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Empirical likelihood methods based on influence
functions∗
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Empirical likelihood methods based on estimating equa-
tions have been widely explored in existing literatures.
When there exist unknown nuisance parameters in estimat-
ing functions, proper methods are required to deal with the
nuisance parameters. In this paper, a new empirical likeli-
hood approach is developed. The empirical likelihood func-
tions are constructed based on the influence functions of
the parameters of interest. The new method retains the
nonparametric Wilks property of empirical likelihood, that
is, the resulting log-empirical likelihood ratio statistics con-
verge in distribution to chi-squared random variables. Sev-
eral examples are discussed to illustrate the effectiveness of
the new method. Simulation studies are conducted to as-
sess the finite sample performances and a real example is
provided.
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1. INTRODUCTION

Empirical likelihood was introduced by [7, 8] for con-
structing generalized likelihood ratio test statistics and cor-
responding confidence regions without specifying parametric
models for the data. It was motivated by an earlier work of
[15], which provided a way to construct confidence intervals
for survival probabilities through constrained likelihood ra-
tios. [7, 8] showed that the Wilks theorem of chi-squared
limiting distribution for the log-parametric likelihood ratio
statistic [20] continues to hold for the log-empirical likeli-
hood ratio. The property is known as the nonparametric
Wilks property for empirical likelihood. The empirical likeli-
hood method is well recognized to possess several additional
interesting properties including range preserving, transfor-
mation respecting, data decided shape for confidence regions
and implicit studentizing carried out internally without the
need to estimate variance explicitly. Moreover, [13] showed
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that when the number of estimating functions is larger than
that of unknown parameters, the empirical likelihood func-
tion is able to make the optimal linear combination of the
original estimation functions automatically. It implies that
the empirical likelihood approach provides an efficient way
to extract information from data through statistical models.
Because of all these features, the method has been extended
to many areas in statistical analysis. [9] provides a detailed
discussion on the method itself as well as the related appli-
cations.

The construction of empirical likelihood ratio includes
maximizing a nonparametric likelihood function subject to
appropriate constraints. In many cases, the constraints can
be defined based on estimating functions for unknown pa-
rameters and this makes the empirical likelihood method
applicable in various inference problems. Sometimes peo-
ple are only interested in part of the unknown parameters
and treat the others as nuisance parameters. Since nuisance
parameters are necessary to describe the underlying gen-
erating schemes for observed data, usually the estimating
functions derived for parameters of interest depend on un-
known nuisance parameters as well. As a result, the em-
pirical likelihood ratio for a certain parameter of interest
may also depend on unknown nuisance parameters through
the constraints. When the nuisance parameters involved are
of finite dimension, [9] proposed a profile empirical likeli-
hood approach, mimicking the idea of profile likelihoods in
parametric models with nuisance parameters. Under suit-
able conditions, the profile log-empirical likelihood ratios
still possess chi-squared limiting distributions with appro-
priate degrees of freedom.

In semiparametric models, the parameters of interest are
still of finite dimension, but there exist infinite dimensional
nuisance parameters. Thus, the estimation functions for pa-
rameters of interest usually involve infinite dimensional nui-
sance parameters. This brings difficulty to the profile em-
pirical likelihood approach since the approach does not give
out meaningful results when profiling out infinite dimen-
sional nuisance parameters. One alternative approach is to
replace the nuisance parameter in the estimating function
by its consistent estimator and then construct the constraint
in empirical likelihood function according to the form of the
estimating function. This so-called plugged-in empirical like-
lihood method has been widely applied under various semi-
parametric models by much literature. For example, [14, 17]
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on partially linear models, [11] on Cox models, [10, 5] on
censored linear models, [12] on censored quantile models,
[21, 26] on signle-index models, [6, 24] on linear transfor-
mation models, [18, 19] on linear models with missing re-
sponses, among many others.

Although the plugged-in empirical likelihood method has
an intuitive idea, the asymptotic property is changed be-
cause of the estimation of nuisance parameters. In many
cases, instead of converging to a chi-squared distribution,
the log-empirical likelihood ratios with estimators being
plugged in converge to a weighted sum of several indepen-
dent chi-squared distributions, c.f. [10, 18, 19, 5, 12, 21, 26,
6, 24], etc. The weights, depending on the limiting variances
of the estimators for parameters of interest, are unknown. It
means that the plugged-in empirical likelihood method loses
the nonparametric Wilks property as well as the optimal lin-
ear combination feature. This makes the plugged-in empiri-
cal likelihood approach less attractive when competing with
the normal approximation based inferential procedures.

According to the semiparametric theory, the asymptotic
distribution of a regular and asymptotic linear (RAL) esti-
mator for the parameter of interest is decided by its influ-
ence function (see, for example, [16]). Moreover, when the
RAL estimator is solved from an estimating equation with
the unknown nuisance parameter being replaced by its es-
timator, the corresponding influence function is generally
different from the estimating function. Based on these facts,
it seems to be reasonable if we construct the constraint in
empirical likelihood function according to the form of in-
fluence function instead of estimating function. This idea
comes from the fact that the influence functions play a vital
role in semiparametric inferential procedures. In this pa-
per, a new empirical likelihood method based on influence
functions is developed and its large-sample properties are
explored. We find out that in many cases, the new influence
function based empirical likelihood method may retain the
nonparametric Wilks property, even when the involved pos-
sibly infinite dimensional nuisance parameters are replaced
by their estimators. Hence, by applying the new empirical
likelihood method, there is no need to estimate variances or
unknown weights explicitly when making inferences about
the parameters of interest.

The rest of the paper is organized as follows. In Section 2,
we propose new empirical likelihood methods based on in-
fluence functions when the nuisance parameters involved
in estimating functions are of finite dimension. The result-
ing log-empirical likelihood ratio statistics are shown to fol-
low the nonparametric Wilks theorem, which improves the
plugged-in empirical likelihood method based on estimating
functions. Moreover, we find that our proposed empirical
likelihood ratio is asymptotically equivalent to the profile
empirical likelihood ratio. The proposed methods are more
valuable when the nuisance parameters involved are of infi-
nite dimension, because under these circumstances the pro-
file empirical likelihood is usually not feasible. In Section 3,
several examples including two commonly used semipara-

metric models in survival analysis are discussed. We show
that the proposed empirical likelihood methods can be ap-
plied and improve the results in existing literatures. Some
numerical studies are conducted in Section 4 to validate the
theoretical findings. A real example is also provided to il-
lustrate the new method. Section 5 concludes. All technical
details are summarized in the Appendix.

2. MAIN RESULTS

Let data be envisioned as realizations of random vectors
Z1, . . . , Zn, where Zi is of d-dimension corresponding to the
data collected on the i-th subject in a sample of n subjects
chosen from some population of interest denoted by Z. Sup-
pose that there exist a r-dimensional known function m(·, ·)
defined on R

d × R
r and a r-dimensional unknown parame-

ter ν0 satisfying

(1) E
[
m(Z; ν0)

]
= 0.

Throughout the paper we will assume that Z1, . . . , Zn are
identically and independently distributed (i.i.d.) with the
probability law of the population Z. Moreover, suppose that
the parameter ν0 is partitioned into two parts, denoted by θ0
and γ0 with θ0 ∈ R

p (p < r) being the parameter of interest
while γ0 ∈ R

r−p being the nuisance parameter.
Based on the random sample and (1), one can establish

the following estimating equation

(2)

n∑
i=1

m
(
Zi; ν

)
= 0.

Under mild conditions, the equation (2) has a consistent so-
lution known as the m-estimator for ν0. Denote the solution
by ν̂ = (θ̂T , γ̂T )T . Then the m-estimator for the parameter

of interest is given by θ̂. As we mentioned, the asymptotic
property of θ̂ is determined by its corresponding influence
function. Now suppose that the regularity conditions C.1 to
C.4 listed in the Appendix hold. By the consistency of ν̂ and
Taylor series expansion, one may show that

√
n
(
ν̂ − ν0

)
=

1√
n

n∑
i=1

A−1m
(
Zi; ν0

)
+ op(1)

where A = E(∂m(Z; ν0)/∂ν
T ) is a r × r square

matrix. Let m1(Z; θ0, γ0) be the first p elements of
m(Z; θ0, γ0) = m(Z; ν0), m2(Z; θ0, γ0) be the remaining
r − p elements, A11 = E(∂m1(Z; θ0, γ0)/∂θ

T ), A12 =
E(∂m1(Z; θ0, γ0)/∂γ

T ), A21 = E(∂m2(Z; θ0, γ0)/∂θ
T ) and

A22 = E(∂m2(Z; θ0, γ0)/∂γ
T ). Simple algebra yields that

√
n
(
θ̂ − θ0

)
(3)

=
1√
n

n∑
i=1

A−1
11.1

[
m1

(
Zi; θ0, γ0

)
−A12A

−1
22 m2

(
Zi; θ0, γ0

)]
+ op(1),
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where A11.1 = A11 − A12A
−1
22 A21. (3) implies that the i-

th influence function of θ̂, denoted by ϕθ(Zi), is given by
A−1

11.1[m1(Zi; θ0, γ0) − A12A
−1
22 m2(Zi; θ0, γ0)]. The asymp-

totic normality of θ̂ can be derived immediately from (3)
and the limiting variance-covariance matrix is decided by
the influence function ϕθ.

Next we discuss the empirical likelihood based inferen-
tial procedure for θ0. Following [9], the empirical likelihood
function can be written as

∏n
i=1 pi with suitable constraints

since data are assumed to be i.i.d. Because of the unknown
nuisance parameter γ0, the estimating functionm(Z; ν0) can
not be used directly. According to the idea of plugged-in
empirical likelihood, in addition to the standard unit total
probability constraint

∑n
i=1 pi = 1, one could use

(4)

n∑
i=1

pim1

(
Zi; θ, γ̃

)
= 0,

where γ̃ is a certain consistent estimator for γ0. Note that
the constraint (4) follows the form of the estimating func-
tion corresponding to θ0, with the nuisance parameter be-
ing replaced by its consistent estimator. Although the idea
is straightforward, the resulting log-empirical likelihood ra-
tio statistic may lose the nonparametric Wilks property and
converge in distribution to a weighted sum of several inde-
pendent chi-squared random variables. Some literature ar-
gued that this is because the components in the constraint
(4) are no longer independent of each other with γ̃ being
plugged in. However, we think that the dependence may
not be the key problem. Considering that it is the influ-
ence function, not the estimating function, that determines
the asymptotic property of θ̂, we propose to construct the
constraint according to the form of ϕθ instead of m1. Define

g(Z; θ) = m1(Z; θ, γ̃)− Â12Â
−1
22 m2(Z; θ, γ̃),

where Â12 and Â22 are consistent estimators for A12 and
A22, respectively. The proposed constraint is defined to be

n∑
i=1

pig
(
Zi; θ

)
= 0,(5)

and then the resulting empirical likelihood ratio is given by

RIF (θ) = sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

pig
(
Zi; θ

)
= 0, pi ≥ 0

}
.

Omitting the constant matrix A11.1, g(Z; θ) could be viewed
as an estimated version of the influence function with the
unknown quantities being replaced by corresponding esti-
mators. Since constraints are invariant by multiplying con-
stants, the constraint (5) can be viewed as being constructed
according to the form of the influence function.

The main reason that we use (5) instead of (4) is that
the resulting log-empirical likelihood ratio statistic possesses
nonparametric Wilks property, which is formally presented
by the following theorem.

Theorem 2.1. Suppose that the conditions C1–C4 listed in
the Appendix hold. For any γ̃ such that

√
n‖γ̃−γ0‖ = Op(1),

where ‖ · ‖ represents the Euclidean norm, −2 logRIF (θ0)
converges in distribution to χ2

p as n → ∞, where χ2
l is a chi-

squared random variable with l degrees of freedom.

The nonparametric Wilks theorem requires consistent es-
timators for A12, A22 and

√
n-consistent estimator for the

nuisance parameters. These are not crucial requirements and
for the current situation, we can use

Â12 =
1

n

n∑
i=1

∂m1(Zi; θ̂, γ̂)

∂γT
, Â22 =

1

n

n∑
i=1

∂m2(Zi; θ̂, γ̂)

∂γT

and γ̂, respectively. Other choices are available and the spe-
cific forms of the estimators do not affect the conclusion
of Theorem 2.1. It is interesting to see that the proposed
RIF (θ) is also a plugged-in empirical likelihood ratio and
the components in its constraint are also dependent with
each other. However, the chi-squared limiting distribution
is preserved since the constraint is constructed based on the
influence function instead of the estimating function.

When the nuisance parameter space is of finite dimen-
sion, [9] proposed a profile empirical likelihood approach to
deal with the nuisance parameters. Define the joint empiri-
cal likelihood ratio for θ0 and γ0

R(θ, γ) = sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

pim
(
Zi; θ, γ

)
= 0, pi ≥ 0

}
.

The profile empirical likelihood ratio is then given by

RP (θ) = max
γ

R(θ, γ).

Under the conditions in Theorem 2.1, [9] claimed that
−2 logRP (θ) converges in distribution to χ2

p as n → ∞.
We show in the Appendix that the proposed influence func-
tion based empirical likelihood is asymptotically equiva-
lent to the profile empirical likelihood in the sense that
−2 logRIF (θ0) has the same asymptotic power as that of
−2 logRP (θ0) under contiguous alternatives. This finding
justifies the usage of the proposed empirical likelihood ratio
based on influence functions.

When the nuisance parameters involved in estimating
functions are of infinite dimension, the profile empirical like-
lihood approach is no longer feasible. However, the proposed
method may still be useful if one can derive the influence
function for the parameter of interest and find appropriate
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estimators for the unknown quantities. In the following sec-
tion, we illustrate the effectiveness of the proposed method
through several examples. Two commonly used semipara-
metric models in survival analysis, Cox model and censored
linear regression model, with infinite dimensional nuisance
parameters in the estimating functions are included.

3. EXAMPLES

Example I. Variance

Let Z1, . . . , Zn be i.i.d. random variables (i.e., d = 1)
drawn from the distribution Z with finite fourth moment.
Suppose that the parameter of interest is the variance of the
distribution, i.e., σ2

0 = E[(Z − μ0)
2] where μ0 = E(Z). The

usual estimator for σ2
0 is given by the sample variance

σ̂2 =
1

n− 1

n∑
i=1

(
Zi − Z̄

)2

where Z̄ = n−1
∑n

i=1 Zi is the sample mean. It is not diffi-
cult to calculate that

√
n
(
σ̂2 − σ2

0

)
=

1√
n

n∑
i=1

[(
Zi − μ0

)2 − σ2
0

]

+
√
n
(
Z̄ − μ0

)2
+ op(1)

=
1√
n

n∑
i=1

[(
Zi − μ0

)2 − σ2
0

]
+ op(1).

It implies that the i-th influence function of σ̂2 is ϕ(Zi) =
(Zi − μ0)

2 − σ2
0 . Note that Z̄ is a

√
n-consistent estimator

for μ0. The empirical likelihood ratio based on the estimated
influence function is given by

RIF

(
σ2

)
= sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

pi

[(
Zi − Z̄

)2 − σ2
]
= 0, pi ≥ 0

}
.

By Theorem 2.1, we have that −2 logRIF (σ
2
0) converges in

distribution to χ2
1 as n → ∞.

The joint empirical likelihood ratio for μ0 and σ2
0 takes

the form of

R
(
μ, σ2

)
= sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

piZi = μ,

n∑
i=1

piZ
2
i = μ2 + σ2, pi ≥ 0

}
.

Thus, the profile empirical likelihood ratio is RP (σ
2) =

maxμ R(μ, σ2).

Example II. Slope parameter in simple
regression model

Next we turn to the simple regression model. Consider the
i.i.d. 2-dimensional random vectors (Y1, X1), . . . , (Yn, Xn)
satisfying the simple regression model

Yi = β0 + β1Xi + εi, i = 1, . . . , n,

where εi’s are i.i.d. random errors with mean zero and finite
variance. Suppose that we are only interested in making in-
ference about the slope parameter β1. The least squares es-
timators, denoted by β̂0 and β̂1, are solved from the normal
equations

n∑
i=1

(
Yi − β0 − β1Xi

)
= 0,

n∑
i=1

Xi

(
Yi − β0 − β1Xi

)
= 0.

The empirical likelihood ratio for β1 based on the estimating
function directly is given by

REF

(
β1

)
= sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

piXi

(
Yi − β̂0 − β1Xi

)
= 0, pi ≥ 0

}
,

which results in a log-empirical likelihood ratio without the
chi-squared limiting distribution. Let μX = E(X1), σ

2
X =

Var(X1). One can show that

√
n
(
β̂1 − β1

)
=

1√
n

n∑
i=1

σ−2
X

(
Xi − μX

)(
Yi − β0 − β1Xi

)
+ op(1).

It reveals that the i-th influence function of β̂1 is

ϕ
(
Yi, Xi

)
= σ−2

X

(
Xi − μX

)(
Yi − β0 − β1Xi

)
.

Omitting the proportional constant, the empirical likelihood
ratio based on the estimated influence function is given by

RIF

(
β1

)
= sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

pi(Xi − X̄)
(
Yi − β̂0 − β1Xi

)
= 0, pi ≥ 0

}
,

where X̄ = n−1
∑n

i=1 Xi. By Theorem 2.1, we have that
−2 logRIF (β1) converges in distribution to χ2

1 when β1 is
the true value of the slope parameter.

Let Xi = (1, Xi)
T . The joint empirical likelihood ratio
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for β0 and β1 takes the form of

R
(
β0, β1

)
= sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

piXi

(
Yi − β0 − β1Xi

)
= 0, pi ≥ 0

}
.

Thus, the profile empirical likelihood ratio is RP (β1) =
maxβ0 R(β0, β1).

Example III. Regression parameters in Cox
model

In survival analysis, the default choice of regression mod-
els is Cox model. For a random sample of n independent in-
dividual, let Ti be failure time for the i-th individual which
is right censored by a censoring time Ci. The observation for
each individual includes T̃i = min(Ti, Ci), Δi = I{Ti ≤ Ci}
as well as a p-dimensional possibly time-dependent covari-
ate process Xi(t). Cox model assumes that the conditional
hazard of Ti given the covariate process follows

λ
(
t|Xi(t)

)
= λ0(t) exp

(
βT
0 Xi(t)

)
,

where Xi(t) = {Xi(u), 0 ≤ u ≤ t}, λ0(t) is an unknown
baseline hazard and β0 is p-dimensional regression parame-
ter of interest. The maximum partial likelihood estimator,
denoted by β̂PL, solves the following estimating equation

n∑
i=1

∫ ∞

0

[
Xi(t)− E(β, t)

]
dNi(t) = 0,(6)

where Ni(t) = ΔiI{T̃i ≤ t},

E(β, t) =

∑n
i=1 Xi(t)Yi(t) exp(β

TXi(t))∑n
i=1 Yi(t) exp(βTXi(t))

and Yi(t) = I{T̃i ≥ t}. [11] proposed an empirical likelihood
method based on (6) to make inference about β0. However,
their approach requires a known baseline hazard, which is
not a common assumption for Cox model.

Under suitable regularity conditions, [1] showed that

√
n
(
β̂PL − β0

)
=

1√
n

n∑
i=1

A−1

∫ ∞

0

[
Xi(t)− e(t)

]
dMi(t) + op(1),

where

Mi(t) = Ni(t)−
∫ t

0

Yi(u) exp
(
βT
0 Xi(u)

)
λ0(u)du,

e(t) =
E[X1(t)Y1(t) exp(β

T
0 X1(t))]

E[Y1(t) exp(βT
0 X1(t))]

and A is a p × p - dimensional invertible matrix. Then the
i-th influence function of the maximum partial likelihood
estimator is given by

ϕ
(
T̃i,Δi, Xi

)
= A−1

∫ ∞

0

[
Xi(t)− e(t)

]
dMi(t).

Note that the influence function here involves an infinite
dimensional nuisance parameter λ0(t). Define

Λ̂(β, t) =

∫ t

0

d
∑n

i=1 Ni(u)∑n
i=1 Yi(u) exp(βTXi(u))

.

It is easy to see that Λ̂(β0, t) is a
√
n-consistent estima-

tor for Λ0(t) =
∫ t

0
λ0(u)du at each fixed t. Omitting the

proportional constant matrix A−1, we defined the following
estimated version of the i-th influence function

gi(β) =

∫ ∞

0

[
Xi(t)− E(β, t)

]
dM̂i(β, t),

where

M̂i(β, t) = Ni(t)−
∫ t

0

Yi(u) exp
(
βTXi(u)

)
dΛ̂(β, u).

The empirical likelihood ratio based on the estimated influ-
ence function is given by

RIF (β)=sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi=1,
n∑

i=1

pigi(β)=0, pi≥0

}
.

Note that the constraints used in RIF (β) still reflects our
basic idea of constructing constraints based on the influence
functions. Under similar conditions assumed in [1], one can
show that −2 logRIF (β0) converges in distribution to χ2

p.
Moreover, the profile empirical likelihood approach can be
applied to RIF (β) when interest only lies in certain part
of β0. Chi-squared limiting distributions with appropriate
degrees of freedom are expected. The proposed method can
be extended to many semiparametric survival models with
martingale-type estimating functions, c.f., [22, 25, 23].

Example IV. Regression parameters in
censored regression model

An alternative model to Cox model is the linear regression
model which assumes that the logarithm or certain trans-
formation of the failure time Ti, denoted by Yi, and its cor-
responding p-dimensional covariates vector Xi satisfy

E
(
Yi|Xi

)
= βT

0 Xi,

where Xi = (1, XT
i )

T and β0 is (p + 1)-dimensional regres-
sion parameter of interest. Yi is right censored by a censor-
ing time Ci. Let Ỹi = min(Yi, Ci) and Δi = I(Yi ≤ Ci). The
observations are (Ỹi,Δi, Xi) for i = 1, . . . , n.

Assume that Ci is independent of (Yi, Xi), and C1, . . . , Cn

are i.i.d. random variables with a common distribution func-
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tion G(t). When G(t) is assumed to be continuous and
known, in order to apply the least squares approach, [2]
proposed an unbiased modification

Yi,G =
ΔiỸi

1−G(Ỹi)
.

Under some assumptions, it can be shown that E(Yi,G|Xi) =
E(Yi|Xi) = βT

0 Xi. However, in most cases, G(t) is unknown.
[2] proposed replacing G(t) by its Kaplan-Meier estimator
Ĝ(t) based on (Ỹi, 1 − Δi) i = 1, . . . , n. This leads to the
modified least squares estimator

β̂KSV =

(
n∑

i=1

XiX
T
i

)−1 n∑
i=1

XiYi,Ĝ,

where

Yi,Ĝ =
ΔiỸi

1− Ĝ(Ỹi)
.

We may call Yi, ̂Gn
“synthetic data” since such data are syn-

thesized from the raw data (Ỹi,Δi) to fit the regression
model.

β̂KSV is solved from the following modified normal equa-
tion

n∑
i=1

Xi

(
Ỹi,Ĝ − βTXi

)
= 0.(7)

Based on the estimating function in (7), [10, 5] proposed
empirical likelihood approaches. They both defined the fol-
lowing empirical likelihood ratio

REF (β) = sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

piXi

(
Yi,Ĝ − βTXi

)
= 0, pi ≥ 0

}
,

and showed that under some regularity conditions,
−2 logREF (β0) converges in distribution to a weighted sum
of p+1 independent chi-squared random variables. They ar-
gued that the terms in the constraint are no longer indepen-
dent of each other because the infinite dimensional nuisance
parameter G(t) has to be estimated from the data. Thus, the
log-empirical likelihood ratio loses the non-parametric Wilks
property. However, in our understanding, the chi-squared
limiting distribution can be preserved if one constructs the
constraint according to the influence function of β̂KSV . It
was proved by [4] that under suitable regularity conditions,

√
n
(
β̂KSV − β0

)
=

1√
n

n∑
i=1

A−1
[
Xi

(
Yi,G − βT

0 Xi

)

+

∫ τ

−∞
H(t)dMi(t)

]
+ op(1),

where A = E(X1X
T
1 ), τ is a predetermined constant, H(t)

is a p + 1-dimensional function depending on the joint dis-
tribution of Yi, Xi and Ci,

Mi(t) =
(
1−Δi

)
I
(
Ỹi ≤ t

)
−

∫ t∧Ỹi

0

λG(u)du,

and λG(t) is the hazard function corresponding to G(t). This

implies that the i-th influence function of β̂KSV is given
by

ϕ
(
Ỹi,Δi, Xi

)
= A−1

[
Xi

(
Yi,G − βT

0 Xi

)
+

∫ τ

−∞
H(t)dMi(t)

]
.

H(t) can be consistently estimated from the data and de-
note the estimator as Ĥ(t). Let Λ̂G(t) be the Nelson-Aalen

estimator for ΛG(t) =
∫ t

−∞ λG(u)du. Omitting the propor-

tional constant matrix A−1, we defined an estimated version
of the i-th influence function

gi(β) = Xi

(
Ỹi,Ĝ − βTXi

)
+

∫ τ

−∞
Ĥ(t)dM̂i(t),

where

M̂i(t) =
(
1−Δi

)
I
(
Ỹi ≤ t

)
− Λ̂G

(
t ∧ Ỹi

)
.

According to our basic idea, we propose the following empir-
ical likelihood ratio based on the estimated influence func-
tion

RIF (β)=sup

{
n∏

i=1

npi

∣∣∣∣∣
n∑

i=1

pi=1,

n∑
i=1

pigi(β)=0, pi≥0

}
.

Different from the empirical likelihood ratios of [10, 5], the
proposed empirical likelihood ratio follows the nonparamet-
ric Wilks theorem, i.e., −2 logRIF (β0) converges in distri-
bution to χ2

p+1.
Note that in this and the previous example, the infinite

dimensional nuisance parameters involved in the estimating
functions can not be dealt with by profile empirical likeli-
hood. However, the proposed influence function based em-
pirical likelihood methods provide an easy way to retain the
nonparametric Wilks property. Moreover, when there ex-
ist over-identified estimating functions with infinite dimen-
sional nuisance parameters, our empirical likelihood ratios
also keep the optimal linear combination property.

4. NUMERICAL STUDIES

4.1 Simulation studies

In this subsection we carry out some simulation studies to
assess the finite sample performances of the proposed meth-
ods based on the four examples discussed in the previous
section. For Example I, we generate data from normal distri-
bution with mean 1 and variance σ2

0 . The sample size n is set
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Table 1. Summarized simulation results for Example I

−2 logRIF −2 logRP

σ2
0 n 0.05 0.1 0.05 0.1

1 100 0.0620 0.1086 0.0634 0.1092
200 0.0538 0.1038 0.0538 0.1038

2 100 0.0620 0.1086 0.0634 0.1092
200 0.0538 0.1038 0.0538 0.1038

1 + 3√
n

100 0.5016 0.6300 0.5054 0.6324

200 0.5098 0.6424 0.5116 0.6438
2 + 3√

n
100 0.2156 0.3010 0.2198 0.3030

200 0.1902 0.2906 0.1908 0.2916

to be 100 and 200. We use both the proposed log-empirical
likelihood ratio −2 logRIF (σ

2) and the profile log-empirical
likelihood ratio −2 logRP (σ

2) to test for H0 : σ2
0 = σ2

against H1 : σ2
0 �= σ2. The testing value σ2 is set to be 1

and 2. For the empirical sizes, the true variance σ2
0 is chosen

to equal to 1 and 2, respectively. For the estimated powers
under contiguous alternatives, the true variance σ2

0 is chosen
to equal to 1+3/

√
n and 2+3/

√
n, respectively. The nominal

levels are chosen to be 0.05 and 0.1. 5, 000 replicates are gen-
erated. The simulation results are summarized in Table 1.

From the results, we can see that the proposed influence
function based empirical likelihood test gives out reasonable
estimated sizes when H0 holds. The test statistic seems to
be more liberal for smaller sample sizes, which is noticed by
much literature. [9] proposed several methods to decrease
the coverage errors under small sample sizes. All the meth-
ods can be applied to the proposed test without much dif-
ficulty. The profile empirical likelihood test has almost the
same asymptotic powers as the proposed one under con-
tiguous alternatives. This validates our theoretical findings
of the asymptotic equivalence between the two approaches.
Note that the calculation of the proposed log-empirical like-
lihood ratio is quite easy since it has the same structure as
the classic one. The standard algorithm discussed in [9] can
be applied directly.

For Example II, we set β0 = 1. The random error εi’s
follow either standard normal distribution (Norm) or ex-
ponential distribution (Exp). For exponential distribution,
we first generate exponential random variables with mean
1 and then subtract the mean to obtain zero-mean random
errors. The covariate Xi’s are generated from uniform dis-
tribution on [0, 2]. The sample size n is set to be 100 and
200. We use both the proposed log-empirical likelihood ratio
−2 logRIF (β1) and the profile log-empirical likelihood ratio
−2 logRP (β1) to test for H0 : β1 = 1 against H1 : β1 �= 1.
For the empirical sizes, the true value of β1 is set to be 1,
and for the estimated powers under contiguous alternatives,
the true value of β1 is set to be 1+3/

√
n. The nominal levels

are chosen to be 0.05 and 0.1. 5, 000 replicates are generated.
The simulation results are summarized in Table 2.

Similar findings can be found from Table 2. The pro-
posed empirical likelihood test has appropriate estimated

Table 2. Summarized simulation results for Example II

−2 logRIF −2 logRP

β1 ε n 0.05 0.1 0.05 0.1

Norm 100 0.0486 0.1048 0.0486 0.1056
1 200 0.0546 0.1038 0.0548 0.1040

Exp 100 0.0624 0.1178 0.0634 0.1182
200 0.0552 0.1060 0.0548 0.1058

Norm 100 0.4000 0.5228 0.4012 0.5232
1 + 3√

n
200 0.4046 0.5360 0.4050 0.5362

Exp 100 0.4284 0.5440 0.4308 0.5440
200 0.4138 0.5428 0.4138 0.5442

sizes in almost all scenarios. It also possesses comparable
finite-sample performances with the profile empirical like-
lihood ratio test under both the null hypotheses and the
contiguous alternatives.

For Example III, we set the baseline hazard λ0(t) ≡ 1.
Two covariates are independently drawn from Bernoulli dis-
tribution with success probability 0.5 and uniform distri-
bution on [0, 1]. The corresponding regression parameters,
denoted by β1 and β2, are set to be −1 and 0.5, respectively.
The censoring times are generated from uniform distribution
on [0, c], where c is chosen to yield censoring percentages
of 30% and 50%. The sample size n is set to be 100 and
200. We first use the proposed −2 logRIF (β1, β2) to test for
H0 : (β1, β2) = (−1, 0.5) against H0 : (β1, β2) �= (−1, 0.5).
The nominal levels are chosen to be 0.05 and 0.1. Accord-
ing to the nonparametric Wilks theorem, the critical val-
ues are decided by the quantiles of a chi-squared distri-
bution with 2 degrees of freedom. Besides the global in-
ference, we also use the profile empirical likelihood ratio
−2 logmaxβ2 RIF (β1, β2) to test for H∗

0 : β1 = −1 against
H∗

1 : β1 �= −1. The critical values are decided by the quan-
tiles of a chi-squared distribution with 1 degree of freedom.
5, 000 replicates are generated. The simulation results are
summarized in Table 3.

Again, the proposed empirical likelihood ratio tests give
out appropriate estimated sizes which are quite close to
the corresponding nominal levels. The censoring percent-
age does not affect the performances of the proposed tests.
With sample size increasing, the coverage errors decrease as
expected.

For Example IV, we consider a linear model with a single
covariate. The covariate is generated from uniform distri-
bution [0, 2]. The intercept parameter β0 = 1 and the slop
parameter β1 = 1. The random error εi’s follow normal dis-
tribution with mean 0 and variance 0.5. The censoring time
Ci’s are independently drawn from normal distribution with
mean μ and variance 5, where μ is chosen to yield censoring
percentages of 30% and 50%. The sample size n is set to be
100 and 200. We first use the proposed −2 logRIF (β0, β1) to
test for H0 : (β0, β1) = (1, 1) against H0 : (β0, β1) �= (1, 1).
The nominal levels are chosen to be 0.05 and 0.1. Similar
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Figure 1. Confidence regions for the multiple myeloma study.

Table 3. Summarized simulation results for Example III

censoring H0 v.s. H1 H∗
0 v.s. H∗

1

percentage n 0.05 0.1 0.05 0.1

30% 100 0.0640 0.1182 0.0528 0.1052
200 0.0598 0.1110 0.0538 0.1042

50% 100 0.0540 0.1064 0.0524 0.1006
200 0.0500 0.1068 0.0484 0.0986

Table 4. Summarized simulation results for Example IV

censoring H0 v.s. H1 H∗
0 v.s. H∗

1

percentage n 0.05 0.1 0.05 0.1

30% 100 0.0588 0.1110 0.0560 0.1082
200 0.0514 0.1052 0.0520 0.1000

50% 100 0.0628 0.1184 0.0530 0.1088
200 0.0556 0.1070 0.0510 0.1062

to the previous simulation study, the critical values here are
decided by the quantiles of a chi-squared distribution with 2
degrees of freedom. We also use the profile empirical likeli-
hood ratio −2 logmaxβ0 RIF (β0, β1) to test for H∗

0 : β1 = 1
against H∗

1 : β1 �= 1. The critical values are decided by the
quantiles of a chi-squared distribution with 1 degree of free-
dom. 5, 000 replicates are generated. The simulation results
are summarized in Table 4.

In general, we obtain similar observations from Table 4 to
those from Table 3. It is interesting to point out that with
different choices of the unbiased modification, the proposed
empirical likelihood approach may provide an optimal linear
combination asymptotically and thus result in more efficient
estimators for the regression parameters.

4.2 A real example

Here we apply the proposed empirical likelihood method
for Cox model to a study on multiple myeloma reported
by [3]. In the study, 65 patients were treated with alky-
lating agents. 48 of them died during the study and 17 sur-

vived. This data is regarded as a main example in the PROC
PHREG of the SAS/STAT User’s Guide (1999, pp. 2608–
2617, 2536–2641) to focus on Cox model with the logarithm
of blood urea nitrogen, LogBUN and haemoglobin, HGB, as
the covariates. Here we still used these two covariates and
made inferences about the two corresponding regression co-
efficients. Based on the proposed log-empirical likelihood ra-
tio, a confidence region for the two coefficients is obtained.
The contour of the region is shown in Figure 1 (a). The outer
loop corresponds to 95% confidence level. The center of the
confidence region (marked by X), at which the empirical like-
lihood ratio attains 1, is just the maximum partial likelihood
estimates (1.6744,−0.1190) for the two coefficients. We also
obtain the Wald-type confidence region which is shown in
Figure 1 (b) with outer loop representing 95% level. Note
that different from the Wald-type confidence region, the em-
pirical likelihood based confidence region does not possess
elliptical shape for the contour. The shape is decided by the
data themselves, which is one of the features of empirical
likelihood methods.

The empirical likelihood based confidence intervals for
each coefficient could be obtained as the left (right, upper
or lower) most points of the contours decided by quantiles
of χ2

1 distribution (the inner loops correspond to 0.95 quan-
tile). The confidence intervals corresponding to LogBUN
and HGB are [0.3868, 2.7038] and [−0.2404,−0.0082], re-
spectively. The Wald-type counterparts are [0.4747, 2.8741]
and [−0.2317,−0.0063]. The two methods provide similar
inference conclusions, except that the empirical likelihood
based intervals are no longer symmetric about the maxi-
mum partial likelihood estimates.

5. CONCLUSIONS

We propose a new idea to develop empirical likelihood
ratios for parameters of interest when there exist nuisance
parameters in estimating functions. The constraints in em-
pirical likelihood functions are constructed based on the in-
fluence functions for parameters of interest, instead of the
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estimating functions. The resulting log-empirical likelihood
ratio statistics are shown to possess chi-squared limiting dis-
tributions under suitable conditions. The property enables
people to make inferences without the need to estimate vari-
ances explicitly. When the nuisance parameters involved are
of finite dimension, the proposed approach is asymptotic
equivalent to the profile empirical likelihood method. More-
over, the new approach can be applied to deal with infinite
dimensional nuisance parameters under some semiparamet-
ric models. The standard algorithm developed for original
empirical likelihood ratios can be used here without any dif-
ficulty.

Although the proposed methods show potential usage un-
der some semiparametric models, no unified theory has been
established for this influence function based empirical like-
lihood approach. We realize that there are some drawbacks
of the proposed method. For example, sometimes it is very
difficult to obtain an explicit form of the influence functions,
and in other cases, the unknown quantities in the influence
functions are difficult to estimate. Moreover, it is also of
interest that what is the relationship between the conver-
gence speed of the estimators for nuisance parameters and
the nonparametric Wilks property. All these may become
topics of our future communications.

APPENDIX

To prove the asymptotic properties in Section 2, we as-
sume that the following regularity conditions hold.
C1. When ν �= ν0, E[m(Z; ν)] �= 0, i.e., ν0 is identifiable.
C2. m(Z; ν) has continuous first-order derivative with re-
spect to ν.
C3. There exist a neighborhood V of ν0 and an integrable
function M(Z) with E[M(Z)] < ∞ such that

sup
ν∈V

‖m(Z; ν)‖3 ≤ M(Z), sup
ν∈V

∥∥∥∥∂m(Z; ν)

∂νT

∥∥∥∥ ≤ M(Z).

C4. A is non-degenerate and E[m(Z; ν0)m(Z; ν0)
T ] is posi-

tively definite.

A.1 Proof of Theorem 2.1

We first prove the following lemmas.

Lemma A.1. Under the conditions C1–C4, we have that
max1≤i≤n ‖g(Zi; θ0)‖ = op(

√
n ).

Proof. Under the conditions C2 and C3, we have that
supν∈V ‖m(Z; ν)‖2 is integrable. By arguments similar to
those of the proof of Lemma 11.2 in [9], one can show that
supν∈V max1≤i≤n ‖m(Zi; ν)‖ = op(

√
n ). Define

g0(Z; θ) = m1(Z; θ, γ̃)−A12A
−1
22 m2(Z; θ, γ̃).

Since γ̃ is consistent, (θT0 , γ̃
T )T belongs to V with prob-

ability tending to 1 as n → ∞. By the condition C3,

‖A12A
−1
22 ‖ < ∞. Combing the above facts, we have that

max1≤i≤n ‖g0(Zi; θ0)‖ = op(
√
n ). For i = 1, . . . , n, define

ri = g0(Zi; θ0)− g(Zi; θ0)

=
(
Â12Â

−1
22 −A12A

−1
22

)
m2(Zi; θ0, γ̃).

By the consistency of Â12 and Â22, we have that

max
1≤i≤n

‖ri‖ ≤
∥∥Â12Â

−1
22 −A12A

−1
22

∥∥ max
1≤i≤n

‖m2(Zi; θ0, γ̃)‖

= op(
√
n ).

Then the conclusion follows immediately.

Lemma A.2. Under the conditions C1–C4, we have that
n−1

∑n
i=1 g(Zi; θ0)g(Zi; θ0)

T converges in probability to Σ
as n → ∞, where

Σ = M11 −M12A
−1
22 A

T
12 −A12A

−1
22 M21

+A12A
−1
22 M22A

−1
22 A

T
12

with Mij = E[mi(Z; θ0, γ0)mj(Z; θ0, γ0)
T ], i, j = 1, 2.

Proof. By the condition C3 and the uniform law of large
number, we have that n−1

∑n
i=1 m(Zi; ν)m(Zi; ν)

T con-
verges in probability to E[m(Z; ν)m(Z; ν)T ] uniformly about
ν ∈ V as n → ∞. Thus, it can be shown that
n−1

∑n
i=1 g0(Zi; θ0)g0(Zi; θ0)

T converges in probability to
Σ. Simple algebra gives out

1

n

n∑
i=1

g
(
Zi; θ0

)
g
(
Zi; θ0

)T
(8)

=
1

n

n∑
i=1

g0
(
Zi; θ0

)
g0

(
Zi; θ0

)T
+
1

n

n∑
i=1

g0
(
Zi; θ0

)
rTi

+
1

n

n∑
i=1

rig0
(
Zi; θ0

)T − 1

n

n∑
i=1

rir
T
i .

By the consistency of Â12 and Â22, the last three terms on
the right-hand-side of (8) are all of order op(1). Thus, the
conclusion follows immediately.

Lemma A.3. Under the conditions C1–C4, we have that
n−1/2

∑n
i=1 g(Zi; θ0) converges in distribution to N(0,Σ) as

n → ∞.

Proof. By Taylor expansion, we have that

1√
n

n∑
i=1

g0
(
Zi; θ0

)

=
1√
n

n∑
i=1

[
m1

(
Zi; θ0, γ0

)
−A12A

−1
22 m2

(
Zi; θ0, γ0

)]

+
1

n

n∑
i=1

[
∂m1(Zi; θ0, γ

∗)

∂γT
−A12A

−1
22

∂m2(Zi; θ0, γ
∗)

∂γT

]

×
√
n
(
γ̃ − γ0

)
,
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where ‖γ∗ − γ0‖ ≤ ‖γ̃ − γ0‖. By the condition C3 and the
law of large number, it can be shown that

1

n

n∑
i=1

[
∂m1(Zi; θ0, γ

∗)

∂γT
−A12A

−1
22

∂m2(Zi; θ0, γ
∗)

∂γT

]

converges in probability to A12 − A12A
−1
22 A22 = 0. Mean-

while, by the central limit theorem, it can be shown that

1√
n

n∑
i=1

[
m1

(
Zi; θ0, γ0

)
−A12A

−1
22 m2

(
Zi; θ0, γ0

)]

converges in distribution to N(0,Σ) as n → ∞. Thus, we
have that n−1/2

∑n
i=1 g0(Zi; θ0) converges in distribution to

N(0,Σ) as n → ∞.
On the other hand, simple algebra yields

1√
n

n∑
i=1

g
(
Zi; θ0

)
=

1√
n

n∑
i=1

g0
(
Zi; θ0

)
(9)

−
(
Â12Â

−1
22 −A12A

−1
22

) 1√
n

n∑
i=1

m2

(
Zi; θ0, γ̃

)
.

Again, by Taylor expansion, we have that

1√
n

n∑
i=1

m2

(
Zi; θ0, γ̃

)

=
1√
n

n∑
i=1

m2

(
Zi; θ0, γ0

)
+

1

n

n∑
i=1

∂m2(Zi; θ0, γ
∗)

∂γT

×
√
n
(
γ̃ − γ0

)
= Op(1).

Thus, the second term on the right-hand-side of (9) is of
order op(1), which implies that

1√
n

n∑
i=1

g
(
Zi; θ0

)
=

1√
n

n∑
i=1

g0
(
Zi; θ0

)
+ op(1).

Then the conclusion follows immediately.

Now we are ready to prove Theorem 2.1.

Proof. Since E[m1(Z; θ0, γ0)−A12A
−1
22 m2(Z; θ0, γ0)] = 0, by

arguments similar to those of the proof of Lemma 11.2 in [9],
one can show that 0 has probability tending to 1 to fall into
the convex hull of (g(Z1; θ0), . . . , g(Zn; θ0))

T . When 0 is in
the convex hull, by Lagrange multipliers it can be obtained
that

RIF

(
θ0

)
=

n∏
i=1

1

1 + η(θ0)T g(Zi; θ0)
,(10)

where η(θ0) satisfies the following equation

1

n

n∑
i=1

g(Zi; θ0)

1 + η(θ0)T g(Zi; θ0)
= 0.(11)

Based on (11), by arguments similar to those of the proof of
Theorem 3.2 in [9], one can show that ‖η(θ0)‖ = Op(n

−1/2).
By this order, we derive from (11) that

η
(
θ0

)
= Σ−1

n

(
1

n

n∑
i=1

g(Zi; θ0)

)
+ op(1),(12)

where Σn = n−1
∑n

i=1 g(Zi; θ0)g(Zi; θ0)
T . Now take the log-

arithm of the right-hand-side of (10) and do Taylor expan-
sion at η = 0, we get that

−2 logRIF

(
θ0

)
=

n∑
i=1

η
(
θ0

)T
g
(
Zi; θ0

)

− 1

2

n∑
i=1

η
(
θ0

)T
g
(
Zi; θ0

)
g
(
Zi; θ0

)T
η
(
θ0

)

+Op

(∥∥η(θ0)∥∥3
n∑

i=1

‖g(Zi; θ0)‖3
(1 + η̃T g(Zi; θ0))3

)
,

where ‖η̃‖ ≤ ‖η(θ0)‖. By the condition C3 and Lemma A.1,
we can conclude that

n
∥∥η(θ0)∥∥3 × 1

n

n∑
i=1

‖g(Zi; θ0)‖3
(1 + η̃T g(Zi; θ0))3

= op(1).

Now replacing η(θ0) by the right-hand-side of (12), we have
that

− 2 logRIF (θ0)(13)

=

(
1√
n

n∑
i=1

g(Zi; θ0)

)T

Σ−1
n

(
1√
n

n∑
i=1

g(Zi; θ0)

)

+ op(1).

Combining (13), Lemmas A.2 and A.3, the desired conclu-
sion follows immediately.

A.2 The asymptotic equivalence of RIF

and RP

We show the asymptotic equivalence of the proposed
method and profile empirical likelihood method under the
following situation. Consider the hypothesis testing prob-
lem H0 : θ0 = θ v.s. H1 : θ0 �= θ, where θ is a spe-
cific value in R

p. Let f0(z) be a density (or probability
mass) function for the population Z satisfying (1), H0 and
the conditions C1–C4. Let f1(z) be a density (or probabil-
ity mass) function satisfying (1) and H1. Define the likeli-
hood ratio Ln =

∏n
i=1 f1(Zi)/

∏n
i=1 f0(Zi) and Sn(ν0) =

n−1/2
∑n

i=1 m(Zi; ν0), where ν0 = ν(f0(z)).

Suppose that when Zi’s follow f0(z), for any constant
vector c ∈ R

r, cTSn(ν0) and logLn are jointly asymptoti-

364 M. Zheng, Z. Zhao and W. Yu



cally normal with proper parameters as n → ∞. Then by
LeCam’s first lemma, f1(z) is contiguous to f0(z). From
(13), we can show that under f0(z), i.e., θ0 = θ,

− 2 logRIF (θ)

=

(
1√
n

n∑
i=1

g
(
Zi; θ

))T

Σ−1

(
1√
n

n∑
i=1

g
(
Zi; θ

))
+ op(1).

By definition,

1√
n

n∑
i=1

g
(
Zi; θ

)
= AT

1

1√
n

n∑
i=1

m
(
Zi; θ, γ0

)
+ op(1),

where

A1 =

(
I

−A12A
−1
22

)
,

with I being a p×p identity matrix. Combining the last two
equations yields

− 2 logRIF (θ)(14)

=

(
1√
n

n∑
i=1

m(Zi; θ, γ0)

)T

U1

(
1√
n

n∑
i=1

m(Zi; θ, γ0)

)

+ op(1),

where U1 = AT
1 Σ

−1A1. On the other hand, by the results
from [13], we can show that under f0(z),

− 2 logRP (θ)(15)

=

(
1√
n

n∑
i=1

m
(
Zi; θ, γ0

))T

U2

(
1√
n

n∑
i=1

m
(
Zi; θ, γ0

))

+ op(1),

where U2 = M−1 −M−1A2[A
T
2 M

−1A2]
−1AT

2 M
−1 with

M =

(
M11 M12

M21 M22

)
, A2 =

(
A12

A22

)
.

Careful calculation gives out that U1 = U2. Since f1(z)
is contiguous to f0(z), (14) and (15) still hold when
Zi’s follow f1(z). Moreover, by LeCam’s third lemma,
n−1/2

∑n
i=1 m(Zi; θ, γ0) is asymptotically normally dis-

tributed when Zi’s follow f1(z). Thus, under f1(z), i.e., un-
der contiguous alternative, −2 logRIF (θ) and −2 logRP (θ)
have the same asymptotic distribution which is given by a
non-central chi-squared distribution with p degrees of free-
dom and a certain non-central parameter. It implies that
the two log-empirical likelihood ratio test statistics possess
the same asymptotic power.
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