e.g., for a
1/2 year delay with daily subsequent testing, ny /Ny = 1/4
and n;/Np = 1/730 for t = 2,...,549).

We varied the total expected number of adverse events
pr from 5 to 50. Since there was no confounding and the
between-test sample size was not changing within each sim-
ulation scenario, the boundaries did not have to be updated
as described in Section 2.3. Note that in our historical con-
trol example, given up, the proportion of observed subjects
over time (N;/Nr), rather than the between-test sample
size (n.), was the key parameter for determining boundary,
power, and timeliness.

To calculate power, we first derived the boundary un-
der the null (8 = 0) with Type I error @ = 0.05 for each
boundary shape, expected number of adverse events (ur),
and testing frequency scenario. We then simulated data un-
der different alternatives, varying the relative risk (3) from
1.5 to 2, and calculated power as the proportion of simu-
lated datasets that crossed the boundary at least once. We
also recorded for each simulation the time-to-surveillance-
end, where the end could occur either because a signal was
detected or because the two year end-of-study limit was
reached (i.e., no signal). The time-to-surveillance-end was
expressed on the scale of the expected number of adverse
events under the null. We selected this measure as it is
widely used in RCTs, and it characterizes timeliness while
penalizing instances where a signal was failed to be detected.
All results (i.e., power and time-to-surveillance-end) were
based on 100,000 simulations.

It should be noted that for computational efficiency we
slightly altered our simulation design as discussed in Sec-
tion 2.2. Instead of simulating data at each test, as spec-
ified in step 1, we first simulated daily outcomes Y; ~

Poisson(Bur/730) for i = 1,...,730 and then calculated
Y(t) = Ef\il Y; for t =1,...,T. This allowed us to use the
same datasets for all study designs evaluated, which reduced
simulation error across study designs.

3.2 Simulation results

Power and time-to-surveillance-end are summarized in
Table 1. As expected, power is higher when the adverse
events are more common (i.e., ur increases) and for larger
relative risks (i.e.,  increases). For the Pocock boundary,
less frequent testing yields higher power. For the O’Brien-
Fleming boundary, this trend is less obvious. The O’Brien-
Fleming boundary has about 5-15% higher power over-
all than the Pocock boundary, while the average time-to-
surveillance-end is always longer for O’Brien-Fleming com-
pared to Pocock boundary. Figure 1 shows the estimated
percentage of rejections over time. The percentage increases
steadily throughout the study when using a Pocock bound-
ary. Using an O’Brien-Fleming boundary, the increase in
percentage is S-shaped, with a rapid increase about 1/3 of
the way through the study that catches up with the percent-
age for the Pocock boundary about 2/3 of the way through
the study. The overall power advantage for the O’Brien-
Fleming boundary is due to the fact that it saves power
until the end of the study. The delayed first test designs
have performance similar to those with no initial delay (Ta-
ble 1). However, a longer delay yields considerably higher
power when using a Pocock boundary. As the chosen bound-
ary gets steeper, this trend is less pronounced. Delaying the
first test does not necessarily delay the time-to-surveillance-
end. In fact, for rare outcomes (small p;), delaying the first
test yields a shorter average time-to-surveillance-end.

This simulation demonstrates that both the Pocock and
O’Brien-Fleming boundaries have some desirable properties.
On average, the Pocock boundary signals earlier, while the
O’Brien-Fleming boundary has higher overall power. With
the Pocock boundary, the choice of testing frequency affects
the power and the timeliness more than with the O’Brien-
Fleming boundary. Hence, if a Pocock boundary is chosen,
then the testing frequency should be decided carefully. A de-
layed first test approach may also be useful to increase the
overall power compared to a similarly designed study with
no delay, particularly when using a Pocock boundary. Re-
lated findings are known from RCTs. Our study shows that
with a much larger number of tests, which may be desirable
in post-licensure observational safety surveillance, these pat-
terns still hold. The magnitude of the differences in power,
however, between less frequent (e.g., monthly) and very
highly frequent (e.g., daily) testing was somewhat greater
than anticipated, and this range and comparison of test-
ing frequencies has not generally been studied in RCTs.
For a safety surveillance study, where early detection of
elevated risk is of high interest, a Pocock boundary may
better serve the purpose. However, a delay of the first test
may also be important to consider since in a rare event
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Table 1. Power and average time-to-surveillance-end, varying the expected number of events, boundary shape, testing
frequency, relative risk, and length of delay

RR (8) Expected No. Pocock A =1/2 O’Brien-Fleming A =0
Daily Weekly Monthly Quarterly Daily Weekly Monthly Quarterly
Power

equally-spaced
1.5 5 0.188 0.221 0.194 0.241 0.277 0.275 0.272 0.282
10 0.293 0.322 0.327 0.366 0.420 0.419 0.437 0.450
50 0.829 0.854 0.857 0.883 0.929 0.928 0.927 0.932
2 5 0.449 0.456 0.468 0.530 0.601 0.599 0.593 0.603
10 0.704 0.734 0.738 0.779 0.832 0.831 0.842 0.851
50 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

1/4 year delay
1.5 5 0.237 0.238 0.233 0.239 0.276 0.275 0.270 0.279
10 0.353 0.355 0.362 0.369 0.425 0.424 0.439 0.452
50 0.874 0.877 0.887 0.884 0.930 0.929 0.927 0.934
2 5 0.530 0.531 0.511 0.528 0.598 0.596 0.590 0.599
10 0.762 0.763 0.770 0.779 0.833 0.832 0.842 0.851
50 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

1/2 year delay
1.5 5 0.243 0.244 0.247 0.255 0.277 0.277 0.274 0.283
10 0.370 0.367 0.376 0.380 0.424 0.423 0.437 0.449
50 0.890 0.890 0.895 0.894 0.930 0.929 0.928 0.934
2 5 0.546 0.547 0.553 0.576 0.599 0.598 0.593 0.603
10 0.785 0.783 0.787 0.787 0.833 0.832 0.840 0.850
50 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Average Time to Surveillance End

equally-spaced

1.5 5 4.41 4.33 4.47
10 8.30 8.18 8.22
50 25.04 24.19 24.57

2 5 3.70 3.57 3.76
10 5.88 5.70 5.79
50 8.48 8.49 9.21

1/4 year delay

1.5 5 4.36 4.37 4.43
10 8.06 8.08 8.18
50 23.60 23.76 24.81

2 5 3.57 3.58 3.70
10 5.56 5.60 5.79
50 9.61 9.80 11.29

1/2 year delay

1.5 5 2.51 2.54 2.76
10 5.06 5.13 5.38
50 21.47 21.85 23.29

2 5 3.61 3.62 3.71
10 5.76 5.82 5.97
50 13.60 13.73 15.58

4.37 4.58 4.59 4.60 4.61
8.31 8.68 8.71 8.76 8.91
25.26 29.18 29.35 29.84 31.68
3.65 3.91 3.93 3.97 4.02
5.98 6.58 6.64 6.74 7.04
11.13 15.78 15.95 16.26 18.57
4.37 3.46 3.46 3.53 3.61
8.29 6.85 6.89 7.16 7.57
25.16 27.54 27.59 28.22 30.32
3.65 3.92 3.93 3.99 4.04
5.98 6.57 6.61 6.73 7.03
11.14 15.78 15.84 16.27 18.57
3.24 3.47 3.49 3.54 3.61
5.63 6.82 6.85 7.16 7.55
23.51 27.64 27.71 28.35 30.30
3.88 3.93 3.94 3.98 4.02
6.19 6.56 6.59 6.76 7.04
14.21 16.40 16.49 17.51 18.60

setting we do not expect information to accumulate very
rapidly. In fact, we may not want to test until we achieve
sample sizes that are comparable to those in pre-licensure
studies to maximize the value added by the post-licensure
evaluation and achieve power that was not possible prior
to licensure. Delaying the first test can greatly increase
overall power and can meaningfully shorten the time-to-
surveillance-end.
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4. APPLICATION: MMRV VACCINE
SAFETY SURVEILLANCE

In 2005, a new combination MMRV vaccine comprised
of measles, mumps, rubella and varicella components was
licensed for use among children 1 to 12 years of age. This
single-shot vaccine was intended to replace the need for two
separate injections of the measles, mumps and rubella vac-
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Figure 1. Percentage of rejection over time for Pocock and

O'Brien-Fleming boundaries, varying the testing frequency

(daily, quarterly), relative risk, and the expected number of
events.

cine (MMR) and the varicella vaccine. In February 2006,
the VSD began monitoring the safety of MMRV among
children 1-2 years of age compared to historical recipients
of MMR and varicella vaccine separately. Six adverse out-
comes were separately monitored, including ataxia, menin-
gitis and encephalitis, thrombocytopenia, febrile seizure,
arthritis and allergic reactions. Data from seven sites were
analyzed weekly using the Poisson-based MaxSPRT method
(i.e., a continuous likelihood ratio test with a flat boundary).
The total cumulative sample size Ny was 150,000 vaccines,
which was chosen to achieve a specific upper limit on the
expected number of adverse events [10]. We focus on the

seizure data in this paper. Before the study started, each
site estimated the site-specific seizure rates among a his-
torical comparison population comprised of individuals who
received MMR and varicella vaccines separately from that
site during the five years prior to the introduction of the
MMRV vaccine. An elevated seizure risk was detected at
week 38 when the observed log likelihood ratio statistic ex-
ceeded the preset MaxSPRT rejection boundary (4.117). In
this section, we present the results of a re-analysis of the
seizure outcome using a group sequential framework.

In our re-analysis, we used the available total cumulative
sample size Np = 150,000, although in a new study, one
would compute the sample size based on the desired power.
We selected a Pocock boundary to improve the likelihood
of detecting early signals. On average, 500 newly vaccinated
subjects were observed each week of the study. Therefore
we chose 500 as the between-test sample size to approxi-
mate weekly monitoring, 1,000 for bi-weekly, and 2,000 for
monthly. We examined designs with equally-spaced weekly,
bi-weekly and monthly tests, and also examined 1/4 year
and 1/2 year delays for the first test, followed by subsequent
daily, weekly, bi-weekly and monthly monitoring. All three
between-test sample sizes yielded power close to 1 for a 1.5
relative risk. The results for our analyses are summarized in
Table 2.

The original MaxSPRT continuous monitoring design de-
tected a seizure signal on week 38. With (approximately)
weekly monitoring, although the boundaries are reduced to
around 3.5 from 4.12; the signal is still not detected until
week 38. The log likelihood ratio test statistics at weeks 33
and 36 are very close to, but do not exceed, the correspond-
ing critical values. With (approximately) bi-weekly monitor-
ing, the boundaries further decreases to around 3.4, and a
signal is detected earlier on week 33. With (approximately)
monthly looks, the critical values are around 3.2, but the
signal is not identified until week 39 because the monitoring
frequency is reduced. When we delay the first test by a 1/2
year (sample size at first test was 5,099), the boundaries for
weekly, bi-weekly and monthly all drop by about 0.1, and
signals are detected at weeks 33, 36, 36, respectively. This
example demonstrates that several group sequential designs
yield lower boundaries, increase the power to detect elevated
risks of rare adverse events, and potentially result in time-
lier signaling compared to a continuous sequential design.
In this example, delaying the first test generally results in
a shorter time-to-surveillance-end, but it does not substan-
tially improve signal timeliness compared to designs that do
not delay the first test. However, for situations where the
outcome is rarer and the evidence for a safety problem ap-
pears relatively later, we expect that delaying the first test
would greatly shorten the time to detection.

5. DISCUSSION

Continuous sequential testing methods have been pro-
posed to facilitate rapid detection of safety signals in post-
licensure studies [10, 19], but group sequential methods com-
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Table 2. MMRYV example data and group sequential testing boundaries for approximately weekly, bi-weekly, and monthly
testing (between-test sample size 500, 1,000, 2,000, respectively), with a Pocock boundary, and equally-spaced testing or a
delayed first test by half a year

Week | Cum. # | Cum. # | Cum. expected | Observed | Observed | Boundary, | Boundary, equal space | Boundary, delay 1/2 yr
vaccine | event # event RR(5) LLR continuous | 500 1000 | 2000 | 500 1000 | 2000

1 48 0 0.060 0.000 0.000 4.117

2 110 0 0.144 0.000 0.000 4.117

3 194 0 0.257 0.000 0.000 4.117

4 295 0 0.400 0.000 0.000 4.117

5 402 0 0.550 0.000 0.000 4.117

6 497 0 0.685 0.000 0.000 4.117

7 627 0 0.865 0.000 0.000 4.117 | 3.576

8 731 0 1.011 0.000 0.000 4.117

9 865 0 1.191 0.000 0.000 4.117

10 1011 1 1.387 0.721 0.000 4.117 | 3.538 | 3.318

11 1177 3 1.604 1.870 0.482 4.117

12 1353 5 1.833 2.728 1.851 4.117

13 1514 5 2.043 2.447 1.518 4.117 | 3471

14 1686 6 2.265 2.649 2.110 4.117

15 1845 6 2.472 2.427 1.792 4.117

16 2021 7 2.702 2.591 2.366 4.117 | 3.481 | 3.359 | 3.191

17 2147 7 2.863 2.445 2.121 4.117

18 2306 7 3.077 2.275 1.831 4.117

19 2505 7 3.340 2.096 1.520 4.117 | 3.480

20 2710 7 3.616 1.936 1.240 4.117

21 2920 7 3.908 1.791 0.989 4.117

22 3127 9 4.198 2.144 2.061 4.117 | 3.486 | 3.367

23 3462 9 4.668 1.928 1.577 4.117

24 3819 9 5.164 1.743 1.164 4.117 | 3.466

25 4236 10 5.749 1.739 1.284 4.117 | 3.470 | 3.397 | 3.230

26 4648 10 6.329 1.580 0.903 4.117 | 3.474

27 5099 10 6.966 1.436 0.581 4.117 | 3.512 | 3.382 3.293 | 3.196 | 3.052
28 5597 11 7.673 1.434 0.635 4.117 | 3.488

29 6202 15 8.549 1.755 1.982 4.117 | 3.523 | 3.413 | 3.235 | 3.301 | 3.235

30 6842 15 9.468 1.584 1.370 4.117 | 3.483 3.311

31 7464 16 10.358 1.545 1.315 4.117 | 3.466 | 3.416 3.272 | 3.164 | 3.070
32 8211 18 11.435 1.574 1.602 4.117 | 3.471 | 3.447 | 3.200 | 3.293 | 3.190

33 9016 23 12.604 1.825 3.438 4.117 | 3.452 | 3.388 3.285

34 9896 24 13.920 1.724 2.994 4.117 | 3.524 3.196 | 3.055
35 10730 26 15.156 1.715 3.188 4.117 | 3.441 3.207 3.215

36 11533 28 16.348 1.713 3.415 4.117 | 3.479 3.208 | 3.104
37 12345 29 17.575 1.650 3.099 4.117 | 3.457 3.222

38 13168 34 18.795 1.809 4.949 4.117 | 3.428

39 14063 35 20.120 1.740 4.497 3.247

monly employed in RCTs have received less attention in this
setting. Group sequential methods are important to consider
since continuous testing may not always be feasible in prac-
tice. We have proposed a new approach for monitoring rare
adverse events that uses group sequential testing methods
and is tailored for post-licensure safety questions and to ac-
count for complications like confounding that arise in this
non-randomized setting. The key advantage of this method
is that it is more efficient and flexible than previously used
continuous sequential testing methods. Although we have fo-
cused on a Poisson outcome with historical controls and like-
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lihood ratio testing in this paper in order to facilitate com-
parability with previously applied methods in post-licensure
safety evaluations, our method can easily be extended to
other outcome types (e.g., binomial), other study designs
(e.g., designs using concurrent comparisons), and other test
statistics (e.g., a relative risk).

Our proposed approach uses boundaries that account
for potential changes over time in the distribution of con-
founders in the study population and in planned between-
test sample sizes, complications introduced by the lack of
an experimental study and thus not previously of concern



in RCT settings. Adjustment for confounding of the test
statistic is handled through stratification, but development
of methods that can more fully accommodate confounding
(e.g., regression adjustment approach which can incorpo-
rate continuous confounders) is recommended. Additionally,
in this paper we limited our focus to a single outcome per
person. If there are multiple correlated outcomes, a multi-
comparison or joint modeling approach may need to be de-
veloped. For a relatively small number of multiple outcomes
using a conservative Bonferroni correction or an extension
of a multi-outcome Chi-square test developed for group se-
quential methods may be feasible [7]. However, for safety
surveillance it may be appropriate to monitor individual
outcomes separately to increase power especially when out-
comes are not strongly correlated. When monitoring a large
number of outcomes, then methods such as data mining that
use joint modeling of all outcomes could be extended to this
group sequential observational setting.

In this paper, we have used Monte Carlo simulation to
determine boundary values, but a previous approach using
asymptotic distribution properties of the likelihood ratio
test statistic to form the boundary may be used alterna-
tively [11]. However evaluation of this asymptotic boundary
approach in the rare event setting, which is typical for post-
market surveillance, may need to be conducted.
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