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On the Mahalanobis-distance based penalized
empirical likelihood method in high dimensions

S. N. Lahiri
∗,†

and S. Mukhopadhyay

In this paper, we consider the penalized empirical likeli-
hood (PEL) method of Bartolucci (2007) for inference on
the population mean which is a modification of the stan-
dard empirical likelihood and employs a penalty based on
the Mahalanobis-distance. We derive the asymptotic distri-
butions of the PEL ratio statistic when the dimension of the
observations increases with the sample size. Finite sample
properties of the method are investigated through a small
simulation study.
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1. INTRODUCTION

Owen (1988) introduced the empirical likelihood (EL)
method for inference on population parameters in a non-
parametric framework. Since its introduction, the EL
method has been extended to various inference problems
by several authors, notably by Diccicio, Hall and Romano
(1991), Chen and Hall (1993), Qin and Lawless (1994),
Owen (2001), Bertail (2006), Hjort, McKeague and van Kei-
legom (2009), Chen, Peng and Qin (2009), among others. In
a recent work, Hjort et al. (2009) considered the asymptotic
distribution of the EL ratio statistic in the high dimensional
context, where the dimension p of the observations increases
with the sample size n. Hjort et al. (2009)’s results allow the
parameter dimension p to increase to ∞ with n at the rate
p = o(n1/3). Chen, Peng and Qin (2009) improved upon
the rate restriction in Hjort et al. (2009) and established a
non-degenerate limit distribution of the EL ratio statistic,
allowing p = o(n1/2), under suitable regularity conditions.

An important result of Tsao (2004) showed that for
p > n/2, the definition of the EL breaks down on a set
of non-negligible positive probability, as the convex hull of
n random vectors in R

p is too small a set to contain the
true mean with probability one. Alternative formulations of
the EL in such situations are given by Chen, Variyath and
Abraham (2008), Emerson and Owen (2009) and Bartolucci
(2007). The first two papers modify the EL by augmenting
the original data set with additional pseudo-observations (a
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single one in Chen et al. (2008) and two in Emerson and
Owen (2009)) which cover a hypothesized value of the mean
parameter within the convex hull of the augmented data
set. In comparison, the last paper takes a penalization ap-
proach. Specifically, Bartolucci (2007) drops the convex hull
constraint in the formulation of the EL and redefines the
likelihood of a hypothesized value of the parameter by penal-
izing the unconstrained EL using the Mahalanobis distance.
Since the convex hull constraint is dropped, the penalized
EL (PEL) of Bartolucci (2007) is well defined for all values
of p ≤ n, as long as the sample covariance matrix is nonsin-
gular. Other variants of the PEL where a penalty function is
added to the standard EL, in the spirit of the penalized like-
lihood work of Fan and Li (2001) and Fan and Peng (2004),
are considered by Otsu (2007) and Tang and Leng (2010).
Bartolucci (2007) establishes a chi-squared limit of negative
two times the logarithm of the PEL ratio statistic for the
population mean in the case where the dimension p is fixed
and finite for all n. In this paper, we investigate asymptotic
distribution of Bartolucci (2007)’s PEL method allowing p
to grow with n.

To briefly describe the main result of the paper, suppose
that X1, . . . ,Xn are independent and identically distributed
(iid) Rp-valued random vectors with mean μ ∈ R

p, 1 < p <
∞. The PEL of Bartolucci (2007) employs a multiplicative
penalty term that replaces the convex hull constraint in the
EL criterion function; It penalizes the likelihood of a hypoth-
esized value of the population parameter μ by a penalty fac-
tor times the Mahalanobis distance between the (weighted)
sample mean and the hypothesized value of μ. See Section
2 for the exact formulation. The main result of the paper
gives regularity conditions that ensure a nondegenerate limit
distribution of the PEL ratio statistic. Specifically, we show
that the right growth rate of the penalty factor (say, λn)
for a non-degenerate limit is n/p. Further, with a suitable
centering and with scaling by

√
p, the limit distribution of

the normalized logarithm of the PEL ratio statistic is Gaus-
sian with mean zero and a known variance. It is interesting
to note that here the centering and the asymptotic vari-
ance both depend on the penalty factor λn. This result may
be compared with the behavior of the standard EL, where
twice the negative log-EL ratio statistic, with centering at
1 and scaling by p1/2, converges in distribution to a N(0, 1)
variate; See, for example, Chen, Peng and Qin (2009).

We also report the results from a small simulation study
to get some idea about the finite sample properties of the

http://www.intlpress.com/SII/


PEL. The simulation results show that large sample tests on
the mean μ based on the PEL are fairly accurate even for
samples of size n = 36 under a varying degree of dependence
among the components of the observations. Thus, the PEL
can be used to carry out simultaneous tests of p hypotheses
on the components of the mean vector μ at any desired level
of significance. In particular, the PEL gives a viable alter-
native to the commonly used approach of multiple testing
in the high dimensional problems involving the mean.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the PEL method of Bartolucci (2007).
In Section 3, we describe the regularity conditions and es-
tablish the limit distribution of the logarithm of the PEL
ratio statistic. In Section 4, we report the results from the
simulation study. Finally, a proof of the main result is given
in Section 5.

2. FORMULATION OF THE PEL
Let X1, . . . ,Xn be iid random vectors with mean μ ∈ R

p

and p× p covariance matrix Σp. Let

Sn = n−1
n∑

i=1

(Xi − X̄n)(Xi − X̄n)
′

denote the sample covariance matrix of X1, . . . ,Xn, where
X̄n = n−1

∑n
i=1 Xi. We shall suppose that Sn and Σp are

nonsingular. Write A′ to denote the transpose of a matrix A.
Bartolucci (2007) defines the penalized empirical likelihood
(PEL) of a plausible value μ of the population mean as

Ln(μ) = sup

{(
n∏

i=1

πi

)
exp

(
−λ(v − μ)′S−1

n (v − μ)
)
:

(2.1)

(π1, . . . , πn) ∈ Πn

}

where Πn = {(π1, . . . , πn) : πi ∈ [0, 1] for all i and
∑n

i=1 πi =
1}, v =

∑n
i=1 πiXi, and λ = λn ∈ [0,∞) is a penalty factor.

Thus, the PEL of μ penalizes the likelihood
∏n

i=1 πi by an
exponential function of the Mahalanobis distance between μ
and v. Note that v is a point in the convex hull C(Xn) (say)
of the observations X1, . . . ,Xn when the ith observation Xi

is assigned the probability πi. For a value of μ that lies in
C(Xn), the penalization term attains the value 1 and drops
out. In this case, one may also use the standard EL for μ:

Lstdn (μ) = sup

{(
n∏

i=1

πi

)
: (π1, . . . , πn) ∈ Πn,

n∑
i=1

πiXi = μ

}
.

However, for a μ that lies outside C(Xn), the standard EL
for μ becomes undefined and therefore, can not be used in

practice. As pointed by Tsao (2004), this undesirable phe-
nomenon occurs with a non-trivial probability in high di-
mensions, which delimits the use of the standard EL in high
dimensional problems. In contrast, the PEL of Bartolucci
(2007) remains well-defined for all values of μ ∈ R

p. Since
Bartolucci (2007)’s PEL is based on the Mahalanobis dis-
tance, it is well defined for all p ≤ n, provided S−1

n exists. In
principle, the same basic approach can be utilized for p > n
if we replace S−1

n by a suitable location invariant matrix
that remains invertible for p > n (cf. Lahiri and Mukhopad-
hyay (2012)). However, in this paper, we shall restrict our
attention to the original formulation of PEL by Bartolucci
(2007) and assume that S−1

n exists.
The PEL Ln(·) can be used to conduct simultaneous tests

of hypotheses of the form

(2.2) H0 : μ = μ0 agains H1 : μ �= μ0

where μ0 is a specified vector in R
p. A PEL likelihood ratio

test rejects the null hypotheses for small values of

Rn(μ0) ≡
Ln(μ0)

supμ Ln(μ)
.

It is easy to check that the denominator equals the maxi-
mum of the product

∏n
i=1 πi over Πn and is attained when

π1 = · · · = πn = n−1. Hence, the PEL ratio statistic for
testing (2.2) is given by

(2.3) Rn(μ0) = nnLn(μ0).

For a given α ∈ (0, 1), the PEL ratio-test for testing (2.2)
with nominal level α has a rejection region, given by

(2.4) {−2 logRn(μ0) > ρn(α)}

where ρn(α) is an upper α-critical point of the distribution
of −2 logRn(μ0) under H0. Exact determination of ρn(α) is
a difficult task, as it heavily depends on the sampling distri-
bution of the observations X1, . . . ,Xn. In the next Section,
we derive the asymptotic distribution of −2 logRn(μ0) un-
der H0 that can be used to construct an approximate large
sample level α test for (2.2).

It is worth noting that we can similarly define a version
of the PEL for testing about more general parameters θ that
are specified by a set of p estimating equations

Eψjn(X1; θ) = 0 for j = 1, . . . , p.

In this case, the PEL for a given value of θ is defined by

Ln(θ) = sup

{(
n∏

i=1

πi

)
exp

(
−λu′S̃−1

n u
)
:(2.5)

(π1, . . . , πn) ∈ Πn

}
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where u =
∑n

i=1 πiψjn(Xi; θ) and where S̃n is an
estimator of the covariance of the random vector
(ψ1n(X1; θ), . . . , ψpn(X1; θ)). The case of the population
mean θ = μ = EX1 corresponds to ψjn(x; θ) = e′j(x − θ)
where e1, . . . , ep denotes the standard basis of Rp. Distri-
butional results similar to those presented in Section 3 can
also be derived for the more general case, by retracing the
arguments given in Section 5 below.

3. MAIN RESULTS

3.1 Conditions

In this section, we derive the asymptotic null distribu-
tion of the log-PEL ratio statistic (cf. (2.3)) in the high
dimensional case where the dimension p = pn → ∞ with
the sample size n. Since p changes with n, here we adopt
a triangular array framework to study the asymptotic be-
havior of −2 logRn(μ0). More precisely, we suppose that
{Xin : 1 ≤ i ≤ n}n≥1 is a triangular array of iid random
vectors with EX1n = μn ≡ μ ∈ R

p and nonsingular co-
variance matrix Cov(X1n) = Σpn ≡ Σp. Here and in the
following, we shall drop the subscript n to simplify nota-
tion, provided it does not create any confusion. Next define

Yin ≡ Yi = Σ
−1/2
p (Xin − μ0), 1 ≤ i ≤ n where μ0 is the

value of μ specified under the null hypothesis H0 : μ = μ0

and where Σ
−1/2
p = [Σ

1/2
p ]−1 and Σ

1/2
p is a p× p matrix sat-

isfying Σ
1/2
p (Σ

1/2
p )′ = Σp. Denote the jth component of Yi

by Yij , 1 ≤ i ≤ n, 1 ≤ j ≤ p. Also, let

Šn = n−1
n∑

i=1

(Yi − Ȳn)(Yi − Ȳn)
′

denote the sample covariance matrix of Y1, . . . ,Yn where
Ȳn = n−1

∑n
i=1 Yi is the mean of the Yi’s. Note that

Šn is an estimator of Ip, the identity matrix of order
p. Let N = {1, 2, . . .} be the set of all positive inte-
gers. For any k ∈ N and x = (x1, . . . , xk)

′ ∈ R
k, let

‖x‖ = (x2
1 + · · · + x2

k)
1/2 and for a k × k matrix A, let

‖A‖ = sup{‖Ax‖ : x ∈ R
k, ‖x‖ = 1}.

We shall use the following conditions to derive the limit
distribution of the PEL ratio statistic:

Conditions:

(C.1) There exist δ ∈ (0,∞) and C ∈ (0,∞) such that

max{E|Y1j |4+δ : 1 ≤ j ≤ p} < C

for all n ≥ 1.
(C.2) There exists a sequence of real numbers {α(n)}n≥1 ⊂

[0, 1] such that

(i)
∑∞

n=1 α(n)
δ

4+δ < ∞, where δ is as in Condition
(C.1);

(ii) For any m ∈ N,

sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ F j

n,1,

B ∈ Fp
n,j+m, n, j ∈ N

}
≤ α(m)

where for any integers a, b, n ∈ N, Fb
n,a =

σ〈Y1jn : j ∈ {1, . . . , p}∩ [a, b]〉 (with the conven-
tion that the σ-field generated by an empty col-
lection of random variables is the trivial σ-field).

(C.3) ‖Šn − Ip‖ = op(p
−1/2).

Now we comment on the conditions. Condition (C.1) is
a moment condition that requires slightly more than the
fourth moment of the components of Y1 to be finite. This
condition can be reduced to a suitable uniform integrability
condition on the fourth power of the Y1j ’s (see the statement
of the Proposition in Section 5 which is applied with the
choice δ = 2 therein) at the cost of strengthening the strong
mixing condition in (C.2) (to a suitable ρ-mixing condition,
say). Condition (C.2) is a strong mixing condition, which
together with Condition (C.1) yields the Central Limit The-
orem (CLT) for the log PEL ratio statistic. From the proofs
given in Section 5 below, it follows that the leading term
of the stochastic approximation to the centered and scaled
version of −2 logRn(μ0) is given by (a multiple of) the sum

Tn ≡ p−1/2

p∑
j=1

([
√
nȲjn]

2 − 1).

Thus, for asymptotic normality of −2 logRn(μ0), the main
task is to establish a CLT for Tn. Although by scaling with

Σ
−1/2
p , the components of Y1 become uncorrelated, in gen-

eral they are not independent. The strong mixing condition
specifies the degree of dependence among the components
of the scaled variable Y1 that ensures validity of the normal
limit (cf. Ibragimov and Linnik (1971)). In the special case,
whereX1 has a multivariate normal distribution, the scaling

by Σ
−1/2
p makes the components of Y1 completely indepen-

dent and Condition (C.2) is trivially satisfied. As commented
by a referee, in general, the components in X1 can be arbi-
trarily ordered, which does not directly follow the serial de-
pendence structure of our time series formulation. However,
it is easy to check that the PEL criterion function is invariant
under permutation of the co-ordinates of X1 and therefore,
the distributional result remains valid if the components of
X1 has a time series ordering up to a permutation, as in
Lahiri and Mukhopadhyay (2012). Next consider Condition
(C.3) which requires the sample covariance matrix of the
centered and scaled variables {Yi : 1 ≤ i ≤ n} to converge
to the corresponding population covariance matrix Ip at a
rate faster than p−1/2. Since the sample covariance matrix of
the Yi is based on n iid observations, the best possible rate

of convergence for the difference ‖Σ−1/2
p Sn(Σ

−1/2
p )′ − Ip‖

is Op(n
−1/2). Hence, Condition (C.3) necessarily requires
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p to grow at most at the rate p = o(n). Also, it is easy
to check that under the moment condition (C.1), the trace
norm bound on ‖Šn − Ip‖ is op(p

−1/2) (a sufficient condi-
tion), provided p = o(n1/3). Hence, (C.3) allows a growth
rate of p that is at least as fast as p = o(n1/3).

3.2 The main result

The following result gives the asymptotic distribution of
the PEL ratio statistic. For two sequences {an}, {bn} ⊂
(0,∞), write an ∼ bn if limn→∞ an/bn = 1.

Theorem. Suppose that Conditions (C.1)–(C.4) holds, p →
∞ and λ ∼ c0

n
p as n → ∞, for some c0 ∈ (0,∞). Then,

under H0 : μ = μ0,

p1/2
(
logRn(μ0) +

λp

n

)
→d N(0, 2c20).

Thus, it follows that the log PEL ratio statistic, with cen-
tering at −λp

n and scaling by p1/2 converges in distribution
to a normal limit. An alternative but equivalent statement
that gives the asymptotic distribution of the more standard
quantity, namely, twice the negative logarithm of the PEL
ratio statistic, is the following:

p1/2
(
−2 logRn(μ0)−

2λp

n

)
→d N(0, 8c20).

In contrast to the chi-squared p limit law of −2 logRn(μ0) in
the fixed p case, in the high dimensional case, −2 logRn(μ0)
has a somewhat non-standard limit behavior when the pe-
nalization is based on the Mahalanobis distance. It needs a
non-standard centering to converge to a nondegenerate limit
under scaling by p1/2. Further, the variance of the limit dis-
tribution also depends on the penalization term through the
penalty factor λ. A simple consequence of the Theorem is
that under the conditions (C.1)–(C.4),

−2 logRn(μ0) →p 2c0 as n → ∞.

In general, it is not possible to replace the centering 2λp
n

by 2c0. However, note that all three quantities λ, p and n
are known and hence, these may be used directly to center
−2 logRn(μ0).

It is worth noting that due to the effect of the penalization
in the variance of the limit distribution, choosing a penalty
factor λ corresponding to a small c0 reduces the variability
of −2 logRn(μ0) from the centering constant 2λp

n . However,
if λ is chosen such that

λ/[n/p] → 0

(i.e. c0 = 0), then a scaling sequence different from p1/2 is
needed to ensure a nondegenerate limit. A similar comment
applies when c0 = ∞.

From the proof, it follows that −2 logRn(μ0) behaves
approximately like a 2c0

p χ2(p) random variate. In particular,

when c0 = p/2 and p is finite, one gets the chi-squared
distribution with p degrees of freedom as the limit as in the
case of Wilk’s theorem. Bartolucci (2007) proved a version
of Wilk’s theorem for −2 logRn(μ0) in the case when p is
fixed and finite. Thus, the results of this paper supplements
Bartolucci (2007)’s result by extending it to the increasing
dimensional case.

4. SIMULATION

In this Section, we report the results from a small sim-
ulation study to gain some insight into the finite sample
behavior of Bartolucci (2007)’s PEL method. We consider
two pairs of values of the sample size and the dimension
(n, p) = (36, 6) and (n, p) = (100, 10), where the growth
rate of p is given by p ∼ √

n. Also, for the sake of compari-
son, we have included results on higher values of p where the
sample covariance matrix is replaced with a regularized ver-
sion. Specifically, we replaced Sn by the tapered covariance
estimator by Σ̂R = Sn ∗W , where ∗ denotes the Hadamaard
product of matrices and where the weights wij are given by
(cf. Cai, Zhang and Zhou (2010))

wij =

⎧⎨⎩
1 when |i− j| ≤ l/2

2
(
1 − |i−j|

l

)
when l/2 ≤ |i− j| ≤ l

0 otherwise.

We generated iid samples from two models, specified by
a stretch of a time series of length p. The time series models
we considered are (i) a Moving Average (MA) model of order
5 with co-efficients given by (.5)k : k = 0, 1, . . . , 5 with iid
N(0, 1) errors and (ii) a stationary Gaussian process with
autocorrelation function r(·) where r(0) = 1 and

r(k) =
1

2

[
(k + 1)2H + (k − 1)2H − 2k2H

]
, k ≥ 1,

with H = .9. Note that the first model leads to a banded co-
variance matrix Σp while the second model yields a Σp that
has all its entries non-zero. Further, model (i) corresponds
to weak dependence among the components of X1 while
model (ii) corresponds to long range dependence (LRD) (cf.
Beran (1994)). We have set l = 5 for the MA model and
l = �n1/(2α+1)� with α = 2− 2H for the LRD model.

Tables 1 and 2 below give the attained level of significance
in a test of the hypotheses H0 : μ = 0 against H1 : μ �= 0
at a nominal .05 level of significance for n = 36 and n = 100
respectively, for various choices of p, which reflect the four
cases p � n, p ∼ n, p > n, p � n. In each case, the
results are based on 500 simulation runs and the choice of
the penalty parameter is given by λ = n/p, i.e., c0 = 1.

It follows from Tables 1 and 2 that the PEL ratio tests
based on the normal limit of the Theorem of Section 3 gives
a reasonable answer even for samples of size n = 36, un-
der both forms of dependence among the components of X1

when p =
√
n. The regularized version performs well for all
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Table 1. Attained level of significance of a PEL test of H0 : μ = 0 vs. H1 : μ �= 0 for n = 36 at a nominal .05 level of
significance

p = 6 p = 36 p = 50 p = 500

Methods MA LRD MA LRD MA LRD MA LRD

Bartolucci .046 .045 NA NA NA NA NA NA
Regularized – Bartolucci .043 .069 .054 .083 .065 .116 .061 .165

Table 2. Attained level of significance of a PEL test of H0 : μ = 0 vs. H1 : μ �= 0 for n = 100 at a nominal .05 level of
significance

p = 10 p = 100 p = 150 p = 1000

Methods MA LRD MA LRD MA LRD MA LRD

Bartolucci .048 .057 NA NA NA NA NA NA
Regularized – Bartolucci .049 .071 .047 .091 .059 .129 .064 .198

cases of p ≥ n under weak dependence. The performance
deteriorates for large p’s under LRD.

5. PROOFS

Let a2n = p/n. Note that an → 0+ as n → ∞. Let 11(·)
denote the indicator function. Let C,C(·) denote generic
constants that depend only on their arguments (if any), but
not on n. Unless otherwise specified, dependence on (lim-
iting) population quantities (such as the moments, mixing
co-efficients, etc.) are dropped to simplify notation, and lim-
its in all order symbols are taken by letting n → ∞.

Proposition. Let {X1n . . . ,Xnn}n≥1 be a triangular ar-
ray of identically distributed p dimensional random vec-
tors and let X1n ≡ X1 = (X11, . . . , X1p). Suppose that
{p−1

∑p
j=1 |X1j |2+δ : n ≥ 1} is uniformly integrable, i.e.,

lim
t→∞

sup
n≥1

E

[{
p−1

p∑
j=1

|X1j |2+δ

}

× 11

(
p−1

p∑
j=1

|X1j |2+δ > t

)]
= 0.

Let Mn = max{‖Xi‖ : 1 ≤ i ≤ n}. Then Mn =

oP (n
1

2+δ
√
p).

Proof. Note that by Hölder’s inequality,

‖X1‖2+δ =

(
p∑

j=1

X2
1j

) 2+δ
2

≤
[(

p∑
j=1

|X1j |2+δ

) 2
2+δ

p1−
2

2+δ

] 2+δ
2

= pδ/2
p∑

j=1

|X1j |2+δ.

Fix ε ∈ (0, 1). Let ε1n = εn
1

2+δ
√
p. Using the above relation

and the uniform integrability condition, it is easy to check
that

P (Mn > ε1n)

≤ ε
−(2+δ)
1n EM2+δ

n 11(Mn > ε1n)

≤ ε
−(2+δ)
1n

n∑
k=1

E‖Xk‖2+δ11(‖Xk‖ > ε1n)11(Mn = ‖Xk‖)

≤ nε
−(2+δ)
1n E‖Xk‖2+δ11(‖Xk‖ > ε1n)

≤ nε
−(2+δ)
1n pδ/2E

(
p∑

j=1

|X1j |2+δ

)

× 11

(
p∑

j=1

|X1j |2+δ > p−δ/2ε2+δ
1n

)

= ε−(2+δ)E

(
p−1

p∑
j=1

|X1j |2+δ

)

× 11

(
p−1

p∑
j=1

|X1j |2+δ > ε2+δn

)
= o(1).

Hence the proposition follows.

Proof of the Theorem. Note that by the definition of

L(μ0) = max

{
n∏

i=1

πi exp
(
− λ(v − μ0)

′S−1
n (v − μ0)

)
:

(π1, . . . , πn) ∈ Πn

}

with v =
∑n

i=1 πiXi, the PEL ratio statistic Rn(μ0) =
nnL(μ0) is invariant under translation and matrix scaling.
Hence, without loss of generality, for the rest of the proof, we
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may therefore assume that μ0 = 0 and Σp = Ip, the identity
matrix of order p. This, in particular, implies thatYi = Xi

for all 1 ≤ i ≤ n and that Šn = Sn. Therefore, by Condition
(C.3), S−1

n exists for n large and ‖S−1
n ‖ = Op(1).

Next note that the maximizing πi’s must all be positive
(otherwise, we get Ln(μ0) = 0, which is the minimum) and
therefore, logRn(μ0) is well-defined. To find Rn(μ0), we use
the standard Lagrangian method and consider the function

g(π1, . . . , πn; γ)

= logRn(μ0)− nγ

(
n∑

i=1

πi − 1

)

=

n∑
i=1

log(nπi)− λv′S−1
n v − nγ

(
n∑

i=1

πi − 1

)

for πi > 0 for 1 ≤ i ≤ n and γ ∈ R. The maximizing πi’s is
a solution to the system of equations:

∂g

∂πi
= 0 for 1 ≤ i ≤ n and

∂g

∂γ
= 0

which, in turn, lead to the equations for 1 ≤ i ≤ n,

0 =
1

πi
− λ

p∑
k=1

p∑
j=1

(S−1
n )jk{Xijvk +Xikvj} − nγ,(5.1)

0 =

n∑
i=1

πi − 1,(5.2)

where (S−1
n )jk is the (j, k)th element of S−1

n . Multiplying the
ith equation in (5.1) by πi and summing over the resulting
n equations, we get

γ = 1− λ

n

n∑
i=1

p∑
j=1

p∑
k=1

(S−1
n )jk{Xijvk +Xikvj}πi.

Now substituting this in (5.1) and using (5.2), after some
algebra, one can show that

πi =
1

n
· 1

1 + λ1[v′S−1
n Xi − v′S−1

n v]
, 1 ≤ i ≤ n

where λ1 = 2λ/n. As a consequence, v =
∑n

i=1 πiXi must
satisfy the equation

v =
1

n

n∑
i=1

Xi

1 + λ1[v′S−1
n Xi − v′S−1

n v]
(5.3)

= X̄n +
1

n

n∑
i=1

Xi
λ1[v

′S−1
n v − v′S−1

n Xi]

1 + λ1[v′S−1
n Xi − v′S−1

n v]
.

We shall use a fixed point theorem to derive an approxima-
tion to v0, the value of v corresponding to the maximizing
πi’s. To that end, let

γi = λ1[v
′S−1

n Xi − v′S−1
n v], 1 ≤ i ≤ n.

Also, let a2n = p/n and set Mn = max{‖Xi‖ : 1 ≤ i ≤ n}.
Then, by the Proposition (with δ = 2), for any v with ‖v‖ =

Op(an),

max{|γi| : 1 ≤ i ≤ n}
(5.4)

≤ λ1

[
‖v‖‖S−1

n ‖Mn + ‖v‖2‖S−1
n ‖

]
= O(p−1)

[
Op(an) ·Op(1) · op(

√
pn

1
4 ) +Op(a

2
n) ·Op(1)

]
= op(n

−1/4).

Next note that
∑n

i=1 ‖Xi‖2 = Op(np) (as the expectation

of the left side is O(np)). Hence, for ‖v‖ = Op(an),

∥∥∥∥∥n−1
n∑

i=1

Xi
λ1[v

′S−1
n v − v′S−1

n Xi]

1 + λ1[v′S−1
n Xi − v′S−1

n v]

∥∥∥∥∥
≤ λ1

n

{∥∥∥∥∥
n∑

i=1

Xi
v′S−1

n Xi

1 + γi

∥∥∥∥∥+ v′S−1
n v

∥∥∥∥∥
n∑

i=1

Xi

1 + γi

∥∥∥∥∥
}

≤ λ1

n

[
∑n

i=1 ‖Xi‖2‖v‖‖S−1
n ‖+

∑n
i=1 ‖Xi‖‖v‖2‖S−1

n ‖]
(1 + max{|γi| : 1 ≤ i ≤ n})

=
λ1

n

[Op(np) ·Op(an) ·Op(1) +Op(n
√
p) ·Op(a

2
n) ·Op(1)]

[1 + op(1)]

= Op(an).

Since E‖X̄n‖2 =
∑p

j=1 EX̄2
jn = Op(a

2
n), it now follows

that the right side of (5.3) is Op(an), whenever ‖v‖ =

Op(an). Hence, by Brouwer’s Fixed Point theorem (cf. Mil-

nor (1965)), a solution v = v0 to (5.3) exists and ‖v0‖ =

Op(an).

Next we refine (5.3) to get a more accurate approximation

to v0. Write ν0i = λ1v
′
0S

−1
n Xi, 1 ≤ i ≤ n, Dn = max{|ν0i | :

1 ≤ i ≤ n}, and let Γ0
n = λ1v

′
0S

−1
n v0. Note that by (5.4),

v0 = X̄n + n−1
n∑

i=1

Xi[−ν0i + Γ0
n]

1 + ν0i − γ0
n

(5.5)

= X̄n + n−1
n∑

i=1

Xi(−ν0i + Γ0
n)
[
1− ν0i + (ν0i )

2

+Op(D
3
n + n−1)

]
= X̄n(1 + Γ0

n)− n−1
n∑

i=1

Xi{ν0i − (ν0i )
2 + (ν0i )

3}

+R[0]
n , say,

where the vector of remainder terms R
[0]
n = (R

[0]
1n, . . . , R

[0]
pn)′

satisfies |R[0]
jn| ≤ (n−1

∑n
i=1 |Xij |) ·Ou

p (D
4
n + n−1Dn) for all
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1 ≤ j ≤ p and the Ou
p -term in the bound does not depend

on j ∈ {1, . . . , p}. It is easy to check that

n−1
n∑

i=1

Xiν
0
i =

λ1

n

[
n∑

i=1

XiX
′
i

]
S−1
n v0

= λ1[v0 + X̄nX̄
′
nS

−1
n v0].

Hence, by rearranging the terms, we have

(1 + λ1)v0 = (1 + Γ0
n)X̄n − λ1X̄n(X̄

′
nS

−1
n v0)(5.6)

+

3∑
r=2

(−1)r
[
n−1

n∑
i=1

Xi(ν
0
i )

r
]
+R[0]

n .

We shall next derive a bound on the last but one term. Let

Wij = |Xij |11(|Xij | >
√
n ), 1 ≤ i ≤ n, 1 ≤ j ≤ p. Note that

p−1

p∑
j=1

E

(
n∑

i=1

{Wij − EWij}
)2

≤ np−1

p∑
j=1

EW 2
1j

≤ p−1

p∑
j=1

EX4
1j = O(1),

and similarly, p−1
∑p

j=1[EWij ]
2 ≤ n−3[max{EX4

1j : 1 ≤
j ≤ p}]2 = O(n−3). Also, in (5.10) below, we show that∑n

i=1(ν
0
i )

2 = Op(p
−1 + n−1). Hence, for r = 2, 3, we get

∥∥∥∥∥n−1
n∑

i=1

Xi(ν
0
i )

r

∥∥∥∥∥
2

= n−2

p∑
j=1

(
n∑

i=1

Xij

[
ν0i

]r)2

(5.7)

≤ n−2

p∑
j=1

(
√
n

n∑
i=1

[ν0i ]
r +Dr

n

n∑
i=1

|Xij |11(|Xij | >
√
n )

)2

≤ 2pn−1

{
n∑

i=1

[
ν0i

]2}2

D2(r−2)
n + 2D2r

n · n−2

×
p∑

j=1

(
nEW1j +

n∑
i=1

[Wij − EWij ]

)2

= D2(r−2)
n ·Op

(
pn−1

{
p−2 + n−2

})
+D2r

n ·Op

×
(
n−2p

[
1 + n2n−3

])
= Op

(
p
[
n−1p−2 + n−3

])
.

Hence, using (5.4) (with v = v0), (5.7) and the bounds

on the components of R
[0]
n following (5.5), from (5.6), we get

‖v0 − X̄n‖(5.8)

≤ ‖X̄n‖
∣∣∣∣1 + Γ0

n

1 + λ1
− 1

∣∣∣∣+ λ1‖X̄n‖2‖S−1
n ‖‖v0‖

+

3∑
r=2

∥∥∥∥∥n−1
n∑

i=1

Xi(ν
0
i )

r

∥∥∥∥∥+ ‖R[0]
n ‖

= an

[
Op(p

−1) + op(n
−1/2)

]
.

Next we derive the limit distribution of the PEL ratio
statistic. It is easy to check that

− 2 logRn(μ0)

(5.9)

= 2
n∑

i=1

log
(
1 + λ1

[
v′
0S

−1
n Xi − v′

0S
−1
n v0

])
+ 2λv′

0S
−1
n v0

= 2

n∑
i=1

[
ν0i − Γ0

n

]
+ 2λv′

0S
−1
n v0 +R1n, say

= 2λ1

n∑
i=1

ν0i − 2nΓ0
n ++2λv′

0S
−1
n v0 +R1n

= 2λ1nv
′
0S

−1
n X̄n − nλ1v

′
0S

−1
n v0 +R1n

where R1n is a remainder term. Using the bound
| log(1 + x) − x| ≤ x2/[2(1 − η)2] for all |x| ≤ η < 1,
on the set {Dn + Γ0

n < 1/2}, we have

|R1n| ≤ 8

[
n∑

i=1

(ν0i )
2 + n(Γ0

n)
2

]
.

Note that

n∑
i=1

(ν0i )
2 = λ2

1v
′
0S

−1
n

(
n∑

i=1

XiX
′
i

)
S−1
n v0(5.10)

= nλ2
1

[
v′
0S

−1
n v0 + (v′

0S
−1
n X̄n)

2
]

= Op

(
np−2

[
a2n + a4n

])
= Op

(
n−1 + p−1

)
.

Hence, it follows that

(5.11) |R1n| = Op(n
−1 + p−1).

By (5.8), (5.9) and (5.11), it now follows that

− 2 logRn(μ0)

= 2λ1nv
′
0S

−1
n X̄n − nλ1v

′
0S

−1
n v0

+Op(n
−1 + p−1)

= nλ1X̄
′
nS

−1
n X̄n +Op(p

−1) + op(n
−1/2)

= nλ1

p∑
j=1

X̄2
jn +Op(‖X̄n‖2 · ‖S−1

n − Ip‖p−1n)

+Op(p
−1) + op(n

−1/2).
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Next note that by Condition (C.3),

‖S−1
n − Ip‖ ≤ ‖S−1

n ‖ · ‖Sn − I‖ = op(p
−1/2).

Now using the fact that EX̄2
jn = n−1 for all 1 ≤ j ≤ p, it

now follows that

(5.12)

p1/2[−2 logRn(μ0)− pλ1] = p1/2λ1

p∑
j=1

[nX̄2
jn − 1] + op(1).

Next by using the independence of the Xi’s and that
under the assumption that Σp = Ip, one can show that for
any 1 ≤ j, k ≤ p,∣∣Cov([√nX̄jn]

2, [
√
nX̄jn]

2
)
− 2

[
Cov(

√
nX̄jn,

√
nX̄kn)

]2∣∣
≤ n−1|χ4(X1j , X1j , X1k, X1k)|
≤ Cn−1

and

Cov(
√
nX̄jn,

√
nX̄kn) = δj,k

for all n ≥ 1 where δj,k = 1 if j = k and = 0 otherwise.
Now using the strong mixing condition and a ‘big-block
little block’ argument (cf. Athreya and Lahiri (2006), Ch.
16; Ibragimov and Linnik (1971)), one can show that

(5.13) p−1/2

p∑
j=1

[nX̄2
jn − 1] →d N(0, σ2

∞)

where

σ2
∞ ≡ lim

n→∞
p−1

p−1∑
k=−(p−1)

(p− |k|)Cov
(
[
√
nX̄jn]

2, [
√
nX̄jn]

2
)

= 2.

The theorem now follows from (5.12) and (5.13).
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