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Empirical likelihood ratio confidence intervals for
conditional survival probabilities with right
censored data
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∗,†

and Tonya Riddlesworth

In the analysis of survival data, we often encounter sit-
uations where the response variable (the survival time) T
is subject to right censoring, but the covariates Z are com-
pletely observable and are often discrete or categorical. In
this article, we construct the empirical likelihood ratio confi-
dence region for conditional survival probabilities based on
bivariate data which are subject to right censoring in one
coordinate and have a discrete covariate Z. We show that
such an empirical likelihood ratio confidence region is in-
deed an interval, and we establish some related properties
of the empirical likelihood ratio. The generalization of our
results in this article to the multivariate covariate Z with
dimension p > 1 is straightforward.
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1. INTRODUCTION

In the analysis of survival data, we often encounter situa-
tions where the response variable is the survival time T and
is subject to right censoring, but the p-dimensional vector
Z of covariates with components such as treatments, gen-
der, etc., are completely observable. In the nonparametric
setting, we are interested in an interval estimate for condi-
tional survival probability P{T > t0 | Z = z0}, where t0
and z0 are given values of interest. Such a problem is equiv-
alent to constructing confidence intervals for the following
conditional probability:

(1.1) θ0 = P{T ≤ t0 | Z = z0}.

For simplicity of presentation, here we consider the case that
covariate Z is a scalar rather than a vector, i.e., Z with
dimension p = 1. The generalization of our results in this
article to the multivariate case with p > 1 is straightforward.

Specifically, suppose that

(1.2) (T1, Z1), (T2, Z2), . . . , (Tn, Zn)
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is a random sample of (T, Z), but the actually observed sur-
vival data are the bivariate data with one coordinate subject
to random right censoring as follows:

(1.3) (V1, δ1, Z1), (V2, δ2, Z2), . . . , (Vn, δn, Zn),

where Vi = min{Ti, Ci}, δi = I{Ti ≤ Ci}, and Ci is the right
censoring variable with distribution function (d.f.) FC and
is independent of (Ti, Zi). Note that in practical situations
the covariate variable Z in (1.1)–(1.3) is often discrete or
categorical. In this article, we construct empirical likelihood
ratio confidence intervals (ELRCI) for conditional probabil-
ity θ0 in (1.1) based on right censored survival data (1.3),
where covariate Z is discrete.

The empirical likelihood approach (Owen, 1988) is a non-
parametric likelihood method, thus it is an appealing proce-
dure with broad applications in survival data analysis. We
refer to Owen (2001) and a nice survey paper by Li, Li and
Zhou (2005) for results on this topic. Among existing works
in the literature, the one most closely related to ours is that
by Li and van Keilegom (2002), where they constructed con-
fidence intervals and bands for the conditional survival prob-
abilities using the empirical likelihood approach. However,
the problem considered by Li and van Keilegom (2002) was
for a continuous covariate Z, and their procedure involves
bandwidth selection and kernel selection. In comparison, the
problem we consider in this article is of special importance
in practice, and our procedure does not involve any band-
width or kernel selection.

The rest of this article is organized as follows. In Sec-
tion 2, we construct the empirical likelihood based confi-
dence region for θ0 in (1.1) using the empirical likelihood
based bivariate nonparametric maximum likelihood estima-
tor (BNPMLE) F̂n(t, z) for bivariate distribution function
(d.f.) F0(t, z) of (T, Z) with right censored survival data
(1.3), which was obtained by Ren and Riddlesworth (2012).
We show that such a confidence region is indeed an interval.
The proofs are given in Section 3.

It should be noted that the results similar to our main
theorems in Section 2 are known for empirical likelihood in-
ference in the univariate data case, however they are not ob-
vious and quite difficult for the case with censored bivariate
data which we consider in this paper. Moreover, the com-
putation of ELRCI and the proof of related Wilk’s theorem
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are very difficult problems technically, and further careful
and much more involved work is needed.

2. EMPIRICAL LIKELIHOOD RATIO
CONFIDENCE INTERVALS

To derive the empirical likelihood function for bivariate
d.f. F0(t, z) of (T, Z) based on survival data (1.3), we let
all possible values of discrete covariate variable Z be given
by:

(2.1) z1, z2, . . .

and let

U1 < · · · < Um be all distinct values among V1, . . . , Vn;

Y1 < · · · < Yq be all distinct values among Z1, . . . , Zn.

(2.2)

Denoting

nij =

n∑
k=1

I{Vk = Ui, Zk = Yj},

δij =

n∑
k=1

I{Vk = Ui, δk = 1, Zk = Yj}
(2.3)

for 1 ≤ i ≤ m, 1 ≤ j ≤ q, Ren and Riddlesworth (2012)
show that the likelihood function for bivariate distribution
function F0(t, z) of (T, Z) with data (1.3) is given by

L(F ) =

m∏
i=1

q∏
j=1

(dF (Ui, Yj))
δij(2.4)

× (F (∞, dzj)− F (Ui, dYj))
nij−δij ,

where F is any bivariate d.f., and denoting PF as the prob-
ability under F we have:

{
dF (t, z) = PF {T = t, Z = z}
F (t, dz) = PF {T ≤ t, Z = z} = F (t, z)− F (t, z−).

(2.5)

In order to derive the ELRCI for θ0 in (1.1), we first describe
the BNPMLE F̂n(t, z) for F0(t, z) by Ren and Riddlesworth
(2012) as follows.

Note that (2.3) implies n1j + · · · + nmj ≥ 1 for any 1 ≤
j ≤ q and that nij = 0 implies δij = 0. Thus, letting

(2.6) mj = max{k | nkj > 0}, 1 ≤ j ≤ q

we have nij = δij = 0 for all 1 ≤ j ≤ q, mj < i ≤ m;
which means that points (Ui, Yj) for mj < i ≤ m are not
observed among (Vk, Zk)’s in data (1.3), in turn, by the
usual empirical likelihood treatment these points (Ui, Yj)
are not assigned any probability masses. Hence, to find the
BNPMLE for F0 with likelihood function (2.4), Ren and

Riddlesworth (2012) restrict all possible candidates to those
bivariate d.f.’s that assign all their probability masses to
points (Ui, Yj) for 1 ≤ j ≤ m, 1 ≤ i ≤ mj and line segments
Lj = {(t, Yj) ∈ R

2; t > Um} for 1 ≤ j ≤ q, which writes
likelihood function (2.4) as follows:

(2.7) L(F ) =

q∏
j=1

m∏
i=1

(p
ij
)δij

(
m+1∑
k=i+1

p
kj

)nij−δij

≡ L(p),

where

F (t, z) =

m∑
i=1

q∑
j=1

p
ij
I{Ui ≤ t, Yj ≤ z}, for t ≤ Um, z ∈ R

(2.8)

satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pij = dF (Ui, Yj) = PF {T = Ui, Z = Yj},
for 1 ≤ j ≤ q, 1 ≤ i ≤ m

p
ij
= 0, for 1 ≤ j ≤ q, mj < i ≤ m

pm+1,j = PF {(T, Z) ∈ Lj} = PF {T > Um, Z = Yj},
for 1 ≤ j ≤ q

q∑
j=1

m+1∑
i=1

p
ij
= 1.

(2.9)

Hence, the BNPMLE F̂n(t, z) for F0(t, z) is the solution
that maximizes above likelihood function L(F ) = L(p)
in (2.7).

Let p̂ denote the solution of the following optimization
problem:

(2.10)

⎧⎪⎪⎨
⎪⎪⎩
maxL(p) =

q∏
j=1

m∏
i=1

(pij )
δij

(
m+1∑
k=i+1

p
kj

)nij−δij

subject to: Constraints on p in (2.9).

Ren and Riddlesworth (2012) show that in the sense of
the empirical likelihood method the BNPMLE F̂n(t, z) for
F0(t, z) is uniquely given as stated in the following theo-
rem.

Theorem 1. For any 1 ≤ i ≤ m, 1 ≤ j ≤ q, we denote

(2.11) Nij = nij + · · ·+ nmj =

n∑
k=1

I{Vk ≥ Ui, Zk = Yj}.

Then, the solution p̂ of (2.10) is unique and satisfies the
following:

(i) For any 1 ≤ j ≤ q, 1 ≤ i ≤ mj, we have p̂
ij
> 0 if and

only if δij > 0;

(ii) For any 1 ≤ j ≤ q, 1 ≤ i ≤ mj , we have
∑m+1

k=i p̂
kj

> 0;
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(iii) With notation
∏0

k=1 ck ≡ 1, the BNPMLE F̂n(t, z) is
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̂n(t, z) =

m∑
i=1

q∑
j=1

p̂ijI{Ui ≤ t, Yj ≤ z},

for t ≤ Um, z ∈ R

p̂ij =

(
δij
Nij

)(
N1j

n

) i−1∏
k=1

(
1− δkj

Nkj

)
,

for 1 ≤ i ≤ m, 1 ≤ j ≤ q

p̂
m+1,j

= PF̂n
{T > Um, Z = Yj} =

(
N1j

n

)
−

m∑
i=1

p̂
ij
,

for 1 ≤ j ≤ q

(2.12)

where 0/0 is set as 0 whenever it occurs.

One should note that (2.3), (2.6) and (2.11) imply that
for any 1 ≤ j ≤ q,

{
nmj ,j > 0 ⇒ N1j ≥ N2j ≥ · · · ≥ Nmj ,j > 0

nij = δij = Nij = 0, for mj < i ≤ m when mj < m.

(2.13)

Thus, constraint on p in the second line of (2.9) is satisfied
in (2.12).

To construct ELRCI for θ0 in (1.1), we define the follow-
ing statistical functional:

(2.14) τ(F ) = PF {T ≤ t0 | Z = z0}

where F is given by (2.8)–(2.9). Since covariate variable Z
is discrete and z0 is a value of interest for Z, then z0 must
be one of the values in (2.1), and from 0 < FZ(z0) < 1 and
Theorem 4.2.1 of Chung (1974) there exists integer ζ in (2.2)
such that

Yζ = z0 for 1 ≤ ζ ≤ q, almost surely except finitely often.
(2.15)

Similarly, under assumption of 0 < FV (t0) < 1 for d.f. FV

of V in (1.3), from Theorem 4.2.1 of Chung (1974) we have
that in (2.2) almost surely except finitely often,

(2.16) t0 < Um.

Thus, from (2.8)–(2.9) and (2.15)–(2.16) we can write (2.14)
as

τ(F ) =
PF {T ≤ t0, Z = z0 = Yζ}

PF {T ≤ Um, Z = Yζ}+ PF {T > Um, Z = Yζ}

(2.17)

=

∑m
i=1 piζ

I{Ui ≤ t0}∑m+1
i=1 p

iζ

≡ τ(p).

For likelihood function (2.7) and the BNPMLE F̂n given by
(2.12), we know that the empirical likelihood ratio is given
by R(F ) = L(F )/L(F̂n) and we denote

r(θ) = sup
F

{R(F ) | τ(F ) = θ}(2.18)

= (L(F̂n))
−1 sup

p
{L(p) | τ(p) = θ}.

Then, for constant 0 < c < 1 the empirical likelihood ratio
confidence set Sn for conditional probability θ0 in (1.1) is
given by

(2.19) Sn = {τ(F ) | R(F ) ≥ c} = {τ(p) | p ∈ En}

where En = {p | p satisfies (2.8)–(2.9) and L(p) ≥ cL(F̂n)}.
With the proofs deferred to Section 3, we have the following
theorems on above confidence set Sn.

Theorem 2. Confidence set Sn in (2.19) is an interval sat-
isfying Sn = [TL, TU ] with

(2.20) TL = min
p∈En

τ(p) and TU = max
p∈En

τ(p).

Theorem 3. For r(θ) and Sn given by (2.18) and (2.19),
respectively, we have

(2.21) θ0 ∈ Sn if and only if r(θ0) ≥ c.

Remark 1. The results similar to above Theorem 2 and
Theorem 3 are known for empirical likelihood inference in
the univariate data case, however they are not obvious for
the case with censored bivariate data which we consider in
this current paper. In fact, the proofs are quite involved
technically as shown in Section 3 as well as in Ren and Rid-
dlesworth (2012). The computation of ELRCI [TL, TU ] given
in (2.20) is also a quite difficult problem; see Riddlesworth
(2011) for discussions and partial solutions on this topic.
For the empirical likelihood ratio r(θ0) given by (2.18), we
expect Wilk’s theorem to hold, but the proof turns out to
be very difficult in this case. For such a proof, further care-
ful and much more involved technical work is needed, while
results (2.21) in Theorem 3 is useful in this context and can
be used to set constant c in practice.

3. PROOFS

Proof of Theorem 2. Note that set En in (2.19) is compact,
because L(p) in (2.7) is continuous in p. Also, note that
(2.6) and L(p) ≥ cL(F̂n) > 0 imply the following in the
product of L(p) given by (2.7):

0 < (pmj,j )
δmj,j

(
m+1∑

k=mj+1

p
kj

)nmj,j
−δmj,j

,

in turn, from nmj ,j > 0 in (2.13), we have
∑m+1

k=mj+1 pkj
>

0 when δmj,j
= 0; pmj,j

> 0 when δmj,j
> 0; which give
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∑m+1
k=mj

p
kj

> 0 for any 1 ≤ j ≤ q. Thus, we have

(3.1) p ∈ En ⇒
m+1∑
k=i

p
kj

> 0 ⇒
m+1∑
k=1

p
kj

> 0

for any 1 ≤ j ≤ q, 1 ≤ i ≤ mj . Hence, τ(p) in (2.17)
is well-defined and continuous on compact set En given in
(2.19), which, from Royden (1988; page 191), implies Sn is
compact.

From (2.6) and (2.13), we define the following transfor-
mation function:

h(p) = (a, b) for

⎧⎪⎨
⎪⎩
aij = p

ij
/bij

bij =

m+1∑
k=i

p
kj

1 ≤ j ≤ q, 1 ≤ i ≤ mj ,

(3.2)

where a = (aij) and b = (b1j). Note that from (3.1), h(p)
is well-defined on En, and that by iteration on (3.2), it can
be shown that h−1 uniquely exists and is continuous. With
some algebraic work, Ren and Riddlesworth (2012) establish
the following for L(p) in (2.7):

L(p) = L(h−1(a, b))

(3.3)

=

(
q∏

j=1

(b1j)
N1j

)(
q∏

j=1

mj∏
i=1

(aij)
δij (1− aij)

Nij−δij

)

≡ G(a, b),

which, from (3.1)–(3.2) and (2.8)–(2.9), implies

h(En) = {h(p) | L(p ≥ cL(F̂n)}(3.4)

= {(a, b) | (a, b) ∈ Fn, G(a, b) ≥ cL(F̂n)}

where

Fn =

{
(a, b) | 0 ≤ aij ≤ 1, 0 < b1j < 1(3.5)

for 1 ≤ j ≤ q, 1 ≤ i ≤ mj ;

q∑
j=1

bij = 1

}
.

Since logG(a, b) is concave down, we know that from
Bazaraa et al. (1993; page 116), G(a, b) is quasiconcave (see
definition in Bazaraa et al., 1993; page 108). Thus, if

G(a(1), b(1)) ≥ cL(F̂n) and G(a(2), b(2)) ≥ cL(F̂n),

we have that for any 0 ≤ λ ≤ 1,

G(λ(a(1), b(1)) + (1− λ)(a(2), b(2)))

≥ min{G(a(1), b(1)), G(a(2), b(2))} ≥ cL(F̂n).

Hence, h(En) in (3.4) is convex due to (3.5).

From Royden (1988; page 183, Problem 35), we know that
the convexity of h(En) implies that h(En) is connected. Thus,
the continuity of h−1 implies h−1(h(En)) = En is connected;
in turn, Sn is connected due to continuity of τ(p) (Royden,
1988; page 182). From Royden (1988; page 183), we know
that Sn is either an interval or a single point. Since Sn is
compact and since τ(p) is continuous on compact set En, we
know that Sn is a closed interval [TL, TU ] with TL and TU

given by (2.20).

Proof of Theorem 3. Assume θ0 ∈ Sn = [TL, TU ], where TL

and TU are given by (2.20). From the proof of Theorem 2,
we know that τ(p) in (2.17) is continuous on En in (2.19).
Since TL and TU are the lower and upper bound of τ(p) on
En, respectively, we know that from the Intermediate Value
Theorem, there exists p∗ ∈ En such that θ0 = τ(p∗). From
p∗ ∈ En, we know L(p∗) ≥ cL(F̂n), which, from (2.18) and
θ0 = τ(p∗), implies

r(θ0) = (L(F̂n))
−1 sup

p
{L(p) | τ(p) = θ0} ≥ L(p∗)

L(F̂n)
≥ c.

Assume r(θ0) ≥ c, where r(θ0) is given by (2.18). From
(2.16)–(2.17), we know that

(3.6) En = {p | p satisfies (2.8)–(2.9) and τ(p) = θ0}

is not empty. Thus, from (2.18) there exists a sequence of
points p(k) ∈ En such that

(3.7)
L(p(k))

L(F̂n)
≥ r(θ0)−

1

k

for sufficiently large k. Since (3.6)–(3.7) and r(θ0) ≥ c imply

(3.8) τ(p(k)) = θ0 and
L(p(k))

L(F̂n)
≥ c− 1

k
,

and since {p(k)} contains a convergent subsequence, still
denoted as {p(k)}, such that

(3.9) p(k) → p(0), as n → ∞

where p(0) satisfies (2.8)–(2.9), we know that the continuity
of L(p) in (2.7) gives

(3.10)
L(p(0))

L(F̂n)
= lim

k→∞

L(p(k))

L(F̂n)
≥ c > 0.

Note that from the arguments in (3.1), above (3.10) implies∑m+1
i=1 p(0)

iζ
> 0. Thus, from (2.17) and (3.8)–(3.9) we have

(3.11) τ(p(0)) = lim
k→∞

τ(p(k)) = θ0.

The proof follows from (2.19) and (3.9)–(3.11).

342 J.-J. Ren and T. Riddlesworth



ACKNOWLEDGEMENTS

The authors thank Liang Peng for discussions and pro-
viding references during the preparation of this manuscript.
The authors also thank the referee for his/her comments on
an earlier version of this manuscript.

Received 13 February 2012

REFERENCES
Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (1993). Nonlinear

Programming, Theory and Algorithms, 2nd ed. John Wiley & Sons,
Inc. MR2218478

Chung, K. L. (1974). A Course in Probability Theory, 2nd ed. Aca-
demic Press. MR1796326

Li, G., Li, R. Z. and Zhou, M. (2005). Empirical likelihood in survival
analysis. In: Contemporary Multivariate Analysis and Design of Ex-
periments. J. Fan and G. Li, eds. The World Scientific Publisher,
pp. 337–350. MR2271092

Li, G. and van Keilegom, I. (2002). Likelihood ratio confidence
bands in non-parametric regression with censored data. Scandina-
vian Journal of Statistics 29 547–562. MR1925574

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for
a single functional. Biometrika 75 237–249. MR0946049

Owen, A. B. (2001). Empirical Likelihood. Chapman & Hall/CRC.

Ren, J. and Riddlesworth, T. (2012). Bivariate nonparametric max-
imum likelihood estimator with right censored data. (In submission)

Riddlesworth, T. (2011). Estimation for the Cox Model with Var-
ious Types of Censored Data. Ph.D. Dissertation, Department of
Mathematics, University of Central Florida.

Royden, H. L. (1988). Real Analysis, 3rd ed. Prentice & Hall, Inc.
MR0928805

Jian-Jian Ren
Department of Mathematics
University of Maryland
College Park
MD 20742
USA
E-mail address: jjren@umd.edu

Tonya Riddlesworth
Department of Mathematics
Tennessee Technological University
110 University Drive
Cookeville, TN 38505
USA

Empirical likelihood ratio confidence intervals 343

http://www.ams.org/mathscinet-getitem?mr=2218478
http://www.ams.org/mathscinet-getitem?mr=1796326
http://www.ams.org/mathscinet-getitem?mr=2271092
http://www.ams.org/mathscinet-getitem?mr=1925574
http://www.ams.org/mathscinet-getitem?mr=0946049
http://www.ams.org/mathscinet-getitem?mr=0928805
mailto:jjren@umd.edu

	Introduction
	Empirical likelihood ratio confidence intervals
	Proofs
	Acknowledgements
	References
	Authors' addresses

