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Empirical likelihood in some nonparametric and
semiparametric models
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In this very selective overview, we summarise the re-
cent developments by our own and other, on the empiri-
cal likelihood in some nonparametric and semiparametric
regression models. The models include the partially linear
model, the single-index model, the partially linear single-
index model, the varying coefficient model, and so on. The
focus of this overview is to expatiate the adjustment and
“bias correction” methodologies when Wilks’ phenomenon
does not hold. The adjustment or bias correction can make
the limiting distributions tractable such that they can be di-
rectly used to construct the confidence regions of parameters
of interest without the assistance of Monte Carlo approxi-
mation.
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1. INTRODUCTION

Since the empirical likelihood was proposed by Art Owen
in 1988, there has been much research in literature ranging
from parametric to nonparametric statistical inference. Hall
and La Scale (1990) gave the first review to summarize the
main properties of the empirical likelihood in mainly para-
metric models. Owen (2001) published the first book in this
area to summarize the results up to that time. Chen and
Keilegon’s (2009) review focused on the recent development
of the empirical likelihood. Xue and Zhu (2010) published a
book that mainly summarizes the their recent results about
nonparametric and semiparametric models when the empir-
ical likelihood is applied.

Recent years, the empirical likelihood method has re-
ceived great attention when we deal with statistical inference
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for nonparametric and semiparametric regression models.
These models include fully nonparametric regression, single-
index, partially linear single-index, varying coefficient mod-
els, so on and so forth. However, how to efficiently apply the
empirical likelihood to these models is of particular interest
and challenging. This is because for such models, the classi-
cal empirical likelihood ratios are often not asymptotically
distribution-free. The main reason causing this difficulty is
that in such models, there are two unknowns: the parameters
of interest and some nonparametric link functions or addi-
tive functions, of which we need to regard them as infinite-
dimensional nuisance parameters. When we consider con-
structing confidence regions for the parameters of interest in
these models, plug-in estimators are needed to replace these
unknown infinite-dimensional nuisance parameters. This is a
commonly used method in literature that causes the classical
empirical likelihood to often not have Wilks’ phenomenon. A
commonly used method relies on the assistance of the Monte
Carlo approximation. A very useful alternative is to correct
the bias such that limiting distributions are tractable. We
in recent years have been studying this problem and pro-
posed several adjustment and bias correction methods for
the aforementioned models.

As there are a great number of works about the empirical
likelihood in literature, it is impossible to give a complete
overview. Thus, we only select six nonparametric and semi-
parametric models in this overview. The materials are or-
ganized in the following way. Section 2 describes the results
on the single-index model. The classical bias corrections in
literature are used. Section 3 expatiates the results on the
partially linear single-index model to describe the new bias
correction proposed in Zhu and Xue (2006). Section 4 sum-
marizes the results on the partial linear model with lon-
gitudinal data, and Section 5 presents the bias correction
method for the varying coefficient model with longitudi-
nal data. Section 6 discusses a nonlinear errors-in-variables
model with validation data. Section 7 introduces some other
works. Most materials come from our research articles.

2. SINGLE-INDEX MODEL

2.1 Estimated empirical likelihood

Suppose that Y is a scalar response variable and X is p-
dimension explanatory variable. The single-index model is
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written as

Y = g(βTX) + ε,(1)

where g(·) is an unknown univariate link function, β is
an unknown vector in Rp, and ε is a random error with
E(ε|X) = 0 almost surely. For identifiability purposes, we
typically assume that ‖β‖ = 1 with its first nonzero element
being positive, where ‖ · ‖ denotes the Euclidean norm.

Xue and Zhu (2006) considered the following approach
to construct confidence region of β by empirical likelihood.
Suppose that the recorded data {(Xi, Yi), 1 ≤ i ≤ n} are
generated by the model (1), this is

Yi = g(βTXi) + εi, i = 1, . . . , n,(2)

where ε1, . . . , εn are independent and identically distributed
(i.i.d.) random errors with E(εi|Xi) = 0, 1 ≤ i ≤ n, and
Xi = (Xi1, . . . , Xip)

T ∈ Rp.

Note that ‖β‖ = 1 is actually a constraint and then β
has only p−1 free components. This constraint will be used
to construct a p − 1 dimensional confidence region of β,
and the confidence region of the remaining component can
be determined by the others automatically. Specifically, let
β = (β1, . . . , βp)

T, and β(r) = (β1, . . . , βr−1, βr+1, . . . , βp)
T

be a p−1 dimensional parameter vector after deleting the rth
component βr of β. Without loss of generality, we assume
that the βr is a positive component (otherwise, consider
βr = −(1− ‖β(r)‖2)1/2). Then, we write

β ≡ β(β(r)) = (β1, . . . , βr−1, (1−‖β(r)‖2)1/2, βr+1, . . . , βp)
T.

The true parameter β(r) satisfies the constraint ‖β(r)‖ < 1.
Thus, β is infinitely differentiable in a neighborhood of the
true parameter β(r), the Jacobian matrix is

Jβ(r) =
∂β

∂β(r)
= (γ1, . . . , γp)

T,

where γs (1 ≤ s ≤ p, s �= r) is a p−1 dimensional unit vector
with sth component 1, and γr = −(1− ‖β(r)‖2)−1/2β(r).

Denote X
(r)
i = (Xi1, . . . , Xi,r−1, Xir, . . . , Xip)

T. Since

βTXi = β(r)TX
(r)
i +(1−‖β(r)‖2)1/2Xir, both g(βTXi) and

g′(βTXi) are the function of β(r). A direct way to construct
the empirical likelihood ratio by the following auxiliary ran-
dom vector

Zi(β
(r)) = [Yi − g(βTXi)]g

′(βTXi)J
T
β(r)Xi.

Note that E[Zi(β
(r))] = 0 if β is the true parameter.

Whereas, when E[Zi(β
(r))] = 0, an estimating equation∑n

i=1 Zi(β
(r)) = 0 can be constructed. Define the profile

empirical log-likelihood ratio function

ln(β
(r)) = −2max

{ n∑
i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,
n∑

i=1

piZi(β
(r)) = 0

}
.

To obtain the plug-in estimation of the unknown g(βTXi)
and g′(βTXi) in ln(β

(r)), they used local linear smoother
(Fan and Gijbels 1996). The estimators of g(t) and g′(t) are
of the following formulas

ĝ(t;β) =

n∑
i=1

Wni(t;β)Yi

and

ĝ′(t;β) =
n∑

i=1

W̃ni(t;β)Yi,

for some weight functions specified in Xue and Zhu (2006).
Let Ẑi(β

(r)) be an estimator of Zi(β
(r)) with g(βTXi)

and g′(βTXi) being replaced by ĝ(βTXi;β) and ĝ′(βTXi;β)
respectively for i = 1, . . . , n. Then an estimated empirical
log-likelihood is defined as

l̂(β(r)) = −2max

{ n∑
i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piẐi(β
(r)) = 0

}
.

By the Lagrange multiplier method, l̂(β(r)) can be repre-
sented as

l̂(β(r)) = 2

n∑
i=1

log
(
1 + λTẐi(β

(r))
)
,(3)

where λ is determined

1

n

n∑
i=1

Ẑi(β
(r))

1 + λTẐi(β(r))
= 0.(4)

Under certain regularity conditions,

l̂(β(r))
D−→ w1χ

2
1,1 + · · ·+ wp−1χ

2
1,p−1,

where
D−→ denotes convergence in distribution, the weights

wi, for 1 ≤ i ≤ p − 1, are eigenvalues of D(β(r)) =
V −1
0 (β(r))V (β(r)), and χ2

1,i(1 ≤ i ≤ p − 1) are independent

χ2
1 variables.
To apply this result to construct a confidence region (in-

terval) of β(r), we need to estimate the unknown weights
wi consistently and approximate the conditional distribu-
tion of the weighted sum ŝ = ŵ1χ

2
1,1 + · · · + ŵp−1χ

2
1,p−1
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given the data {(Xi, Yi), 1 ≤ i ≤ n}. It is a computationally
intensive method. Two adjustments of the empirical likeli-
hood ratio are suggested to make the asymptotic distribu-
tion tractable.

2.2 Two adjusted empirical likelihood

The first adjustment is based on Rao and Scott (1981)’s
method. Let ρ(β(r)) = (p− 1)/tr{D(β(r))} with tr(·) being
the trace operator. Then following Rao and Scott (1981),

the distribution of ρ(β(r))
∑p−1

i=1 wiχ
2
1,i can be approximated

by a standard chi-square distribution with p − 1 degrees of
freedom, χ2

p−1. This implies that the asymptotic distribu-
tion of the Rao-Scott adjusted empirical log-likelihood ratio
ρ̂(β̂(r))l̂(β(r)) can be approximated by χ2

p−1. This can be
achieved by using the above result and the consistency of
V̂ (β̂(r)) and V̂0(β̂

(r)), where ρ̂(β̂(r)) = (p − 1)/tr{D̂(β̂(r))}.
The Rao-Scott adjusted empirical log-likelihood can be
improved by replacing β̂(r) in ρ̂(β̂(r)) by β(r). An im-
proved Rao-Scott adjusted empirical log-likelihood is de-
fined as

l̃(β(r)) = ρ̂(β(r))l̂(β(r)).

However, the accuracy of this approximation depends on
the values of the w′

is.

The second adjustment is to make the empirical log-
likelihood ratio asymptotically follow a standard chi-square
distribution with p− 1 degrees of freedom. Note that

ρ̂(β̂(r)) =
tr{V̂ −1(β̂(r))V̂ (β̂(r))}
tr{V̂ −1

0 (β̂(r))V̂ (β̂(r))}
.

By examining the asymptotic expansion of l̂(β(r)),

we replace V̂ (β̂(r)) in ρ̂(β̂(r)) by B̂(β̂(r)) ={∑n
i=1 Ẑi(β̂

(r))
}{∑n

i=1 Ẑi(β̂
(r))
}T

and obtain a different
adjustment factor

r̂(β̂(r)) =
tr{V̂ −1(β̂(r))B̂(β̂(r))}
tr{V̂ −1

0 (β̂(r))B̂(β̂(r))}
.

It can be shown that r̂(β̂(r))l̂(β(r)) is an asymptotically χ2
p−1

variable. To increase the accuracy of approximation, we re-
place β̂(r) in r̂(β̂(r)) by β(r), and define an adjusted empirical
log-likelihood by

l̂ad(β
(r)) = r̂(β(r))l̂(β(r)).(5)

In the following section, partially linear single-index
model is investigated and a more sophisticated technique
is suggested.

Under certain regularity conditions,

l̂ad(β
(r))

D−→ χ2
p−1.

3. PARTIALLY LINEAR SINGLE-INDEX
MODEL

3.1 Methodology

A partially linear single-index model for the dependence
of a scalar response variable Y and two covariables X and
Z has the form

Y = g(βTX) + θTZ + ε,(6)

where (X,Z) ∈ Rp × Rq, g(·) is an unknown univariate
link function, (β, θ) is an unknown vector in Rp × Rq with
‖β‖ = 1 and first nonzero component positive. Assume that
the sample {(Xi, Zi, Yi), 1 ≤ i ≤ n} are independent and
identically distributed (i.i.d.) and

Yi = g(βTXi) + θTZi + εi, i = 1, . . . , n,(7)

where {εi, 1 ≤ i ≤ n} are i.i.d. random errors with
E(εi|Xi, Zi) = 0, 1 ≤ i ≤ n; Xi = (Xi1, . . . , Xip)

T ∈ Rp

and Zi = (Zi1, . . . , Ziq)
T ∈ Rq.

Introduce an auxiliary random vector ξi(β, θ) = [Yi −
g(βTXi) − θTZi]Λi, where Λi = (g′(βTXi)X

T
i Jβ(r) , ZT

i )
T

where g′ is the derivative of g with respect to β(r). Note
that E[ξi(β, θ)] = 0 if (β, θ) is the true parameter. Using
this, an empirical log-likelihood ratio function is defined as

ln(β, θ) = −2max

{
n∑

i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piξi(β, θ) = 0

}
.

Similar to that in Section 2, the two unknown functions
g(βTXi) and g′(βTXi) in ln(β, θ) can be estimated by local
linear smoothing method as

ĝ(t;β, θ) =
n∑

i=1

Wni(t;β)(Yi − θTZi)(8)

and

ĝ′(t;β, θ) =
n∑

i=1

W̃ni(t;β)(Yi − θTZi),(9)

When replacing ξi(β, θ) in ln(β, θ) by ξ̂i(β, θ) in terms of
using, for i = 1, . . . , n, ĝ(βTXi;β, θ) and ĝ′(βTXi;β, θ) in
place of g(βTXi) and g′(βTXi), an estimated empirical log-
likelihood, say l̃n(β, θ), can be defined. Such plug-in estima-
tors make that l̃n(β, θ) is asymptotically a weighted sum of
independent standard chi-squared variables, each with one
degree of freedom and an unknown weight. Although the ad-
justments in Section 2 can be used, we will propose a more
sophisticated technique here.

Note that ξ̂i are weighted residuals. To eliminate a re-
mainder which has a slower convergence rate than

√
n when
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an optimal bandwidth is used, we consider a conditional
centering to correct bias. The bias-corrected empirical log-
likelihood (BCEL) ratio is defined as

l̂(β, θ) = −2max

{
n∑

i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,(10)

n∑
i=1

piη̂i(β, θ) = 0

}
,

where

η̂i(β, θ) = [Yi − ĝ(βTXi;β, θ)− θTZi]
[
ĝ′(βTXi;β, θ)(11)

×
(
Xi − μ̂1(β

TXi;β)
)T

Jβ(r) ,

(Zi − μ̂2(β
TXi;β))

T
]T

,

μ̂1(t;β) and μ̂2(t;β) are the estimators of μ1(t) =
E[X|βTX = t] and μ2(t) = E[Z|βTX = t] respectively
in the following.

μ̂1(t;β) =

n∑
i=1

Wni(t;β)Xi

and

μ̂2(t;β) =

n∑
i=1

Wni(t;β)Zi.

Under certain regularity conditions, l̂∗(β(r), θ)
D−→

χ2
p+q−1, where l̂

∗(β(r), θ) is the same as l̂(β, θ) replacing the

Jacobian matrix Jβ(r) by J∗
β(r) = (γ∗

1 , . . . , γ
∗
p)

T, γ∗
s (s �= r) is

a (p−1)-dimensional unit vector with sth component 1 and
γ∗
r = −(1− ‖β(r)‖2)−1/2β(r).
This result shows that once we obtain the confidence re-

gions of (β(r), θ), the confidence region of (β, θ) can be imme-
diately obtained through the relation βr = (1−‖β(r)‖2)1/2.

We now consider the pure single-index model studied in
Section 2. Rewrite (11) as

η̂i(β) = [Yi − ĝ(βTXi;β)]ĝ
′(βTXi;β)J

T
β(r)

(
Xi − μ̂1(β

TXi)
)
.

Let l̂(β) denote l̂(β, θ) with η̂i(β, θ) replaced by η̂i(β) in
(10). We have

l̂∗(β(r))
D−→ χ2

p−1,

where l̂∗(β(r)) is l̂(β) with Jβ(r) replaced by J∗
β(r) .

When β = 1, model (6) is reduced to a partially linear
model. Then estimation and statistical inference for β makes
no sense. In this case, we introduce a random vector η̂i(θ) =

[Yi − ĝ(Xi) − θTZi]
[
Zi − μ̂2(Xi)

]
. Let l̂(θ) denote l̂(β, θ)

with η̂i(β, θ) being replaced by η̂i(θ). All the above results
can be directly used to construct confidence regions of the
parameters of interest.

We have that under some regularity conditions, l̂(θ)
D−→

χ2
q .

4. A PARTIAL LINEAR MODEL WITH
CENSORED AND LONGITUDINAL DATA

For longitudinal data, Zeger and Diggle (1994) considered
the partial linear model of the form

Y (t) = XT(t)β + θ(t) + ε(t),(12)

where Y (t) is the response variable and X(t) is the p × 1
covariate vector at time t, β is a p × 1 vector of unknown
regression coefficients, θ(t) is an unspecified baseline func-
tion of t, and ε(t) is a zero-mean stochastic process. Here
t ranges over a nondegenerate compact interval T , without
loss of generality assumed to be the unit interval [0, 1]. Fur-
thermore, the observation times are censored at the end of
follow-up. As such, this model is with both censored and
longitudinal data.

4.1 Naive empirical likelihood

Suppose that we have a random sample of n subjects. For
the ith subject, the response variable Yi(t) and the covariate
vectors Xi(t) are collected at time points t = ti1, . . . , tini ,
i = 1, . . . , n, where ni is the total number of observations
on the ith subject. Thus,

Yi(tij) = XT
i (tij)β + θ(tij) + εi(tij)(13)

for i = 1, . . . , n and j = 1, . . . , ni. Assume that both
(Xi(tij), Yi(tij)) and εi(tij) from different subjects are in-
dependent and E{εi(tij)|Xi(tij)} = 0. We also assume in
our asymptotic study that ni is bounded but the number of
subjects n goes to infinity.

To deal with censoring of the observation times, a count-
ing process approach is applied, which is similar to Lin and
Ying (2001) and Fan and Li (2004). The time points at which
the observations on the ith subject are made are character-
ized by the counting process Ni(t) ≡

∑ni

j=1 I(tij ≤ t), where
I(·) is the indicator function. Let Ni(t) = N∗

i {min(t, Ci)},
where N∗

i (t) is a counting process in continuous time t ∈
[0, 1] and Ci is the follow-up or censoring time. Following
Lin and Ying (2001), the counting process Ni(t) is a ran-
dom sample from a certain population, and both Xi(t) and
Yi(t) were observed at the jump points Ni(t). The censor-
ing time Ci is allowed to depend on the vector of covariates
Xi(t) in an arbitrary manner. In this section the censoring
mechanism is assumed to be noninformative in the sense
that

E{Yi(t)|Xi(t), Ci ≥ t} = E{Yi(t)|Xi(t)}.
Lin and Ying (2001) considered two situations, depending

on whether or not the observation times are independent of
the covariates X(t). When the observation times depend on
the covariates, following Lin and Ying (2001), assume that

E{dN∗
i (t)|Xi(t), Yi(t), Ci ≥ t} = exp{γTXi(t)}dΛ(t),

i = 1, . . . , n,

370 L. Xue and L. Zhu



where γ is a vector of unknown parameters and Λ(·) is an
arbitrary nondecreasing function. When γ = 0, the observa-
tion times are independent of the covariates.

Note that

E{Yi(tij)} = E{XT
i (tij)}β + θ(tij).

This together with (13) yields

Yi(tij)− E{Yi(tij)} = [Xi(tij)− E{Xi(tij)}]Tβ + εi(tij).

(14)

Consider constructing the empirical likelihood ratio for β.
Let w(·) be a bounded nonnegative weight function with

a compact support, [a, b], where 0 < a < b < 1. We as-
sume that a ≥ h and 1 − b ≥ h, where h is a bandwidth
defined in (15) below. Then the auxiliary random vectors
are introduced as

Zi(β) =

∫ 1

0

w(t)X̆i(t){Y̆i(t)−X̆T
i (t)β}dNi(t), i = 1, . . . , n,

where X̆i(t) = Xi(t) − E{Xi(t)} and Y̆i(t) = Yi(t) −
E{Yi(t)}. Note that E

{
Zi(β)

}
= 0 when β is the true pa-

rameter. When two estimators of E{Xi(t)} and E{Yi(t)} are
used as plug-in estimators in E

{
Zi(β)

}
, an empirical likeli-

hood ratio can then constructed as was done in the previous
sections.

Consider two mean function models,

X(t) = mX(t) + ε(t), Y (t) = mY (t) + δ(t),

where mX(t) = E{X(t)}, mY (t) = E{Y (t)}, and ε(t) and
δ(t) are the zero-mean error terms. This is a nonparametric
regression problem, and mX(t) and mY (t) can be estimated
by kernel smoother as follows and the estimators are respec-
tively defined as

m̂X(t) =

n∑
i=1

ni∑
j=1

Wij(t)Xi(tij),

m̂Y (t) =

n∑
i=1

ni∑
j=1

Wij(t)Yi(tij),

where

Wij(t) = Kh(tij − t)

/ n∑
k=1

nk∑
l=1

Kh(tkl − t),(15)

h is a bandwidth, Kh(·) = K(·/h) and K is a kernel func-
tion.

Therefore, an estimator Ẑi(β) of Zi(β) can be obtained
by substituting mX(t) and mY (t) of Zi(β) with m̂X(t) and
m̂Y (t); that is,

Ẑi(β) =

∫ 1

0

w(t)X̃i(t)
{
Ỹi(t)− X̃T

i (t)β
}
dNi(t),

i = 1, . . . , n,

where X̃i(t) = Xi(t)− m̂X(t) and Ỹi(t) = Yi(t)− m̂Y (t). An
estimated empirical likelihood ratio for β is defined as

L̂(β) = max

{
n∏

i=1

(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,
n∑

i=1

piẐi(β) = 0

}
.

For θ(t), a profile empirical log-likelihood ratio is defined
by

l̃{θ(t)} = −2max

{
n∑

i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piη̂i{θ(t)} = 0

}
,

where

η̂i{θ(t)} =

ni∑
j=1

{
Yi(tij)−XT

i (tij)β̂ − θ(t)
}
Kh(tij − t).

In other words, although the plug-in estimators of these
nonparametric functions E{X(t)} and E{Y (t)} have slower
rates of convergence than the estimator of β, this does not
affect the first-order behaviour of the empirical likelihood
in the proposed empirical likelihood ratio. The main reason
for this is the use of the centered X(t) and Y (t) which is a
kind of bias correction for the empirical likelihood function
L̂(β). For the classical partly linear model, Wang and Jing
(2003) derived a similar result.

However, for the baseline function θ(·), the situation is
not so good, and then a particular bias correction designed
for l̃{θ(t)} is necessary.

4.2 Bias-corrected empirical likelihood

4.2.1 Mean-corrected empirical likelihood

Xue and Zhu (2007b) derived that an asymptotic pre-
sentation of the profile empirical loglikelihood ratio l̃{θ(t0)}
as

l̃{θ(t0)} =

(
n∑

i=1

η̂i{θ(t0)}
)2/ n∑

i=1

η̂2i {θ(t0)}+ oP (1)(16)

which converges in distribution to χ2
1 under some reg-

ularity conditions and the bandwidth satisfying that
nh2/ logn → ∞ and nh5 → 0. That is, we have to under-
smooth the estimator of θ(t0). When the optimal bandwidth
is used and the empirical likelihood confidence intervals for
θ(t) is constructed, we must make a correction for l̃{θ(t)}.
Let

ξ̂{θ(t)} =

(
2b̂(t) · 1√

nh

n∑
i=1

η̂i{θ(t)} − b̂2(t)

)

×
(

1

nh

n∑
i=1

η̂2i {θ(t)}
)−1

.
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A mean-corrected empirical loglikelihood ratio is defined as

l̃∗{θ(t)} = l̃{θ(t)} − ξ̂{θ(t)}.(17)

Then l̃∗{θ(t0)} → χ2
1.

4.2.2 Residual-adjusted empirical likelihood

A more sophisticated correction can be carried out
through the asymptotic expansion of the empirical likeli-
hood ratio. We can adjust the weighted residuals η̂i(θ(t))
and then obtain an adjusted empirical likelihood ratio. In-
troduce the auxiliary random variables

η̂∗i {θ(t)} =

ni∑
j=1

[
Yi(tij)−XT

i (tij)β̂ − θ(t)

− {θ̂(tij)− θ̂(t)}
]
Kh(tij − t).

A residual-adjusted empirical loglikelihood ratio can be de-
fined as

l̂∗{θ(t)} = −2max

{
n∑

i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piη̂
∗
i {θ(t)} = 0

}
.

This correction is better in form than the mean-corrected
empirical likelihood ratio because it guarantees the nonneg-
ativity of the ratio. In addition, by the residual-adjustment
in η̂∗i {θ(t)}, we not only correct the bias, but also avoid un-

dersmoothing the baseline function θ(t). l̂∗{θ(t0)} is asymp-
totically chi-squared χ2

1.

5. VARYING COEFFICIENT MODEL

5.1 Classical empirical likelihood

For longitudinal data, another useful model is the varying
coefficient model:

Yij = XT
i (tij)β(tij) + εi(tij),(18)

where, for all tij ∈ R, Xi(tij) = (1, Xi1(tij), . . . , Xik(tij))
T

are real-valued covariates at time tij , β(·)= (β0(·), . . . ,
βk(·))T, βr(·) are smooth functions for all r = 0, . . . , k,
εi(·) are mean 0 stochastic processes, and εi(·) and Xi(·)
are independent.

For a given time t ∈ R, we can define a least squares es-
timator of β(t) by a minimizer of the sample version of the
conditional mean squared error E{[Y (t) − XT(t)β(t)]2|t},
or the solution to E{[Y (t)−XT(t)β(t)]X(t)|t} = 0. This is
equivalent to the minimizer of E{[Y (t)−XT(t)β(t)]2|t}f(t),
or the solution of E{[Y (t)−XT(t)β(t)]X(t)|t}f(t) = 0. As
nonparametric conditional expectation given t is involved, a
local smoothing method is needed to obtain the sample ver-

sion. To define the empirical likelihood estimator, we employ
the constraint E{[Y (t) − XT(t)β(t)]X(t)|t}f(t) = 0. With
this, the auxiliary random vectors are introduced as follows:

Zi(β(t)) =

ni∑
j=1

[
Yij −XT

i (tij)β(t)
]
Xi(tij)Kh(t− tij),(19)

where h is a bandwidth, Kh(·) = K(·/h), and K is a kernel
function.

Note that the {Zi(β(t)); 1 ≤ i ≤ n} are independent, and
that E

[
Zi(β(t))

]
= 0. A classical empirical log-likelihood

ratio function for β(t) can be defined by

R(β(t)) = −2max

{
n∑

i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piZi(β(t)) = 0

}
,

where pi = pi(t), i = 1, . . . , n. It has been showed that under
some regularity conditions R(β(t)) converges in distribution
to, when Nh → ∞ and Nh5 → 0, χ2

k+1. This result means
that even nonparametric smoother is involved in defining
Zi(β(t)) in (19), the Wilks’ phenomenon still holds when
undersmoothing is used. But undersmoothing makes a dif-
ficulty to appropriately select the bandwidth in the kernel
estimation.

5.2 Residual-adjusted empirical likelihood

A more sophisticated correction can be carried out
through the asymptotic expansion of the empirical likeli-
hood ratio without undersmoothing.

Introduce the following auxiliary random vectors

Ẑi(β(t)) =

ni∑
j=1

{
Yij −XT

i (tij)β(t)

−XT
i (tij)[β̂(tij)− β̂(t)]

}
Xi(tij)Kh(t− tij).

Clearly, Ẑi are adjustments of Zi of (19). An adjusted em-
pirical log-likelihood ratio function for β(t) can be defined
as

R̂(β(t)) = −2max

{ n∑
i=1

log(npi)
∣∣∣ pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piẐi(β(t)) = 0

}
.

It can be shown that R(β(t)) is asymptotically chi-squared
under mild conditions with the optimal bandwidth h =
O(N−1/5). That is, R̂(β(t0)) can also be asymptotically
χ2
k+1.
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6. ERRORS-IN-VARIABLES MODEL

6.1 Estimated empirical likelihood

Consider the parametric regression model

Y = g(X,β) + ε(20)

Here X is a d-variate explanatory variable, Y is a scalar
response and the noise variable ε satisfies E(ε|X) = 0.
In particular, heteroscedasticity is allowed and no indepen-
dence between X and ε is required. Also Y and/or some of
the X-coordinates may be discrete so existence of joint or
marginal densities may and will not be imposed. The vector
β = (β1, . . . , βp)

T of regression parameters is the unknown
target, since it fully specifies the regression function g.

However, in many cases, the explanatory variable X is
available only subject to noise. The observed variable is its
surrogate X̃. In other words, what one observes are indepen-
dent replicates (X̃i, Yi), 1 ≤ i ≤ N , of (X̃, Y ) rather than
(X,Y ), where the relationship between X̃i and Xi may be
specified or not. If not, the missing information for inference
has to be taken from a sample (X̃i, Xi), N+1 ≤ i ≤ N+n, of
so-called validation data being independent of the primary
sample.

Put

G(X̃, β) = E[g(X,β)|X̃],

where X̃ is a surrogate variable. The dimension of X̃, say
d1, may or may not differ from d. Throughout

E[ε|X̃] = 0(21)

is assumed. Conclude that

Y = G(X̃, β) + η(22)

with E[η|X̃] = 0. Recall that (X̃i, Yi), 1 ≤ i ≤ N , is our
primary sample. When G(·) is unknown, estimating β is not
possible. To circumvent this problem, a sample (X̃i, Xi), N+
1 ≤ i ≤ N +n, will be needed to estimate G. Let, for any β̃,

G(X̃, β̃) = E[g(X, β̃)|X̃]

and put

Zi(β̃) = G(1)(X̃i, β̃)
{
Yi −G(X̃i, β̃)

}
, 1 ≤ i ≤ N,

where

G(1)(X̃i, β̃) =
∂

∂β
G(X̃i, β)|β=β̃ = E

[
g(1)(Xi, β)|X̃i

] ∣∣∣∣
β=β̃

(23)

and

g(1)(Xi, β̃) =

(
∂

∂β1
g(Xi, β), . . . ,

∂

∂βp
g(Xi, β)

)T ∣∣∣∣
β=β̃

.

(24)

Clearly, when β̃ = β is the true parameter, E[Zi(β)] = 0.

When G is unknown, we have to consider the estimated
empirical likelihood ratio

l̂N (β) = −2max

N∑
i=1

ln(Npi),

where now the maximum has taken over the set of p =
(p1, . . . , pN ) satisfying

∑n
i=1 piẐi(β) = 0, pi ≥ 0 and∑N

i=1 pi = 1. Here

Ẑi(β) = Ĝ(1)(X̃i, β){Yi − Ĝ(X̃i, β)}.

The functions Ĝ and Ĝ(1) are nonparametric plug-in esti-
mators of G and G(1), respectively, obtained from the val-
idation data. The following multivariate Nadaraya-Watson
estimators are used here

Ĝ(x̃, β) =

∑N+n
k=N+1 g(Xk, β)K

(
‖X̃k−x̃‖

h

)
max

(
1,
∑N+n

k=N+1 K
(

‖X̃k−x̃‖
h

)) ,
Ĝ(1)(x̃, β) =

∂

∂β
Ĝ(x̃, β)

=

∑N+n
k=N+1 g

(1)(Xk, β)K
(

‖X̃k−x̃‖
h

)
max

(
1,
∑N+n

k=N+1 K
(

‖X̃k−x̃‖
h

)) .

Here K is a nonnegative kernel function defined on the real
line and h = hn is a positive bandwidth tending to zero as
n → ∞.

As we know, Ĝ and Ĝ(1) are no longer
√
n-consistent,

which will create a bias for the estimated empirical likeli-
hood ratio. Actually, since smoothing only incorporates

To circumvent this, for large parts of the paper, we first
study the likelihood ratio, for a given bandwidth h = hn >
0, at βh, where βn minimizes the L2-distance between Y and
the smoothed G(x̃, β̃), namely

Ḡn(x̃, β̃) =

∫
G(y, β̃)K

(
‖y−x̃‖

h

)
μ̃(dy)∫

K
(

‖y−x̃‖
h

)
μ̃(dy)

.

Here, μ̃ is the distribution of X̃. In other words,

βh = argmin
β̃

E[Y − Ḡn(X̃, β̃)]2.

Since Ḡn(X̃, β̃) → G(X̃, β̃) as h → 0 for each β̃ we may
expect that βh → β. A large part of our work is devoted
to the likelihood ratio l̂N evaluated at βh. For statistical
inference about β it remains to study β−βh, which is purely
analytic and nonstochastic. As it will turn out, l̂N (βh) will
not be asymptotically chi-squared anymore. Rather it will be
a sum of weighted independent χ2

1-variables. The asymptotic
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distribution will also depend on the ratio n/N . In particular,
we have to distinguish the two cases γ < ∞ and γ = ∞,
where

γ = lim(N/n).

For lN (β), a similar representation holds true, with Zi(β)
instead of Ẑi(βh). From this we see that lN (β) is asymptoti-

cally chi-squared. For l̂N (βh), however, the limit will be dif-
ferent. It turns out that a crucial role will be played by the
size of γ. the asymptotic behaviours with the case γ < ∞
and γ = ∞ are investigated as follows.

1. Under certain regularity conditions and γ < ∞ as
n,N → ∞,

l̂N (βh)
D−→ w1χ

2
1,1 + · · ·+ wpχ

2
1,p,

where χ2
1,i, 1 ≤ i ≤ p, are independent χ2

1-variables and
the weights wi, 1 ≤ i ≤ p, are the eigenvalues of the
matrix D(β) = (ΣT(β))1/2Σ0(β)

−1(Σ(β))1/2. Here

Σ(β) = Σ0(β) + γE
[
G(1)(X̃, β)G(1)(X̃, β)T

(
g(X,β)

−G(X̃, β)
)2]

.

2. When n,N → ∞ in such a way that γ = ∞, then

n

N
l̂N (βh)

D−→ w∗
1χ

2
1,1 + · · ·+ w∗

pχ
2
1,p,

where the weights w∗
i , 1 ≤ i ≤ p, are the eigenvalues of

the matrix

D∗(β) = (ΣT
1 (β))

1/2Σ0(β)
−1(Σ1(β))

1/2

and

Σ1(β)

= E
[
G(1)(X̃, β)G(1)(X̃, β)T(g(X,β)−G(X̃, β))2

]
.

6.2 Adjusted empirical likelihood

Apart from the above direct way to approximate the
asymptotic distributions, Rao and Scott’s (1981) approxi-
mation can be an alternative as used in Section 2.

However, the accuracy of this approximation still depends
on the values of the w′

is. Another adjusted empirical log-
likelihood (AEL) was then suggested, see Stute, Xue and
Zhu (2007) for details. AEL is asymptotically chi-squared
with p degrees of freedom. The adjustment follows an idea
of Rao and Scott (1981), and is similar to that proposed by
Wang and Rao (2002a). However, with a different ratio of n
and N , we have to select different adjustment factors. We
first consider the case γ < ∞. Note that ρ̂(β) can be written
as

ρ̂(β) =
tr{Σ̂(β)−1Σ̂(β)}
tr{Σ̂0(β)−1Σ̂(β)}

.

By examining the asymptotic expansion of l̂(β), an adjust-
ment factor can be defined as

r̂(β) =
tr{Σ̂(β)−1B̂(β)}
tr{Σ̂0(β)−1B̂(β)}

,

where B̂(β) =
{∑N

i=1 Ẑi(β)
}{∑N

i=1 Ẑi(β)
}T

. The adjusted
empirical log-likelihood is defined as

l̂ad(β) = r̂(β)l̂(β).(25)

We can show that asymptotically r̂(β̂h)l̂(βh) is a χ
2
p-variable.

From the following two results we can see that with such an
adjustment, we can get rid of the unknown weights, and,
unlike the simple extension of Rao and Scott (1981), we do

not use the estimator β̂ in the adjustment factor. The result
is as follows.

1. Under certain regularity conditions, when
limN→∞(N/n) = γ < ∞, l̂ad(βh) is asymptotically a
χ2
p-variable:

l̂ad(βh)
D−→ χ2

p.

From the above idea, we can similarly select an
adjustment factor when γ = ∞. Let B̂1(β) ={∑N+n

i=N+1 Ẑ
∗
i (β)

}{∑N+n
i=N+1 Ẑ

∗
i (β)

}T
, where, for N +

1 ≤ i ≤ N + n,

Ẑ∗
i (β̂) = Ĝ(1)(X̃i, β̂)

{
g(Xi, β̂)− Ĝ(X̃i, β̂)

}
and β̂ is the least squares estimation of β, that is,

β̂ = argminβ

{
N−1

N∑
i=1

(
Yi − Ĝ(X̃i, β)

)2}
.(26)

The adjustment factor is defined as

r̂∗(β) =
tr{Σ̂1(β)

−1B̂1(β)}
tr{Σ̂0(β)−1B̂1(β)}

.

The adjusted empirical likelihood is defined as

l̂∗ad(β) = r̂∗(β)(n/N)l̂(β).(27)

2. Under some regularity conditions, when limN→∞n =
∞, limN→∞(N/n) = ∞. l̂∗ad(βh) is a

l̂∗ad(βh)
D−→ χ2

p.

7. OTHER WORKS

7.1 Empirical likelihood and estimating
equations

Estimating equations provide an extremely flexible way
to describe parameters and the corresponding statistics. For
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a random variable X ∈ Rd, a parameter θ ∈ Rp, and a
vector-valued function m(X, θ) ∈ Rs suppose that

E[m(X, θ)] = 0.(28)

The usual setting has p = s and then under conditions
on m(X, θ) and possibly on F , there is a unique solution
θ. In this just determined case, the true value θ0 may be
estimated by solving

1

n

n∑
i=1

m(X, θ̂) = 0(29)

for θ̂. To write a vector mean by equation (28), we take

m(X, θ) = X − θ, and then equation (29) gives θ̂ = X̄.
For P (X ∈ A) take m(X, θ) = I{X ∈ A} − θ. For a
continuously distributed scalar X and θ ∈ R, the function
m(X, θ) = I{X ≤ θ} − τ defines θ as the τ quantile of X.
Owen (2001, Section 3.6) described tail probabilities and
quantiles in more detail.

Equation (29) is known as an estimating equation, and
m(X, θ) is called estimating function. Most maximum like-
lihood estimators are defined through estimating equations.

The underdetermined case s < p can also be useful. Then
(28) and (29) might each have an s − p dimensional solu-
tion set of θ values. Some functions of θ may be precisely
determined from the data, while the others will not.

In econometrics, considerable interest attaches to the
overdetermined case with s > p. In problems with s > p
the fact that (28) holds is a special feature of F and con-
stitutes important side information. Even when (28) holds
for the true F0, it will not ordinarily hold for the nonpara-
metric maximum likelihood estimate F̂ , in which case (29)
has no solution. The generalized method of moments looks
for a value θ̂ that comes close to solving (28). An empirical
likelihood approach to this problem was described in Owen
(2001, Section 3.10). Also see Qin and Lawless (1994).

The empirical likelihood and estimating equations are
well suited to each other. The empirical likelihood ratio func-
tion for θ is defined by

R(θ) = max

{
n∏

i=1

npi

∣∣∣pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pim(Xi, θ) = 0

}
.

Owen (2001) showed that −2 logR(θ0) → χ2
p in distribution

as n → ∞, where θ0 satisfies E[m(X, θ)] = 0.

7.2 Empirical likelihood in missing data
problems

In the section, we introduce two missing data problems.
In each problem, we explore the use of empirical likelihood to
effectively combine unbiased estimating equations when the

number of estimating equations is greater than the number
of unknown parameters. Most of material on this section
comes from Qin et al. (2009). Related works can be found
in Xue et al. (2011), Xue (2009a,b), Xue and Xue (2011),
and Yang et al. (2009).

7.2.1 Covariates missing at random in regression model

Let Y be a response variable and (X,Z) be a vector of
random covariates. Assume that Y and (X,Z) are related
by a regression model

Y = μ(X,Z, β) + ε,(30)

where μ(X,Z, β) is a possibly nonlinear link function in-
dexed by an unknown p × 1 vector parameter β and ε
is a random error that satisfies E(ε|X,Z) = 0 so that
E(Y |X,Z) = μ(X,Z, β). Suppose that a sample of n obser-
vations is collected where (Y,X,Z) are completely observed
on a subset of the sample but only (Y,X) are observed on
the remaining sample. Let δ be an indicator variable, which
equals 1 if Z is observed and 0 if Z is missing. The miss-
ing data mechanism associated with the missingness of Z
is characterized by the conditional distribution of δ given
(Y,X,Z), which is assumed to satisfy

P (δ = 1|Y,X,Z) = P (δ = 1|Y,X) = w(Y,X, η),(31)

where w is a specified probability distribution function for
given η, a q × 1 unknown vector parameter. Under (31),
the data is MAR. Let (δi, Yi, Xi, Zi) be a generic sym-
bol for an observation on (δ, Y,X,Z). We are interested in
estimating the regression parameter β. Let U(Y,X,Z, β)
be a set of unbiased estimating functions for β, that is,
E[U(Y,X,Z, β)] = 0. In the absence of missing data,
so that δi = 1, i = 1, . . . , n, we may estimate β by
solving

∑n
i=1 U(Yi, Xi, Zi, β) = 0. A common choice for

U(Y,X,Z, β) is a(X,Z, β){Y −μ(X,Z, β)} where a(X,Z, β)
is a vector of known functions of (X,Z), up to the unknown
parameter β. Write

(32)⎧⎪⎪⎨⎪⎪⎩
g1(δ, Y,X,Z, β, η) =

δ × U(Y,X,Z, β)

w(Y,X, η)
,

g2(δ, Y,X,Z, β, η, γ) =
δ − w(Y,X, η)

w(Y,X, η)
ϕ(Y,X, β, γ),

where ϕ is a p × 1 vector of known functions of (Y,X), up
to the unknown parameter β and another unknown (vec-
tor) parameter γ. The optimal choice for ϕ is given by
E{U(Y,X,Z, β)|Y,X}. Since this optimal function is un-
known, it needs to be estimated using the observed data.
One possible approach is to fit a flexible regression model
for ϕ(Y,X, β, γ) by regressing U(Y,X,Z, β) on (Y,X) using
the data with complete information on (Y,X,Z).
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Since E{g1(δ, Y,X,Z, β, η)} = 0 and E{g2(δ, Y,X,Z, β,
η, γ)} = 0, we can estimate β based on the following system
of estimating equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
i=1

g1(δi, Yi, Xi, Zi, β, η̂) = 0,

n∑
i=1

g2(δi, Yi, Xi, Zi, β, η̂, γ) = 0,

(33)

where η̂ is a consistent estimate of η based on the data
{(δi, Yi, Xi), 1 ≤ i ≤ n} under the missing probability model
w(Y,X, η). Since E{g2(δ, Y,X,Z, β, η, γ)} = 0 for any choice
of ϕ(Y,X, β, γ), therefore, g2 is not sensitive to the under-
lying parameter β and by itself, g2 cannot be used to esti-
mate β. However, g2 can be used for improving upon the
Horvitz-Thompson (HT) estimating function, g1, as follows.
Since the number of estimating functions in (33) is 2p, which
is greater than the dimension, p, of β, the question arises
as how to combine the two sets of estimating functions in
(33). In (33), g1 and g1 − g2 yield, respectively, the sys-
tem of estimating equations, but other linear combinations
are also possible. The empirical likelihood method of Owen
(1988, 1990) and Qin and Lawless (1994) provides an effec-
tive method for combining estimating equations when the
number of estimating equations is greater than the number
of parameters. See Section 7.1. The idea is as follows. Let
(β0, η0) denote the true values of (β, η), and let

g(δ, Y,X,Z, β, η) =

(
g1(δ, Y,X,Z, β, η)
g2(δ, Y,X, β, η)

)
,(34)

then E[g(δ, Y,X,Z, β0, η0)] = 0. Since the dimension of
g(δ, Y,X,Z, β, η) is higher than the dimension of β, which
is p, we employ the empirical likelihood method (Qin and
Lawless, 1994) to seek an optimal combination of the esti-
mating functions g1(δ, Y,X,Z, β, η) and g2(δ, Y,X, β, η). To
this end, suppose (δ, Y,X,Z) ∼ F and let L =

∏n
i=1 pi,

where pi = dF (δ1, Yi, Xi, Zi), i = 1, . . . , n, are nonnegative
jump sizes with total mass that sums to 1. For fixed β, we
need to maximize L subject to the constraints.

pi ≥ 0,

n∑
i=1

pi =1,

n∑
i=1

pig(δi, Yi, Xi, Zi, β, η̂ML)= 0.

After profiling the pi’s, the profile empirical log-likelihood
of β is given by

l1(β) = −
n∑

i=1

log{1 + λT g(δi, Yi, Xi, Zi, β, η̂ML)} − n log n,

where λ = λ(β) is determined by

1

n

n∑
i=1

g(δi, Yi, Xi, Zi, β, η̂ML)

1 + λT g(δi, Yi, Xi, Zi, β, η̂ML)
= 0,

where η̂ML is the maximum binomial likelihood estimator of
η, based on {(δi, Yi, Xi), 1 ≤ i ≤ n}, which maximizes the
binomial likelihood

LB(η) =

n∏
i=1

{w(Yi, Xi, η)}δi{1− w(Yi, Xi, η)}δi .

Let β̂EL1 denote the value of β that maximizes l1(β). We

call β̂EL1 the pseudo maximum empirical likelihood estima-
tor of β. Qin et al. (2009) proved the asymptotic normality

of β̂EL1. The empirical likelihood ratio statistic for testing
H0 : β = β0 is given by R1(β0) = 2{l1(β̂EL1) − l1(β0)}.
When H0 is true, R1(β0) is asymptotically a weighted sum
of independent χ2

1 variables with unknown weights.
Since the distribution of R1(β0) has the unknown weights

needed to be estimated, it can be not used directly to con-
struct the confidence region. Therefore, we must to consider
the another method. We also construct the empirical likeli-
hood ratio function of (β, η), and obtain the maximum em-
pirical likelihood estimation of (β, η) when η in unknown.
For this, let

g3(δ, Y,X, η) =
{δ − w(Y,X, η)}w1(Y,X, η)

w(Y,X, η){1− w(Y,X, η)} ,

G(δ, Y,X,Z, β, η) =

(
g(δ, Y,X,Z, β, η)
g3(δ, Y,X, η)

)
,

where g is defined in (34), and w1(Y,X, η) =
∂w(Y,X, η)/∂η. Then E[G(δ, Y,X,Z, β0, η0)] = 0. The
dimension of G(δ, Y,X,Z, β, η) is 2p + q, which is higher
than p+ q, the dimension of (β, η). For fixed (β, η), we need
to maximize L =

∏n
i=1 pi subject to the constraints.

pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piG(δi, Yi, Xi, Zi, β, η) = 0.

After profiling the pi’s, the profile empirical log-likelihood
ratio function of (β, η) is given by

l2(β, η) = −
n∑

i=1

log{1 + λTG(δi, Yi, Xi, Zi, β, η)} − n logn,

where λ = λ(β, η) is determined by

1

n

n∑
i=1

g(δi, Yi, Xi, Zi, β, η)

1 + λT g(δi, Yi, Xi, Zi, β, η)
= 0,

where η̂ML is the maximum binomial likelihood estimator of
η, based on {(δi, Yi, Xi), 1 ≤ i ≤ n}, which maximizes the
binomial likelihood

LB(η) =

n∏
i=1

{w(Yi, Xi, η)}δi{1− w(Yi, Xi, η)}δi .

Let (β̂EL2, η̂EL) denote the maximum empirical likelihood
estimator of β that maximizes l2(β, η). Qin et al. (2009)
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proved the asymptotic normality of (β̂EL2, η̂EL), and β̂EL2

and η̂EL are asymptotically independent. In addition, Qin
et al. (2009) point out that η̂EL and η̂ML are asymptot-
ically equivalent, and that are asymptotically efficient for
estimating η in parametric models. The empirical likeli-
hood ratio statistic for testing H0 : β = β0 is given
by R2(β0) = 2{l2(β̂EL2, η̂EL(β0)) − l2(β0, η̂EL(β0))}, where
η̂EL(β0) is the maximum empirical likelihood estimator of
η subject to β = β0. When H0 is true, R2(β0) → χ2

p in
distribution as n → ∞.

7.2.2 Surrogate response

Surrogate response data arise frequently in medical and
social science research. Utilizing surrogate response to im-
prove estimation efficiency is a challenging statistical prob-
lem.

Let Y be a response variable, X be a covariate vector,
and S be a surrogate for Y . Suppose S and X can al-
ways be observed, but Y may be missing in some of the
observations. Let δ = 1 if Y is observed and δ = 0 if Y
is missing. We assume a parametric model f(Y |X,β) for
the conditional density of Y given X, where β is an un-
known p × 1 vector parameter. Furthermore, we assume
P (δ = 1|Y, S,X) = w(S,X, η), where w is a known func-
tion and η is a q × 1 vector of unknown parameters. If Y
is continuous, a practical example is when S = I(Y < c),
for a known constant c. In this case, the missingness prob-
ability of Y depends on the value of S. Based on the data
{(δi, Si, Xi), 1 ≤ i ≤ n}, the parameter η can be estimated
using the binomial log-likelihood

lB(η) =
n∑

i=1

{δi logw(Si, Xi, η)+(1−δi) log(1−w(Si, Xi, η))}.

Consider the following unbiased estimating equations:

n∑
i=1

g(δi, Yi, Si, Xi, β, η, γ) = 0,

where

g(δ, Y, S,X, β, η, γ) =

⎛⎝ g1(δ, Y, S,X, β, η)
g2(δ, S,X, β, η, γ)
g3(δ, S,X, η),

⎞⎠ ,

g1(δ, Y, S,X, β, η) =
δ

w(S,X, η)

∂ log f(Y |X,β)

∂β
,

g2(δ, S,X, β, η, γ) =
δ − w(S,X, η)

w(S,X, η)

∂ log f(S,X, β, γ)

∂β
,

g3(δ, S,X, η) =
δ − w(S,X, η)

w(S,X, η){1− w(S,X, η)}
∂w(S,X, η)

∂η
,

f(S,X, β, γ) =

∫
f(y|X,β)f(S|y,X, γ)dy,

γ is an unknown (vector of) parameter(s) to be de-
termined using the data. It is easy to verify that
E{g(δ, Y, S,X, β, η, γ)} = 0. If η is known, the last estimat-
ing function g3(δ, S,X, η) is not needed. Again, the number
of estimating equations is greater than the number of pa-
rameters. Similar to the method of 7.2.1, we can construct
the empirical likelihood ratio statistics of (β, η, γ). Here omit
the detail.

8. PLUG-IN EMPIRICAL LIKELIHOOD

We describe the general framework. The basic idea of em-
pirical likelihood is to regard the observations X1, . . . , Xn as
if they are i.i.d. from a fixed and unknown d-dimensional dis-
tribution F of X, and to model F by a multinomial distribu-
tion concentrated on the observations. Inference for the pa-
rameter of interest, θ0 = θ(F ) ∈ Θ, is then carried out using
a p-dimensional estimating function of the formmn(X, θ, h),
where h is a (possibly infinite-dimensional) ‘nuisance’ pa-
rameter with unknown true value h0 = h(F ) ∈ H. When h0

is known, it can replace h in the empirical likelihood ratio
function

Ln(θ, h) = max

{
n∏

i=1

(npi)

∣∣∣∣ pi ≥ 0,
n∑

i=1

pi = 1,

n∑
i=1

pimn(θ, h) = 0

}
.

leading to a confidence region {θ|Ln(θ, h) > c} for θ0, where
c is a suitable positive constant, and the maximum of the
empty set is defined to be zero. The constant c can be cal-
ibrated using Owen’s (1990) empirical likelihood theorem,
provided mn = m does not depend on n: if the observations
are i.i.d. and m(X, θ0, h0) has zero mean and a positive defi-

nite covariance matrix, then −2 logLn(θ0, h0)
D−→ χ2

p, where
χ2
p has a chi-squared distribution with p degrees of freedom.

Hjort et al. (2009) establish a generalization of Owen’s
result in which the unknown h0 is replaced by an estimator
ĥ, and the estimating function is allowed to depend on n.
Let {an} be a sequence of positive constants bounded away
from zero, and U a non-degenerate p-dimensional random
vector. In most of the applications we consider, an = 1 and
U ∼ Np(0, V1), where the covariance matrix V1 is positive
definite, but the extra generality can be useful in some ap-
plications. Let V2 denote a p× p positive definite covariance
matrix. The following conditions are needed.

(A0) P{Ln(θ0, ĥ) = 0} → 0.

(A1)
n∑

i=1

mn(Xi, θ0, ĥ)
D−→ U .

(A2) an
n∑

i=1

mn(Xi, θ0, ĥ)m
T
n (Xi, θ0, ĥ)

P−→ V2.

(A3) an max
1≤i≤n

‖mn(Xi, θ0, ĥ)‖ P−→ 0.
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Hjort et al. (2009) proved the following result: If (A0)–(A3)
hold, then

−2a−1
n logLn(θ0, ĥ)

D−→ UTV −1
2 U.

This result will provide a way of calibrating {θ|Ln(θ, ĥ) > c}
as a confidence region for θ0. When U ∼ Np(0, V1) with V1

positive definite, the limit distribution above may be ex-
pressed as w1χ

2
1,1 + . . . + wpχ

2
1,p, where the χ2

1,j are inde-
pendent chi-squared random variables with one degree of
freedom and the weights w1, . . . , wp are the eigenvalues of
V −1
2 V1, cf. Lemma 3 of Qin and Jing (2001). If, in addi-

tion, V1 and V2 coincide, we have the standard χ2
p limit

distribution. When V1 and V2 are not identical, the weights
w1, . . . , wp may need to be estimated, for example via con-

sistent estimators V̂1, V̂2 and computing the eigenvalues of
V̂ −1
2 V̂1. It is not possible to say anything in general about

estimation of V1 and V2 , which will depend on the struc-
ture of the specific application. More remarks can be found
in Hjort et al. (2009), here omits the details.
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