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Empirical likelihood inference for
problems

CHANGBAO WU* AND YING YAN

There exists a rich body of literature on empirical like-
lihood methods for two-sample problems. In this paper we
focus on the simple and yet very important case of mak-
ing inference on the difference of two population means us-
ing the empirical likelihood approach. Our contributions to
this dynamic research topic include: (i) a weighted empiri-
cal likelihood method which not only performs well but also
has a major advantage in computational simplicity; (ii) a
pseudo empirical likelihood method for comparing two pop-
ulation means when the two samples are selected by com-
plex surveys; (iii) two-sample empirical likelihood method
with missing responses; (iv) bootstrap calibration proce-
dures for the proposed weighted and pseudo empirical like-
lihood methods. Results from a limited simulation study
showed that our proposed methods perform very well. The
methods are also applied to a real data example on family
expenditures.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62G10;
secondary 62D05.

KEYWORDS AND PHRASES: Behrens-Fisher problem, Boot-
strap calibration, Case-control studies, Confidence inter-
vals, Complex surveys, Hypothesis test, Nonparametric like-
lihood.

1. INTRODUCTION

Two-sample problems are commonly encountered in
many areas of statistics. In classical designed experiments
involving two levels of a single factor, the focus is on compar-
ing two treatments under the controlled experimental set-
tings. In case-control studies, two independent samples are
retrospectively taken, one from the case (or disease) group
and one from the control group, and the main interest is
to study relationships between a disease and environmental
or genetic characteristics (Qin, 1998). In observational stud-
ies, comparisons are often made between two groups defined
by gender, age, ethnic backgrounds, educational levels, etc.
While the settings can be extremely simple, some of the
problems can be very interesting and fascinating. For exam-
ple, Zhou, Gao and Hui (1997) studied the effects of two
races on medical costs of patients. Their interest is whether
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two-sample

the average medical costs for African American patients is
the same as that for white patients. In the August 22, 2011
issue of Time magazine, Andrea Sachs reported differences
in earnings between the typical good-looking worker and
the below-average-looking worker over a lifetime, and his
reported results are indeed very surprising.

Suppose that Y11,...,Y1,, and Yay,...,Ys,, are two in-
dependent and identically distributed samples from Y; and
Ya, respectively, with E(Y1) = p1, E(Ya) = pg, Var(Yy) =
0% and Var(Yz2) = o3. The well-known Behrens-Fisher prob-
lem is to test Hg: py = po against Hy: pg # po when
both Y; and Ys are normally distributed with possibly un-
equal variances (Behrens, 1929; Fisher, 1935, 1939) or un-
known ratio o%/c3 (Ghosh and Kim, 2001). The classic
two-sample T-test under the normality assumption requires
that 07 = o03. When both sample sizes n; and ny are
large and under the null hypothesis Hy, the test statistic
T = (Yo — Y1)/{S}/n1 + S3/na}'/? follows approximately
a standard normal distribution, where Y; = n;* >t Y
and S7 = (n; — 1)7' 30, (Vi; — Y4)?, i = 1,2. However,
when the sample sizes are small, normal approximation to
T becomes very poor, and a known better solution is to
use a t-distribution with the degree of freedom calculated
by the Welch-Satterthwaite equation (Welch, 1938, 1947;
Satterthwaite, 1946). When the distribution of Y;; is not
normal but has a known form, specific adjustment to 7" can
be made to obtain more powerful tests. For instance, Zhou,
Gao and Hui (1997) studied cases where both Y7 and Y,
follow log-normal distributions, and they derived new tests
which showed substantial improvement over the T-test for
log-normally distributed sample data.

The empirical likelihood (EL) method was first proposed
by Owen (1988) as a nonparametric likelihood-based alter-
native approach to inference on the mean of a single pop-
ulation. The approach has attracted immediate attention
from researchers since Owen’s original work, and applica-
tions of EL have been found in many areas of statistics. One
of the most significant contributions to the EL methodology
was the work by Qin and Lawless (1994). They showed that
side information in the form of general estimating equations
can be effectively incorporated into inference through con-
strained maximization of the empirical likelihood function.
Owen’s 2001 monograph provided an excellent overview of
the early developments on empirical likelihood. In recent
years, there have been several new areas where the empiri-
cal likelihood method has proved to be very useful. One of
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these areas is on missing data problems; see, for instance,
Wang and Rao (2001, 2002a, 2002b), Wang and Veraverbeke
(2002), Wang, Linton and Hardle (2004), Qin and Zhang
(2007), Wang and Dai (2008), Zhou, Wan and Wang (2008),
Qin, Zhang and Leung (2009) and Wang and Chen (2009),
among others. Another area with substantial new devel-
opment is the use of empirical likelihood for the analysis
of complex survey data; see, for example, Chen and Sitter
(1999), Wu (2004, 2005), Wu and Rao (2006, 2010), Kim
(2009) and Rao and Wu (2010a, 2010b), among others.

There has also been revived research on two-sample prob-
lems using the empirical likelihood method. Qin (1994) used
a semi-empirical likelihood approach to inference on the dif-
ference of two population means. Jing (1995) showed that
the two-sample empirical likelihood for the difference of two
population means is Bartlett correctable. Qin and Zhang
(1997), Qin (1998) and Zhang (2000) examined the EL
methods for the two-sample problems in the context of case-
control studies. Claekens, Jing, Peng and Zhou (2003) de-
rived empirical likelihood confidence regions for the compar-
ison distribution of two populations. They also considered
ROC curves which are used to compare measurements of a
diagnostic test from two populations. Zhou and Liang (2005)
studied empirical likelihood-based semiparametric inference
for the treatment effect in the two-sample problem with
censoring. Cao and Van Keilegom (2006) developed an EL-
based test on whether two populations follow the same dis-
tribution.

In this paper we focus on the simple and yet very im-
portant case of making inference on the difference of two
population means using the empirical likelihood approach.
Our contributions to this dynamic research topic are as fol-
lows: In Section 2, we propose a weighted empirical likeli-
hood method which has a major advantage in computational
simplicity. In Section 3, we propose a pseudo empirical likeli-
hood method for comparing means of two finite populations
when the two samples are selected by complex surveys. Two-
sample empirical likelihood with missing responses is dis-
cussed in Section 4. Bootstrap calibration procedures for the
weighted and pseudo empirical likelihood methods are pre-
sented in Section 5. Results from a limited simulation study
are reported in Section 6. A real data example is presented
in Section 7. Some additional remarks are given in Section 8.

2. WEIGHTED TWO-SAMPLE EMPIRICAL
LIKELIHOOD METHOD

We start with the setting for the standard two-sample em-
pirical likelihood and provide a detailed proof of the asymp-
totic x? distribution of the empirical likelihood ratio statis-
tic for the difference of two population means, which hasn’t
been given in detail in any of the existing papers on em-
pirical likelihood. More importantly, the proof shows the
computational difficulty involved in calculating the EL ra-
tio statistic, which motivates the weighted EL approach we
propose in section 2.2.
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2.1 Standard two-sample empirical likelihood

Let Y11,...,Y1,, and Yoi,...,Ys,, be two independent
and identically distributed samples from Y7 and Y3, respec-
tively, with E(Y1) = u1, E(Y2) = pa, Var(Y:) = o7 and
Var(Yy) = 03. Let § = u; — pio be the parameter of interest.
The joint empirical log-likelihood function based on the two
samples is given by

(1) l(py,py) = Zlog(pu) + Zlog(pzj),

where p; = (p11,...,p1n,) and py = (p21,.. ., p2n,)’ are the
two sets of probability measure imposed respectively over
the two samples. The empirical log-likelihood ratio statistic
on the parameter of interest, 6, is defined as

(2) r(0)= Z log{nip1;(0)} + Z log{nap2;(0)},

where p1;(6) and po;(#) maximize I(p;,py) subject to the
following set of constraints:

ni na
Zplj =1, ng‘ =1,
j=1 j=1

na

ni
Zpljylj - ZPQJ'YQJ' =0.
j=1 j=1

Let n = n; + ny be the combined sample size and 0 =
E(Y1) — E(Y2).

Theorem 2.1. Suppose that o3 < 00, 05 < 00 and ny/n —
w € (0,1) as n — oo. Then —2r(0) converges in distribu-
tion to a x? random variable with one degree of freedom as
n — oo.

3)

(4)

Proof. If ny/n — 7 € (0,1) as n — oo, then there is no need
to distinguish, for instance, among Op(nl_l/2), Op(ngl/z)
and O,(n™/2). Let o be a fixed number such that po =

2 + O(n=1/2). We replace constraint (4) by

ni n2

Zpljylj =puo+0 and Zp2jY2j = 1o.

j=1

(5)

j=1

The constraint (5) implies (4), but (4) does not imply (5).
The newly introduced pg is a nuisance parameter and will
eventually be profiled. It serves as a bridge for comput-
ing the EL ratio statistic for the parameter of interest, 6.
Let 7(uo,0) be the empirical log-likelihood ratio statistic
when (4) is replaced by (5). The initial r(#) corresponds
to r(fip,0) where fig is the maximum point of r(pg, ) with
respect to pg for the fixed 6.

It can be shown that p1; and Po; which maximize I(p;, p,)
subject to (3) and (5) are given by

1
ni{l+ A (Y —po —0)}

(6)

DP1j =



and
1

no{l + Xa(Ya; — pio)}’

where \; and Ay are the solutions to

ﬁQj =

ni

1 Yi; —po—¥0
7 — J =0
() nlj;l'i‘)\l(ylj—uo—e)
and

1 & Y2; — o

nzjzzg 14+ Ao (Y5 — o)

The corresponding empirical likelihood ratio statistic is
given by

(8) r(p0,6) = = Y log{1 + A1 (Yi; — o — )}

i=1
n2

- Zlog{l + A2(Ya; — po)}-
j=1

To find the maximum point of r(ug, ) with respect to po,
we set Or(uo,8)/0po = 0 which gives

9)

Using standard argument as in Owen (2001, pages 219-222),
we also have

n1A1 + ngig = 0.

1 -
(10) AL = p(yl — o — 0) + 0,(n/?)

1

and
1 -
Xo = — (Yo — o) + 0, (n~ /%),
03
and this leads to the solution to (9) as

(11)

where

fo =7(Y1 = 0) + (1 = 7)Y + 0y(n~"/?),

_ (M no N2
”<a%>/(a%+as)'

Noting that A (Y1;—fio—6) = 0p(1) and Ao (Y2, —fi) = 0p(1)
uniformly over all ¢ and j and applying a Taylor series ex-
pansion to (8) at ug = fip, we have the following asymptotic
expansion to the EL ratio function:

—2r(0) = —2r(fi0,0)

= 25 (V=0 —0)" + =3 (Y2 — fu0)” + 0p(1)
07 03
2

lop
— 1).
+n2> +0p(1)

of

(i -2 )" (

ni

It immediately follows that —27(6) converges in distribution
to a x? random variable with one degree of freedom. O

A (1—a)-level confidence interval on @ can be constructed
as

(12) Ci={0]-2r(0) <xi(a)},

where x? () is the upper (100a)% quantile from the x? dis-
tribution. The lower and upper bounds of the interval C; re-
quires a bi-section search algorithm. This is a computation-
ally challenging task, because for every selected grid point
on 6, one needs to maximize the EL ratio function over the
nuisance parameter, 1, and there is no-closed form solution
to the maximum point iy for any given 6.

The computational difficulties under the standard two-
sample EL formulation are due to the fact that the involved
Lagrange multipliers, which are determined through the set
of equations (7), have to be computed based on two separate
samples with an added nuisance parameter pg. Such diffi-
culties can be avoided through an alternative formulation
of the EL function, for which computation procedures are
virtually identical to those for one-sample EL problems.

2.2 Weighted two-sample empirical
likelihood

There exist different versions of weighting schemes for the
empirical likelihood function. For instance, Ren (2008) dis-
cussed a weighted empirical likelihood approach for some
two-sample semiparametric models with various types of
censored data, where the weights depend on the censoring
type of individual observations. The method we use here is
to put a weight on each sample, which is related to the sam-
ple size. This idea was first used by Fu, Wang and Wu (2008)
when they discussed inferences with multiple samples.

We define the weighted empirical log-likelihood function
as

71 n2
w w
(1) lo(prpa) = - log(yg) + 2 > log(pay),
j=1 j=1

where w; = wy = 1/2. This choice of wy and ws is to facili-
tate the reformulation of normalization constraints (3) and
the parameter constraint (4) into the alternative forms (14)
and (15), to be specified below. Let the weighted EL ratio
statistic 7,(0) be defined in the same way as r(0) of Sec-
tion 2.1 under the same constraints (3) and (4) but replac-
ing I(py,py) by the weighted version [, (p;,p,). We have
the following result concerning the asymptotic distribution
of r4,(0).

Theorem 2.2. Suppose that 03 < 00, 03 < 0o and ny/n —
m € (0,1) asn — oo. Then —2r,(0)/c1 converges in distri-
bution to a x? random variable with one degree of freedom
as n — oo, where ¢, is a scaling constant and is specified
in (17).

Proof. The most crucial step we use to prove the result
is a reformulation of the constraints, which also character-
izes the required computational procedures for our proposed
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weighted EL. First, we note that the two normahzatlon con-
straints in (3) are equivalent to Z L. p1; =1land Z L W; X
Z;l:l pi; = 1. Second, the constraint (4) induced by the
parameter ¢ can be re-written as wy 7L, p1;(Yij/wi) +
wy Y72 (=Ya;/wz) = 0. The two sets of constraints (3)
and (4) can now be equivalently written as

2 ng
=1 j=1
2 n;
(15) Z w; Zpijuij =0,
i=1 j=1

where Ui = Zij -mn, le = (1,Y1j/w1)’, sz = (0, _}/Qj/
wsa)', n = (w1,0)". It should be noted that the choice w; =
wg = 1/2 is important for the above reformulation of con-
straints. Using the standard Lagrange multiplier method, it
can be shown that the p;; which maximize l,,(p,,p,y) sub-
ject to (14) and (15) are given by p;; = 1/{n;(1 + XN'u;;)},
and the Lagrange multiplier X is the solution to

2
w u
Zn:;1+;\]’u” N

i=1

(16)

Substituting 1/(1+Xu;;) = 1—Xu;;/(1+ X u;) into (16),
we have

Wy - ’U"LJ
Z n; ; 1 +X

i=1

Z = Z“w

i=1 jl

Noting that

and using a similar argument as in Owen (2001, pages 219 —

222), we get
A=D"'U +o0,(n"'?),

where

Uz

2

wj
=D D wil
=1 z ':

is a 2 x 2 matrix. The weighted two-sample empirical log-
likelihood ratio statistics for # can now be expanded as fol-
lows:

=27 (

2 Uz
9) = 22 ZL Zlog(l + Nug;)
= 22 :Z Z (A ujj — Xuiju,’ij)\> +o,(n7")

1=1 Jj=1
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=U'D'U+ op(n1)
= d®D(V, = Y5 = 0) + 0p(n7"),

where d(®?) is the second diagonal element of D™, If we let

— d (22) Sl *Sj
ny TLQ ’
then it follows immediately that —2r,,(0)/c; converges in

distribution to a x? random variable with one degree of free-
dom when 0 = E(Y7) — E(Y2). O

(17)

The weighted two-sample EL formulation is computation-
ally friendly, since it does not involve any nuisance parame-
ters, and the involved equation (16) for the Lagrange multi-
plier can be solved using the one-sample EL algorithm (Wu,
2004). The scaling constant ¢; involves the unknown 6 and
can be consistently estimated by ¢; when 6 is estimated by
0 = Y1 Y. The resulting —27,,(0)/¢; still has an asymp-
totic x? distribution. Consequently, a (1—a)-level confidence
interval on 6 can be constructed as

= {0 =2 (0)/&1 < X3 ()}

The scaling constant ¢ can also be bypassed through a boot-
strap calibration method. See Section 5 for further detail.

(18)

3. TWO-SAMPLE PSEUDO EMPIRICAL
LIKELIHOOD FOR COMPLEX SURVEY
DATA

In this section, we use a pseudo empirical likelihood
(PEL) approach to develop a method which is suitable for
two-sample problems involving complex survey data. The
PEL method was first proposed by Chen and Sitter (1999)
for point estimation, and was later further developed by Wu
and Rao (2006) for conducting hypothesis tests or construct-
ing confidence intervals based on a single complex survey
sample.

Let s; be the set of sampled units selected from the ith
finite population, ¢ = 1,2. Let ny; and ns be the respective

sample size. Let W(z)

ties, j=1,...,n; and i =1,2. Let d;; = 1/7rj(-i) be the basic
design weights and

P(j € s;) be the inclusion probabili-

dij(si) = dij/ Z dik

ke€s;

be the normalized design weights. We follow design-based
framework for inference, where the value Y;; for the study
variable Y, attached to the jth unit in population ¢, is
treated as fixed, and randomization is induced by the ran-
dom selection of sampled units. Let 11 and uo be the respec-
tive finite population means. Let § = uy — puo be the param-
eter of interest. The two-sample pseudo empirical likelihood



function is defined as

lpet(P1, p2) = w1y dij(s1)log(pry)

(19)
j=1
n2
+ws Y daj(s2) log(pa),
j=1
where w; = wy = 1/2. When the selection probabilities
7'('](-2) are all equal for the given population ¢, the normalized

design weights d;;(s;) reduces to 1/n;. In this case our pro-
posed pseudo empirical likelihood function l,e;(p;,ps) re-
duces to the weighted EL function [,,(p;, p,) that has been
discussed in Section 2.2. The maximum PEL estimator of
6 is computed as épel = Z?iﬁﬁljylj — Z?i1ﬁ2jy2ja where
the p;;’s maximize lpe;(P;, Po) subject to the normalization
constraints (3), and the estimator is given by épel = fi1 — fio,
where fi; = 3707, dij(si)Yi; = 3775, digYij/ 3255, dij is the
Héjek estimator of the finite population mean, ;. Under
complex survey designs, the estimator 9pel is approxunately
design-unbiased, while the regular estimator =Y, —Y,is
biased.

Let p;;(0) be the maximizer of l,.;(p;, py) subject to the
normalization constraints (3) and the constraint (4) induced
by the parameter of interest, 6. It follows from similar argu-
ments in Section 2.2 that p;;(0) = dy;(s;)/(1+ X ug;), where
the u;; is defined in Section 2.2, both A and u;; depend on
0, and the Lagrange multiplier A is the solution to

2 n; 3y
Sy e o

(20)

Noting that p;; (épel) = dNij(sZ-), the two-sample pseudo em-
pirical log-likelihood ratio statistic for 6 is given by

et (6) = lpez{m(e),ﬁz(@} — lper{ P (Opet), Pa(per) |
=— Z w; Z di;(s

Let K =37 jw; Y07,
involving the unknown 6, and

Cco = k(22) V(Z Jlj(sl)Y1j> + V(Z JQj(«%)%j) )

j=1 j=1

) log(1 + XN'uij).

dij (s Juiju;, which is a 2x2 matrix

where k(?2) is the second diagonal element of K ', and V(-)
refers to design-based variance. The following result can now
be established using arguments similar to the proof of The-
orem 2.2. Details are omitted.

Theorem 3.1. Under the asymptotic framework and the
reqularity conditions C1-C8 described in Wu and Rao
(2006), applicable to both populations and sampling designs,

and assume that ni/n — m© € (0,1) as n — oo, the ad-
Justed two-sample pseudo empirical likelihood ratio statis-
tic —2rpe(0)/c2 converges in distribution to a x* random
variable with one degree of freedom as n — oo, where

92/,61—”2.

The definition of the scaling constant cy involves the un-
known 6 and variances of the two Hajek estimators of the
population means. Let é; be a consistent estimator of cs.
The (1 — «)-level PEL confidence interval on 6 can be con-
structed as
(21) C3 = {9 | _27"pel(9)/62 < X%(a)} .

In Section 5, we propose a two-sample bootstrap calibration
procedure which can bypass the need for calculating the
scaling constant under certain sampling designs.

4. TWO-SAMPLE EMPIRICAL LIKELIHOOD
WITH MISSING DATA

In this section, we extend the discussion to two-sample
problems where measures on certain auxiliary variables are
available for all units in both samples but values of the re-
sponse variable are subject to missingness. Suppose that
{(Yij,2ij), j = 1,...,n;} is a conceptual random sample
from the ith population, i = 1 and 2, where the dimension-
ality and the components in the vector of auxiliary variables
x;; can be different for the two populations but measures on
x;; are observed for all j. The response variable Y;; could
be missing. Let §;; = 1 if Y;; is observed, and 4;; = 0 if
Y;; is missing. The two actual samples may be represented
by {(Yij,®ij,0i5), 7 =1,...,n;}, ¢ = 1, 2. We assume that
P(;; =1 |Y,xi) = P(JJ =1 f‘%) That is, the re-
sponses are missing-at-random. We further assume that the
following linear regression models hold:

(22) Y;‘jZCL‘;j,Bi-i-Eij, i1=1...,n4 1 =1,2,

where B; and 3, are the regression parameters for the two
populations, and the ¢;;’s are independent error terms with
mean 0 and unknown variance 72. The parameter of interest
is still @ = p1 — po, where p; = E(Y;;) is the unconditional
mean response for the ¢th population.

It should be noted that when complete responses are
available, measures of the auxiliary variables x;; provide
no additional information for the unconditional population
means p; and ps. When the Y;;’s are subject to missingness,
information collected on x;; becomes valuable and can be
used to impute the missing responses through the regression
model (22). Let

—1
!
Y Sy | Y Yy
j=1 =1
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be the ordinary least square estimator of 3, using available
sample data. Let

Yij =05Yi + (1= 6i5)x;;B8;, j=1,...,n; i=12.
Note that Y;; = Y;; is the observed response if §;; = 1, and
Yi; = mgj,ﬁ'i is the regression imputed value for Y;; if 6;; = 0.

We consider the standard two-sample empirical likelihood
formulation described in Section 2.1. Let 7(6) be defined in
the same way as () given by (2), with constraint (4) being
replaced by

ni no
(23) ZPUYM — szjyzj =0.
i—1 j=1

We assume that (Y;;, zi;,0:5), j = 1,...,n; can be viewed
as an independent and identically distributed sample from
(vaiaéi)v 7’ = 17 2

Theorem 4.1. Suppose that the two regression models spec-
ified by (22) hold, and the error variances T2 are finite. As-
sume that E(||X;[|?) < o0, i = 1,2, ny/n — 7 € (0,1)
as n — o0o. Then —27(0)/cs converges in distribution to a
x? random variable with one degree of freedom as n — oo,
where 0 = py1 — o and cs is a scaling constant and is speci-

fied in (24).

Proof. The imputation procedure used here is the same as
the one used by Wang and Rao (2002b) for a single sample.
The major technical difficulty is that the ffij’s are not inde-
pendent due to the use of ,@Z for all imputed values. Under
the assumed conditions and following the same arguments
used by Wang and Rao (2002b), we have

2

\/171_1‘ Z(f’ij

j=1
and
1 o~
_. Z(Y;g - ﬂlz)2 — Uz»
1 j=1
where

Vi=851+ 5,2251;))157;27—1‘2 + B;Szzlﬂl
— 2575 Bti + 17 + 2575555 Si6 7]
i1+ 5;514/61 - 251{5/61'[% + /1'127

and Sﬂ = E{(sZ(Y; — X;,@Z)z}, Sig = E{(]. — SZ)Xl}, Sig =
E((SZXZX;), Si4 = E/‘()(l)(;)7 Sig, = E(Xz), SZ‘G = E((SzXz)

If we define
VW U U
ni1 no ni1 No

then it follows from similar arguments used in the proof
of Theorem 2.1 of Section 2.1 that —27(#)/cs converges in

U; =

(24)
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distribution to a x? random variable with one degree of free-
dom. The details can be found in Yan (2010) and are omitted
here. O

In practice, the scaling constant cs needs to be estimated
in order to use the above result for testing hypotheses or
constructing confidence intervals on 6. This can be done by
using plug-in moment estimators for S, p;, K = 1,...,6,
i = 1,2, the least square estimators of 3,, and the estima-
tor of 72 from the fitted residuals. It is also possible to de-
rive a similar result under the weighted empirical likelihood
formulation of Section 2.2. or a result in the same spirit of
Theorem 3.1. when the two samples are selected by complex
survey designs and the responses are subject to missingness.
These scenarios will not be discussed further in the current

paper.

5. BOOTSTRAP PROCEDURES

Empirical likelihood-based hypothesis tests or confidence
intervals on 6 rely on the asymptotic distribution of the
empirical likelihood ratio statistic. For single samples and
when the sample sizes are not large, bootstrap calibration
methods often provide improved performance under stan-
dard settings. For the weighted or the pseudo empirical like-
lihood methods for two-sample problems, there is an added
value to the bootstrap methods: the scaling constants c; or
¢z, which depends on unknown population quantities and
needs to be estimated, can be bypassed. Simulation stud-
ies also show that the bootstrap calibrated empirical like-
lihood methods provide improved performance for samples
with small or moderate sizes.

‘We now present a bootstrap calibration procedure for the
two-sample pseudo empirical likelihood method described in
Section 3. The proposed procedure also covers the weighted
empirical likelihood approach of Section 2.2 as a special
case with equal probability selection of units. Our pro-
posed procedure is modified from the one-sample bootstrap
method described in Wu and Rao (2010). The two-sample
pseudo empirical likelihood ratio confidence interval (24)
on 6, which involves the scaling constant co; and the up-
per a-quantile from a x? distribution, can be replaced by
{0 | 7pei(0) > by}, where by, is the a-quantile of the sampling
distribution of the pseudo empirical likelihood ratio statis-
tic, rper(f). The value of b, in (25) can be approximated
through the following bootstrap calibration procedure. Two
important ingredients of the proposed bootstrap procedure
are (1) the basic design weights d;; need to be treated as part
of the sample data; and (ii) a bootstrap version of the two-
sample pseudo empirical likelihood function should be used.

1. Select a bootstrap sample s} of size n; from the orig-
inal sample s; using simple random sampling with re-
placement and denote the bootstrap sample data by

{(d:ijz;)v] € S;F}v i=1,2.



2. Let the bootstrap version of the two-sample pseudo em-
pirical likelihood function be defined as

Lyer(P1,p2) = w1 Y di;(s7) log(pi;)
JjESsT
+wy Y dy;(s3)log(ps;),
JESs;
where dj;(s7) = dj;/ 3 e, dij-
3. Calculate the bootstrap version of the two-sample
pseudo empirical likelihood ratio statistic as

FraBpe) = w1 3 1, (57) 1g(p—)

JjEsT dL(ST)

dun Y @ o5) g 3222,
jess d2j(82)

where the p;;’s maximize [, (py,py) subject to
ni na
> =1, > pa=1,
j=1 j=1

ni no

* * N
§ ple1j - E p2jY2j = 0pel7
j=1 i=1

where épel = ﬂl — ﬂQ and ﬂi = Z;lbzl Jij(si)iﬁj.
4. Repeat Steps 1, 2 and 3 a large number of times,
B, independently, to obtain the sequence 3 (0pei), .. -,

75 (0per). Let b%, be the 100ath sample quantile from
this sequence.

The bootstrap calibrated two-sample pseudo empirical

likelihood ratio confidence interval on 6 can now be con-
structed as
(25) C3 = {0 [ rper(0) > b5} -
The following theorem states that this interval has the de-
sired level of coverage probability. The proof is a combi-
nation of arguments used in the proof of Theorem 3.1 and
those used in the proof of Theorem 1 of Wu and Rao (2010).
Details are omitted.

Theorem 5.1. The bootstrap calibrated two-sample pseudo
empirical likelihood ratio confidence interval C5 on 6 has
asymptotically correct coverage probability at (1 — «)-level if
the conditions of Theorem 3.1 hold and the original samples
s1 and so are selected using unequal probability sampling
with replacement.

In practice, complex survey samples are usually selected
by without-replacement sampling procedures. The interval
C3 can be used for without-replacement sampling designs if
the sampling fraction f; = n;/N; is negligible. Here N; is the
size of the ith finite population. When f; is not small, the

interval C3 under the proposed with-replacement bootstrap
procedure tends to have an over-coverage problem, as shown
by the one-sample simulation results reported in Wu and
Rao (2010).

6. SIMULATION STUDIES

In this section we report results from a limited simula-
tion study on the finite sample performance of the proposed
empirical likelihood ratio confidence intervals on the dif-
ference of two population means, with comparison to the
conventional T-test based method. We consider three cases:
(i) Both Y7 and Y5 are normally distributed; (ii) Both Y3
and Y follow lognormal distributions; (iii) The two samples
are selected from two finite populations, with the response
variable containing many zero values. More scenarios of sim-
ulations, not reported here to save space, can be found in
Yan (2010).

For cases (i) and (ii), two independent and identically dis-
tributed samples of sizes n; and ns are drawn respectively
from Y7 and Y53, and four confidence intervals on 6 = pq — s
are computed: (1) the conventional normal-approximation
interval based on T = {(Y; — Ya) — (u1 — p2)}/{S?/n1 +
52 /ny}'/? (T-Test); (2) the standard two-sample empirical
likelihood method described in Section 2.1 (EL); (3) the
weighted empirical likelihood method introduced in Sec-
tion 2.2 (WEL); and (4) the bootstrap-calibrated weighted
empirical likelihood method (BWEL). The nominal value of
the confidence level is fixed at 95%. Performances of these
intervals are evaluated based on coverage probability (C'P),
lower (L) and upper (U) tail error rates and average length
(AL), computed as follows:

B
L =100 x %Zl(ég’) > 9),
b=1
B
1 A
U =100 x EZ[(@S’) < 0),

CP =100 x

and
L 00 40)
= EZ(GU -0 )’

where (é(Lb), é((jb )) is a confidence interval on 6 computed from
the bth simulated sample, and B = 2,000 is the total num-
ber of simulation runs. For the bootstrap-calibrated method,
the number of bootstrap samples used for computing the in-
terval is 1, 000. It should be noted that L + CP 4+ U = 100
for any method.

Table 1 summarizes the results for case (i), where Y7 ~
N(p1,0%) and Yo ~ N(p2,03), 1 = po = 1, o7 = 1.5 and
o2 = 1. We have the following major observations: (a) The
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Table 1. Confidence Intervals on 0 = p1 — po for Two Table 2. Confidence Intervals on 0 = ji1 — po for Two
Normal Populations Lognormal Populations
(’n1, V’LQ) CI L CP U AL (nl, ng) CI L CP U AL
(30,30) T-Test 2.10 95.05 2.85 1.31 (30,30) T-Test 1.05 93.10 5.85 2.65
EL 2.45 94.40 3.15 1.28 EL 2.55 91.85 5.60 2.68
WEL 2.20 94.90 2.90 1.30 WEL 2.40 92.25 5.35 2.73
BWEL 2.05 95.25 2.70 1.31 BWEL 1.50 93.75 4.75 3.07
(30,60) T-Test 4.70 91.20 4.10 1.06  (30,60) T-Test 2.90 89.45 7.65 2.06
EL 3.10 94.20 2.70 1.18 EL 2.20 93.20 4.60 2.50
WEL 2.75 94.60 2.65 1.20 WEL 1.65 93.15 5.20 2.55
BWEL 2.70 94.75 2.55 1.21 BWEL 0.95 94.40 4.65 2.77
(60,30) T-Test 0.80 98.20 1.00 1.21  (60,30) T-Test 1.00 97.35 2.55 2.52
EL 2.55 94.90 2.55 1.04 EL 2.95 93.45 3.60 2.13
WEL 2.20 95.55 2.25 1.05 WEL 3.25 94.50 2.25 2.16
BWEL 2.40 95.10 2.50 1.05 BWEL 2.50 95.65 1.85 2.32
(60,60) T-Test 2.40 94.95 2.65 0.92 (60,60) T-Test 1.25 93.15 5.60 1.87
EL 2.50 94.60 2.90 0.91 EL 2.80 92.60 4.60 1.92
WEL 2.45 94.70 2.85 0.92 WEL 2.65 93.00 4.35 1.94
BWEL 2.55 94.85 2.60 0.92 BWEL 2.00 94.05 3.95 2.08
(30,90) T-Test 4.65 89.85 5.50 0.95 (30,90) T-Test 4.90 86.10 9.00 1.82
EL 2.95 94.45 2.60 1.14 EL 2.55 92.20 5.25 2.42
WEL 2.75 94.75 2.50 1.16 WEL 1.75 91.85 6.40 2.48
BWEL 2.60 94.90 2.50 1.16 BWEL 1.10 93.05 5.85 2.64
(90,30) T-Test 1.00 97.95 1.05 1.16  (90,30) T-Test 0.15 97.75 2.10 2.46
EL 2.35 94.60 3.05 0.94 EL 2.35 93.75 3.90 1.89
WEL 2.30 94.70 3.00 0.95 WEL 3.15 94.60 2.25 1.92
BWEL 2.35 94.65 3.00 0.95 BWEL 2.28 95.00 2.20 2.03

T-test method provides excellent results for scenarios where
n1 = ny. Coverage probabilities are very close to the nominal
value, and the two tail error rates are balanced; (b) When
the two sample sizes ny and no are not equal, the T-test
method performs poorly, and the interval is either too wide
or too narrow, depending on which sample is bigger; (c) The
empirical likelihood-based method is not sensitive to the un-
equal sample sizes, and the weighted EL performs uniformly
better than the standard two-sample EL method. The cov-
erage probabilities are good, the two tail error rates are very
balanced, and the average length is not inflated for all cases;
(d) The bootstrap-calibrated weighted EL method also pro-
vides excellent results.

Results for case (ii) where Y3 ~ Lognormal(vy,0%), Yz ~
Lognormal(ve,03), v1 = 1.1, va = 1.2, 07 = 0.4 and 03 =
0.2 are summarized in Table 2. All major points observed
from case (i) still hold, except that the performances of the
EL-based method seem to have deteriorated a little bit for
the case ny = 30 and ny = 90. The bootstrap-calibrated EL
method provides acceptable results for all cases.

For case (iii), we consider two finite populations of
sizes Ny = Ny = 5,000. For the first population, M; =
3,000 responses Yi; are set to zero, and for the sec-
ond population, My = 4,000 responses Y3; are zero. The
nonzero responses are generated from Uniform (0.8, 1.2) and
Uniform(1.8, 2.2), respectively. The two samples are taken
by simple random sampling without replacement. Under
such sampling designs, the pseudo-EL method of Section 3
reduces to the weighted EL method of Section 2.2. The re-
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Table 3. Confidence Intervals on 6 = ji; — po for Two Finite

Populations
(77,1 5 ’I”LQ) CI L CP U AL
(30,30) T-Test 4.40 94.25 1.35 0.68
EL 3.10 94.70 2.20 0.66
WEL 2.70 95.30 2.00 0.67
BWEL 2.30 95.65 2.05 0.68
(30,60) T-Test 2.25 97.15 0.60 0.63
EL 2.95 94.45 2.60 0.53
WEL 2.20 94.95 2.85 0.54
BWEL 2.15 94.90 2.95 0.54
(60,30) T-Test 6.70 90.00 3.30 0.54
EL 3.40 94.25 2.35 0.61
WEL 4.30 93.80 1.90 0.62
BWEL 3.10 95.05 1.85 0.63
(60,60) T-Test 3.20 95.35 1.45 0.48
EL 2.15 95.25 2.60 0.47
WEL 2.05 95.55 2.40 0.48
BWEL 2.00 95.45 2.55 0.48
(30,90) T-Test 1.00 98.75 0.25 0.62
EL 2.15 95.40 2.45 0.48
WEL 1.60 95.05 3.35 0.49
BWEL 1.60 94.90 3.50 0.48
(90,30) T-Test 7.65 86.65 5.70 0.49
EL 2.85 94.55 2.60 0.59
WEL 4.00 94.10 1.90 0.60
BWEL 2.60 95.35 2.05 0.61

sults are reported in Table 3. The T-test method once again
is very sensitive to the unequal sample sizes and performs



Table 4. Confidence Intervals on the Differences in Family Expenditures

Response CI Do D3 D23

Clothing (Y) T-Test (—0.194, 0.364) (1.138, 1.594) (1.073, 1.490)
EL (—0.197,0.366) (1.146,1.605) (1.081,1.506)
WEL (—0.203,0.362) (1.134,1.597) (1.073,1.498)
BWEL (—0.207,0.365) (1.123,1.607) (1.081,1.489)

Total (Z) T-Test (—7.680, 0.497) (21.614, 28.623) (25.744, 31.676)
EL (—7.630, 0.566) (21.696, 28.732) (25.757, 31.704)
WEL (—7.661,0.541) (21.563,28.637) (25.686,31.657)
BWEL (—7.700,0.581) (21.437,28.760) (25.682,31.661)

poorly with unequal sample sizes. All three EL-based meth-
ods, however, provide good and robust results for all scenar-
ios considered in the simulation.

7. A REAL DATA EXAMPLE

We now apply the proposed weighted EL method to an-
alyzing the data from the 2000 Statistics Canada’s Family
Expenditure Survey for the province of Ontario. The data
set consists of N = 2,248 observations on variables related
to family compositions, income and expenditures, including
Y: the annual expenditure on clothing and Z: the total an-
nual expenditure. One of the research questions is to see
how family expenditures are related to the number of chil-
dren (age < 15) in the family. The original survey used a
stratified simple random sampling design, but unfortunately
the strata weight information is not available. In what fol-
lows, we ignore the stratification and treat the data as if
they were collected by simple random sampling.

We break the data set into three subsets, corresponding
to families with two or more children, one child or no chil-
dren. The subsample sizes for the three groups are n; = 428,
ngy = 579 and ng = 1, 241, respectively. For a given response
variable (Y or Z), let u;, i = 1,2,3, be the unknown pop-
ulation means. We are interested in the pairwise differences
Dy = p; — py. For each difference, we compute 95% con-
fidence intervals using the four methods described in Sec-
tion 6: T-Test, EL, WEL and BWEL. The results are given
in Table 4 (values in $1,000’s). It is a bit surprising to see
that all four methods provide very similar results. This is
partially due to the relatively large sample sizes for all the
three groups. Confidence intervals for D5 contain 0, which
implies that there is no significant difference in spending be-
tween families with one child and families with two or more
children. Families with one or more children spend at least
$1,000 more on clothing and at least $21,000 more in total
expenditure than families with no children.

8. CONCLUDING REMARKS

We proposed a weighted EL method for two independent
and identically distributed samples and a pseudo empirical
likelihood method when the two samples are taken from two

finite populations using complex survey designs. One of the
major advantages of our proposed methods is the compu-
tational simplicity. Confidence intervals can be constructed
using algorithms developed for one-sample problems and no
nuisance parameters are involved. Under the scenarios ex-
amined in the simulation study, our proposed methods pro-
vide better results than the T-test method or the standard
two-sample ELL method. We are currently studying the per-
formance of the pseudo EL method for unequal probability
multistage sampling designs, as well as methods for missing
data problems.

The empirical likelihood method is usually effective and
powerful in dealing with populations with skewed distribu-
tions. For one sample problems, Chen, Chen and Rao (2003)
and Chen and Qin (2003) applied the empirical likelihood
method to populations with non-negative responses and a
large portion of zero values. They showed that the empirical
likelihood method is extremely efficient. The same scenario
also applies to two-sample problems. Hallstrom (2010) de-
veloped a modified Wilcoxon test for comparing two popu-
lations with non-negative distributions and clumps of zeros,
where parametric approaches are problematic. Our proposed
two-sample empirical likelihood methods can be directly ap-
plied to such scenarios and our limited simulation results
show that the EL-based methods can be very promising.
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