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Imputation-based empirical likelihood inference
for the area under the ROC curve with missing
data
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In a continuous diagnostic test, the area under the re-
ceiver operating characteristic curve (AUC) is commonly
used to summarize the diagnostic accuracy of the test. Many
current studies on inference of the AUC focus on the com-
plete data case. In this paper, an imputation-based profile
empirical likelihood ratio is defined and shown to asymp-
totically follow a scaled chi-square distribution. Then an
empirical likelihood confidence interval for the AUC with
missing data is proposed by using the scaled chi-square dis-
tribution. The proposed empirical likelihood inference for
the AUC is also extended to stratified random samples, and
the limiting distribution of the empirical log-likelihood ratio
is a weighted summation of independent chi-square distri-
butions with one degree of freedom. Simulation studies are
conducted to evaluate the finite sample performance of the
proposed method in terms of coverage probability. Addi-
tionally, a real example is used to illustrate the proposed
method.
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likelihood, Imputation, Missing data, ROC.

1. INTRODUCTION

Diagnostic tests are widely used to detect the occurrence
of disease, and monitor disease progression. Sensitivity and
specificity are common measures used to evaluate the perfor-
mance of a diagnostic test. For a continuous-scale test, the
disease or non-disease status is dependent upon whether the
test result is above or below a specified cut-off point. Let Y
and X be the results of a continuous-scale test for a diseased
and a non-diseased subject, and assume that F and G are
the distribution functions of X and Y , respectively. For a
given cut-off point γ, the sensitivity and the specificity of
the test are defined by

R = P (Y ≥ γ) = 1−G(γ), Sp = P (X < γ) = F (γ),
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respectively. When the cut-off point varies throughout the
entire real line, the resulting plot of sensitivity against 1-
specificity is called the Receiver Operating Characteristic
(ROC) curve. Mathematically, the ROC curve can be repre-
sented by R(p) = 1 − G(F−1(p)), where F−1 is the inverse
function of F . The area under the curve (AUC), defined as

δ =
∫ 1

0
R(p)dp, is a commonly used summary measure of

the ROC curve. AUC has been frequently used to assess the
ability of a diagnostic test to discriminate between individ-
uals with and without a disease.

Bamber [1] showed that the AUC, δ = P (Y ≥ X), which
can be interpreted as the probability that in a randomly se-
lected pair of diseased and non-diseased subjects, the test
value of the diseased subject is higher than or equal to that
of the non-diseased subject. In a more general context, Wolfe
and Hogg [22] recommended the use of this index as a gen-
eral measure for the difference between two distributions.
One important problem for the inference on the AUC is
how to construct a confidence interval for δ. Let X1, . . . , Xm

be test results of a random sample of non-diseased subjects
and Y1, . . . , Yn be test results of a random sample of dis-
eased subjects. Traditionally, the classical Wilcoxon-Mann-
Whitney (WMW) [9] two-sample rank statistic, defined by

δm,n =
1

mn

m∑
i=1

n∑
j=1

I(Yj ≥ Xi),(1)

is used as a nonparametric estimator of the AUC. Based on
the asymptotic normality of the WMW statistic, we can con-
struct a confidence interval (hereafter MW interval) for the
AUC. Although the WMW estimator of the AUC is known
to be unbiased, the normal approximation-based MW inter-
val suffers from low coverage accuracy for high values of the
AUC (e.g., 0.90 to 0.95, which are of most interest in diag-
nostic tests) when sample sizes of diseased and non-diseased
subjects are small and unequal. Therefore, it is desirable to
find a reliable alternative approach for constructing a con-
fidence interval of the AUC.

In making statistical inference, samples are usually as-
sumed to be complete. However, due to various reasons,
missing data instead of complete data occur commonly in
practical situations such as opinion polls, market research
surveys, and other scientific and social fields. Missing data
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are also common in medical diagnostic studies. A naive
method is to use complete data and discard missing data.
But this method suffers from a loss of efficiency for many
reasons, such as small sample size. Other methods include
available-case methods and imputation methods. See Little
and Rubin [8] for a comprehensive overview. Missing data
bring challenges in ROC curve analysis, too. Various meth-
ods, including imputation-based methods, have been pro-
posed in order to handle the problems caused by missing
data. Geert et al. [4] evaluated five different methods in deal-
ing with missing values in the empirical data from a study
among patients suspected of pulmonary embolism, and they
found that imputation is relatively better than others. He et
al. [6] provided a direct estimate of the AUC in the presence
of verification bias.

Empirical likelihood (EL) [10, 11] is a popular nonpara-
metric method traditionally used for providing confidence
intervals for the mean. Chen and Van Keilegom [3] pro-
vided a general review on empirical likelihood method for
regressions. Based on the mean-like form of WMW estima-
tor, Qin and Zhou [13] proposed an EL approach for the
inference on the AUC, which was shown to have good small
sample performance. Motivated by the asymptotic indepen-
dence of pseudo-values from jackknife technique, Jing, Yuan
and Zhou [7] introduced the jackknife empirical likelihood
(JEL) method for U-statistics, and used the AUC as an ex-
ample to illustrate their method because the WMW estima-
tor is a two-sample U-statistics. Recently, Gong, Peng and
Qi [5] proposed a smoothed JEL method for the ROC curve.
Empirical likelihood is also a powerful method for handling
missing data problems. For example, Wang and Chen [20]
applied empirical likelihood to estimating equations with
missing data. Qin, Zhang and Leung [14] proposed a unified
empirical likelihood approach to missing data problems and
explored the use of empirical likelihood to effectively com-
bine unbiased estimating equations when the number of esti-
mating equations is greater than the number of unknown pa-
rameters. Wang and Qin [19] constructed imputation-based
empirical likelihood confidence intervals for the sensitivity
of a continuous-scale diagnostic test with missing data. In
this paper, we propose an imputation-based empirical like-
lihood method to construct confidence interval for the AUC
with missing completely at random (MCAR) type of data,
which has not been considered in literature. It is necessary
to point out that the MCAR assumption is reasonable in
practice. For example, in diagnostic studies, a laboratory
sample may be dropped, so the resulting observation is miss-
ing; some sampled subjects are lost follow-up due to moving
and other reasons. In these cases, missing is independent
of both observable variables and unobservable variables of
interest. The proposed method preserves the advantage of
the method in Qin and Zhou [13], which has good small
sample performance, and the advantage of the hot deck im-
putation method, which preserves the distribution of item
values whereas the deterministic imputation methods like

the ratio imputation and the regression imputation do not
have this appealing property [16].

The remainder of the paper is organized as follows. Sec-
tion 2 presents the imputation-based empirical likelihood
method to construct confidence intervals for the AUC with
missing data. In section 3, we conduct simulation studies to
evaluate the performance of the proposed method. In sec-
tion 4, we apply the new imputation-based empirical likeli-
hood interval to a real example. A brief discussion is given
in section 5. All proofs are deferred until the Appendix.

2. IMPUTATION-BASED EMPIRICAL
LIKELIHOOD FOR THE AUC

In this section, we aim at constructing empirical
likelihood-based confidence intervals for δ with missing data.
We firstly impute the missing data by the hot deck imputa-
tion technique, and then apply empirical likelihood method
to obtain confidence intervals for the AUC based on the
imputed data. Finally we extend the proposed method to
stratified random samples with missing data.

2.1 Point estimation of the AUC
with missing data

Let (X1, δX1), . . . , (Xm, δXm) and (Y1, δY1), . . . , (Yn, δYn)
be the simple random sample sequences of incomplete data
associated with the populations (X, δX) and (Y, δY ) respec-
tively, where

δXi =

{
0, if Xi is missing

1, if Xi is observed
, i = 1, . . . ,m,

δYj =

{
0, if Yj is missing

1, if Yj is observed
, j = 1, . . . , n.

Missing data are common in many situations. For exam-
ple, patients involved in a regular blood or urine test in
a medical diagnosis might quit the research because they
moved to other districts, or missed a visit to the hospi-
tal due to bad weather or schedule conflicts. Also, in some
kinds of clinical trials, the measurement of genes related to
a specific cancer could be missing due to the limit of equip-
ment or cost requirements. These situations have an insight
that such kinds of missingness are unrelated to any patient’s
characteristics. This class of missingness is classified as miss-
ing completely at random (MCAR, see [15, 8]). Throughout
this paper, motivated by these observations, we assume X
and Y are MCAR, i.e.,

P (δX |X) = π1, and P (δY |Y ) = π2,

where both π1 and π2 are constants belonging to (0, 1).
For convenience, some standard notations are needed.

Let rX =
∑m

i=1 δXi , rY =
∑n

j=1 δYj , mX = m − rX and
mY = n−rY . Denote the sets of observed data with respect
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to X and Y as SrX and SrY respectively, and the sets of
missing data with respect to X and Y as SmX

and SmY

respectively. Then the means of the observed data with re-
spect to X and Y are denoted as X̄r = 1

rX

∑
i∈SrX

Xi and

Ȳr = 1
rY

∑
j∈SrY

Yj , respectively. Furthermore, let X∗
i and

Y ∗
j be the imputed values for the missing data with respect

to X and Y , respectively.

An imputation method is useful in dealing with missing
data. With MCAR data, we prefer a random hot deck im-
putation method to impute the missing values rather than
the deterministic imputation, because the latter one is not
appropriate in making an inference of distribution functions
[2]. The idea of random hot deck imputation [16] is natural.
For set {(Xi, δXi), i = 1, . . . ,m}, the random hot deck im-
putation draws a simple random sample of size mX with
replacement from SrX , and then let X∗

i = Xk for some
k ∈ SrX . After imputation, a sample of so-called “complete
data” is obtained as follows:

X̃i = δXiXi + (1− δXi)X
∗
i , i = 1, . . . ,m.

Similarly, the imputed “complete data” of Y could be ob-
tained as follows:

Ỹj = δYjYj + (1− δYj )Y
∗
j , j = 1, . . . , n.

Wang and Qin [19] have proved that based on the im-

puted data X̃i’s and Ỹj ’s, the empirical distributions F̃ (x) =
1
m

∑m
i=1 I(X̃i ≤ x), and G̃(y) = 1

n

∑n
j=1 I(Ỹj ≤ y) are still

consistent and asymptotically normal.

We define the imputed version of WMW estimator for
the AUC as follows:

δ̃ =
1

mn

m∑
i=1

n∑
j=1

I(Ỹj ≥ X̃i).(2)

2.2 Empirical likelihood for the AUC

In order to obtain better confidence intervals for the
AUC, Qin and Zhou [13] proposed an empirical likelihood-
based interval for the AUC. This interval has good coverage
accuracy for high values of the AUC when sample sizes for
diseased and non-diseased subjects are small and unequal.

For a given test value Y from a diseased subject, let U =
1−F (Y ). The value U can be interpreted as the proportion
of the non-diseased population with a test value greater than
Y [12]. It is easy to obtain the following equality:

E(1− U) = E(F (Y )) = P (Y ≥ X) = δ.

Based on the relationship between δ and U , an empiri-
cal likelihood procedure for the inference of the AUC was
derived by Qin and Zhou [13]. Let p = (p1, p2, . . . , pn) be
a probability vector, i.e.,

∑n
j=1 pj = 1 and pj ≥ 0 for all j.

The empirical likelihood for the AUC, evaluated at the true
value δ0 of δ, is defined as follows:

L(δ0) = sup

{
n∏

j=1

pj :

n∑
j=1

pj = 1,

n∑
j=1

pjWj(δ0) = 0

}
,

where Wj(δ0) = 1 − Uj − δ0 with Uj = 1 − F (Yj), j =
1, 2, . . . , n. Since the unknown distribution function F of
the non-diseased population can be replaced by its empiri-
cal distribution Fm(x) = 1

m

∑m
i=1 I(Xi ≤ x), then a profile

empirical likelihood (PEL) for δ0 can be given by

L̂(δ0) = sup

{
n∏

j=1

pj :

n∑
j=1

pj = 1,

n∑
j=1

pjŴj(δ0) = 0

}
,

where Ŵj(δ0) = 1 − Ûj − δ0 with Ûj = 1 − Fm(Yj),
j = 1, 2, . . . , n. By the standard procedure of empirical like-
lihood method, the empirical likelihood ratio for δ0 can be
defined as follows:

R(δ0) =

n∏
j=1

(npj) =

n∏
j=1

{
1 + λ̂Ŵj(δ0)

}
,

where λ̂ is the solution of

1

n

n∑
j=1

Ŵj(δ0)

1 + λŴj(δ0)
= 0.(3)

Then the corresponding log-EL ratio is

l(δ0) ≡ −2 logR(δ0) = 2

n∑
j=1

log
{
1 + λ̂Ŵj(δ0)

}
.(4)

Qin and Zhou [13] proved that the limiting distribution
of l(δ0) is a scaled chi-square distribution.

2.3 Imputation-based empirical likelihood
interval for the AUC

Based on the imputed data X̃i’s and Ỹj ’s, we could sub-
stitute all complete data Xi’s and Yj ’s in the previous part
and obtain the similar log-EL ratio for δ0 as follows:

l̃(δ0) = 2

n∑
j=1

log
{
1 + λ̃W̃j(δ0)

}
.(5)

where W̃j(δ0) = 1 − Ũj − δ0 with Ũj = 1 − F̃ (Ỹj), j =

1, 2, . . . , n, and λ̃ is the solution of

1

n

n∑
j=1

W̃j(δ0)

1 + λ̃W̃j(δ0)
= 0.(6)

The following theorem establishes the asymptotic distri-
bution of the imputation-based empirical log-likelihood ratio
for the AUC.

Imputation-based empirical likelihood inference for the area under the ROC curve with missing data 321



Theorem 1. Let δ0 be the true value of the AUC. If
limm,n→∞

n
m = τ < ∞, a fixed quantity, then the asymp-

totic distribution of l̃(δ0), defined by (5), is a scaled χ2

distribution with degree of freedom one, i.e.,

r(δ0)l̃(δ0)
d→ χ2

1,(7)

where the scale constant r(δ0) is

r(δ0) =
m

m+ n

∑n
j=1 W̃

2
j (δ0)

nS2

with

S2 =
m(1− π2 + π−1

2 )S2
01 + n(1− π1 + π−1

1 )S2
10

m+ n
,

S2
10 =

1

(m− 1)n2

[
m∑
i=1

(Ri − i)2 −m

(
R̄− m+ 1

2

)2
]
,

S2
01 =

1

(n− 1)m2

[
n∑

j=1

(Sj − j)2 − n

(
S̄ − n+ 1

2

)2
]
,

R̄ =
1

m

m∑
i=1

Ri, and S̄ =
1

n

n∑
j=1

Sj .

Here Ri is the rank of X̃(i) (the i-th ordered value among

X̃i’s) in the combined sample of X̃i’s and Ỹj’s, and Sj is

the rank of Ỹ(j) (the j-th ordered value among Ỹj ’s) in the

combined sample of X̃i’s and Ỹj ’s.

If only complete observations are used without apply-
ing random hot deck imputation, asymptotic distributions
of empirical distributions with observed data only were ob-
tained in [19]. Define

F̃ ∗(x) =
1

rX

∑
i∈SrX

I(Xi ≤ x),

G̃∗(y) =
1

rY

∑
j∈SrY

I(Yj ≤ y).

Then we have that

√
m(F̃ ∗(x)− F (x))

d→ N (0, σ∗2
X )

where σ∗2
X = π−1

1 F (x)(1− F (x)), and

√
n(G̃∗(y)−G(y))

d→ N (0, σ∗2
Y )

where σ∗2
Y = π−1

2 G(y)(1−G(y)).

The above results for F̃ ∗(x) and G̃∗(y) are slightly differ-
ent from Lemma 1 in Appendix. Without the random hot
deck imputation, some terms in Lemma 1 are absent. Ac-
tually, it is equivalent to disregard missing data and apply
the method based on complete data to the observed data
only. When sample sizes are small and missing proportion

is high, the performances of the method with observed data
only may be unstable because missingness results in an even
smaller sample size. However, the proposed method will ben-
efit from the imputation. Similar results were observed in
simulation studies in [19].

The confidence interval for the AUC could be constructed
based on Theorem 1. Intuitively, by plugging in the consis-
tent estimates of all unknown quantities, we could get the
plug-in form confidence interval. Let π̃1 = rX

m , π̃2 = rY
n , and

S̃2 =
m(1− π̃2 + π̃−1

2 )S2
01 + n(1− π̃1 + π̃−1

1 )S2
10

m+ n
,

r(δ̃) =
m

m+ n

∑n
j=1 W̃j(δ̃)

nS̃2
,

where δ̃ is defined by (2). Then a (1− α)100% imputation-
based profile empirical likelihood confidence interval for δ0,
denoted by IPEL interval, can be defined as follows:

Rα(δ) = {δ : r(δ̃)l̃(δ) ≤ χ2
1(1− α)},(8)

where χ2
1(1−α) is the (1−α)100% quantile of the chi-square

distribution with degree of freedom one.

2.4 Imputation-based EL intervals for
the AUC with stratified samples

In this section, we extend the IPEL method in the pre-
vious section to stratified samples. Suppose L institutions
participate in a ROC study of continuous-scale diagnostic
test, which are indexed by l. LetXl and Yl be the results of a
continuous-scale test for a non-diseased and a diseased sub-
ject in the lth institution, and Fl and Gl be the correspond-
ing distribution functions, respectively. Let Xl1, . . . , Xlml

be
the test results of a random sample of non-diseased patients,
Yl1, . . . , Ylnl

be results of a random sample of diseased sub-
jects in the l-th institution, and the observation rate pairs
of each institution be (πl1, πl2), 1 ≤ l ≤ L. Based on the
MCAR assumption and the hot deck imputation technique,
the imputed data X̃l1, . . . , X̃lml

and Ỹl1, . . . , Ỹlnl
could be

obtained for each institution.
Similar to Qin and Zhou [13], we do not assume that

Fl’s and Gl’s are homogeneous institutions. Instead, we only
assume δ1 = · · · = δl = δ, where δl denotes the AUC for the
l-th institution.

Let pl = (pl1, . . . , plnl
) be a probability vector for l =

1, . . . , L. Similarly, the profile empirical likelihood for the
common AUC, evaluated at the true value δ, is defined as
follows:

L̃(δ) = sup

{
L∏

l=1

nl∏
j=1

plj :

nl∑
j=1

plj = 1,

nl∑
j=1

pljW̃lj(δ) = 0,

l = 1, . . . , L

}
,
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where W̃lj(δ) = 1 − Ũlj − δ with Ũlj = 1 − F̃l(Ỹlj),

l = 1, . . . , �L, j = 1, 2, . . . , nl, and the F̃l is the imputation-
based empirical distribution of Fl. Then, the corresponding
empirical log-likelihood ratio is

l̃(δ) = 2

L∑
l=1

nl∑
j=1

log
{
1 + λ̃lW̃lj(δ)

}
,(9)

where λ̃l is the solution of

1

nl

nl∑
j=1

W̃lj(δ)

1 + λ̃lW̃lj(δ)
= 0, l = 1, . . . , L.(10)

The following theorem establishes the asymptotic distri-
bution of the imputation-based empirical log-likelihood ratio
for the AUC with stratified samples.

Theorem 2. Let δ0 be the true value of the common
AUC. If limml,nl→∞

nl

ml
= τl < ∞, a fixed quantity, for

l = 1, . . . , L, then the asymptotic distribution of l̃(δ0), de-
fined by (9), is a weighted summation of independent χ2

distribution with degree of freedom one, i.e.,

l̃(δ0)
d→ w1χ

2
1,1 + · · ·+ wLχ

2
L,1,(11)

where the weights wl = limml,nl→∞ w̃l(δ0), 1 ≤ l ≤ L, with

w̃l(δ0) =
ml + nl

ml

nlS
2
l∑nl

j=1 W̃
2
lj(δ0)

,

S2
l

=
ml(1− πl2 + π−1

l2 )S01(l)
2 + nl(1− πl1 + π−1

l1 )S2
10(l)

ml + nl
,

S2
10(l)

=
1

(ml − 1)n2
l

[
ml∑
i=1

(Ri(l)− i)2 −ml

(
R̄l −

ml + 1

2

)2
]
,

S01(l)
2

=
1

(nl − 1)m2
l

[
nl∑
j=1

(Sj(l)− j)2 − nl

(
S̄l −

nl + 1

2

)2
]
,

R̄l =
1

ml

ml∑
i=1

Ri(l), and S̄l =
1

nl

nl∑
j=1

Sj(l).

Here Ri(l) is the rank of X̃l(i) (the i-th ordered value among

X̃li’s) in the combined sample of X̃li’s and Ỹlj’s, and Sj(l)

is the rank of Ỹl(j) (the j-th ordered value among Ỹlj ’s) in

the combined sample of X̃li’s and Ỹlj ’s.

Then the EL-based confidence interval for the common
AUC can be constructed as follows:

Rα(δ) =
{
δ : l̃(δ) ≤ c1−α

}
,(12)

where c1−α is the (1 − α)100%th quantile of the weighted
chi-square distribution w1χ

2
1,1 + · · ·+wLχ

2
L,1. The quantile

c1−α could be calculated using a simple Monte Carlo sim-
ulation by plugging in consistent estimates of all unknown
quantities. Therefore, Rα(δ) defined by (12) offers an ap-
proximate confidence interval for the common AUC with
asymptotically correct coverage probability 1− α.

3. SIMULATION STUDIES

In this section simulation studies are conducted to eval-
uate the finite-sample performance of the proposed IPEL
interval for the AUC in terms of coverage probability when
the AUC is taken to be 0.8 (moderate accuracy), 0.9, and
0.95 (high accuracy). For simplicity, we take L = 1 in simu-
lation studies. Here two typical settings of distribution are
considered, one for symmetric distribution and the other for
asymmetric distribution:

(1) X ∼ N (0, 1) and Y ∼ N (
√
5Φ−1(δ), 22);

(2) X ∼ exp(1) and Y ∼ exp( δ
1−δ ).

Note that in the first simulation setting, δ is related to
the mean and the standard deviation by the following rela-
tionship:

δ = Φ

(
μ− μ0√
σ2 + σ2

0

)
,

where Φ(·) is the cumulative distribution function of a
standard normal distribution, if X ∼ N (μ0, σ

2
0) and Y ∼

N (μ, σ2). Meanwhile, if X ∼ exp(θ1) and Y ∼ exp(θ2),
then

δ =
θ2

θ1 + θ2
.

For each setting, 2,000 random samples of incomplete
data (Xi, δXi), i = 1, . . . ,m and (Yj , δYj ), j = 1, . . . , n are
generated from the underlying non-diseased distribution F
and diseased distribution G, respectively. The sample size
ranges from 50 to 200 with both m = n and m 
= n two cases
for the two settings. We also consider different observation
rates: (π1, π2) = 90% (high), 80% or 70% (moderate), and
60% (low) with π1 = π2 and π1 
= π2. For comparison, the
full observation case is also included in the study. Note that
when π1 = π2 = 1, the proposed method will be reduced to
the method developed by Qin and Zhou (2006), which has
been shown to have good finite sample performance.

In Tables 1–4, we present the coverage probabilities of
90% and 95% IPEL intervals for various values of the AUC
based on the proposed imputation-based empirical likeli-
hood method under two model settings. The simulation
results in these tables indicate that the proposed method
works well in moderate accuracy cases even with small sam-
ple sizes (i.e., m = n = 50). In high accuracy cases, the
proposed method seems to be conservative in a small sam-
ple size case, and the performance improves as the sample
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Table 1. Model setting (1): Coverage probabilities of the IPEL interval for the AUC with nominal confidence level 90% and
various observation rates (π1, π2)

AUC (m,n) Observation rates (π1, π2)
(1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)

0.80 (50, 50) 0.9159 0.9101 0.9050 0.9085 0.9078 0.9189
(50, 80) 0.9060 0.9084 0.9049 0.9003 0.9018 0.9120
(80, 80) 0.9040 0.9115 0.9090 0.9035 0.8958 0.9111
(80, 100) 0.8955 0.8960 0.8945 0.8985 0.8989 0.9068
(100, 100) 0.8955 0.8920 0.8955 0.8984 0.8965 0.8968
(100, 150) 0.9065 0.8925 0.9010 0.9000 0.9045 0.9010
(200, 200) 0.8890 0.8940 0.8980 0.9030 0.8939 0.9025

0.90 (50, 50) 0.9315 0.9410 0.9367 0.9344 0.9319 0.9467
(50, 80) 0.9153 0.9252 0.9209 0.9229 0.9253 0.9432
(80, 80) 0.9061 0.9160 0.9148 0.9196 0.9201 0.9276
(80, 100) 0.8974 0.9022 0.8970 0.9048 0.9179 0.9152
(100, 100) 0.9018 0.9030 0.8995 0.9000 0.9056 0.9052
(100, 150) 0.9020 0.8933 0.9009 0.9009 0.9058 0.9091
(200, 200) 0.8904 0.8939 0.8979 0.8955 0.8958 0.9013

0.95 (50, 50) 0.9498 0.9589 0.9521 0.9478 0.9463 0.9543
(50, 80) 0.9346 0.9455 0.9456 0.9465 0.9462 0.9617
(80, 80) 0.9256 0.9419 0.9479 0.9475 0.9479 0.9548
(80, 100) 0.9240 0.9333 0.9327 0.9297 0.9507 0.9459
(100, 100) 0.9072 0.9163 0.9299 0.9297 0.9354 0.9369
(100, 150) 0.9019 0.8951 0.9113 0.9140 0.9267 0.9333
(200, 200) 0.8882 0.9012 0.9003 0.9012 0.9065 0.9075

Table 2. Model setting (1): Coverage probabilities of the IPEL interval for the AUC with nominal confidence level 95% and
various observation rates (π1, π2)

AUC (m,n) Observation rates (π1, π2)
(1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)

0.80 (50, 50) 0.9600 0.9603 0.9593 0.9582 0.9620 0.9742
(50, 80) 0.9510 0.9545 0.9494 0.9559 0.9544 0.9608
(80, 80) 0.9500 0.9550 0.9575 0.9640 0.9544 0.9623
(80, 100) 0.9490 0.9485 0.9560 0.9550 0.9540 0.9494
(100, 100) 0.9510 0.9515 0.9510 0.9530 0.9560 0.9464
(100, 150) 0.9535 0.9485 0.9530 0.9530 0.9585 0.9525
(200, 200) 0.9480 0.9445 0.9515 0.9525 0.9490 0.9490

0.90 (50, 50) 0.9760 0.9754 0.9743 0.9747 0.9751 0.9739
(50, 80) 0.9617 0.9641 0.9660 0.9686 0.9675 0.9734
(80, 80) 0.9553 0.9572 0.9662 0.9611 0.9608 0.9704
(80, 100) 0.9540 0.9518 0.9543 0.9597 0.9650 0.9619
(100, 100) 0.9509 0.9515 0.9523 0.9533 0.9609 0.9577
(100, 150) 0.9505 0.9469 0.9530 0.9575 0.9579 0.9568
(200, 200) 0.9485 0.9460 0.9515 0.9545 0.9479 0.9519

0.95 (50, 50) 0.9833 0.9757 0.9760 0.9712 0.9697 0.9729
(50, 80) 0.9761 0.9823 0.9733 0.9717 0.9763 0.9787
(80, 80) 0.9762 0.9751 0.9748 0.9748 0.9721 0.9761
(80, 100) 0.9640 0.9721 0.9723 0.9733 0.9748 0.9711
(100, 100) 0.9592 0.9635 0.9668 0.9672 0.9711 0.9642
(100, 150) 0.9527 0.9544 0.9661 0.9654 0.9680 0.9698
(200, 200) 0.9429 0.9531 0.9607 0.9567 0.9573 0.9673

size increases. Reasonably, the proposed method works bet-
ter in a symmetric distribution case. Also, the performance
of the proposed method under missing data cases is compa-
rable with that under the complete data cases in terms of
coverage probability.

4. A REAL EXAMPLE

In this section, we evaluate the diagnostic accuracy of

the proposed method by applying it to the data set of car-
bohydrate antigenic determinant CA19-9 in the detection
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Table 3. Model setting (2): Coverage probabilities of the IPEL interval for the AUC with nominal confidence level 90% and
various observation rates (π1, π2)

AUC (m,n) Observation rates (π1, π2)
(1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)

0.80 (50, 50) 0.9137 0.9189 0.9296 0.9260 0.9319 0.9368
(50, 80) 0.9100 0.9058 0.9087 0.9147 0.9177 0.9078
(80, 80) 0.9065 0.9043 0.9094 0.9125 0.9129 0.9177
(80, 100) 0.9080 0.8974 0.9034 0.9014 0.9040 0.9134
(100, 100) 0.9085 0.9070 0.9130 0.9119 0.9209 0.9013
(100, 150) 0.9000 0.9080 0.9105 0.9140 0.9174 0.9199
(200, 200) 0.8950 0.8940 0.8990 0.9045 0.8995 0.8949

0.90 (50, 50) 0.9260 0.9340 0.9366 0.9387 0.9455 0.9499
(50, 80) 0.9091 0.9181 0.9110 0.9214 0.9342 0.9318
(80, 80) 0.9008 0.9125 0.9102 0.9126 0.9234 0.9394
(80, 100) 0.9042 0.9031 0.9100 0.9093 0.9170 0.9256
(100, 100) 0.8998 0.9045 0.9134 0.9144 0.9177 0.9240
(100, 150) 0.9035 0.9084 0.9124 0.9194 0.9197 0.9323
(200, 200) 0.8940 0.8890 0.8984 0.8993 0.9018 0.8959

0.95 (50, 50) 0.9434 0.9460 0.9494 0.9494 0.9489 0.9519
(50, 80) 0.9326 0.9361 0.9398 0.9436 0.9448 0.9559
(80, 80) 0.9204 0.9400 0.9435 0.9396 0.9530 0.9554
(80, 100) 0.9206 0.9267 0.9241 0.9295 0.9403 0.9494
(100, 100) 0.9109 0.9285 0.9350 0.9320 0.9450 0.9497
(100, 150) 0.9076 0.9109 0.9129 0.9184 0.9274 0.9414
(200, 200) 0.8954 0.8951 0.9060 0.9051 0.9059 0.9145

Table 4. Model setting (2): Coverage probabilities of the IPEL interval for the AUC with nominal confidence level 95% and
various observation rates (π1, π2)

AUC (m,n) Observation rates (π1, π2)
(1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)

0.80 (50, 50) 0.9579 0.9657 0.9666 0.9645 0.9716 0.9771
(50, 80) 0.9565 0.9564 0.9549 0.9584 0.9634 0.9627
(80, 80) 0.9510 0.9564 0.9617 0.9568 0.9622 0.9687
(80, 100) 0.9560 0.9485 0.9509 0.9464 0.9530 0.9597
(100, 100) 0.9505 0.9565 0.9600 0.9585 0.9599 0.9592
(100, 150) 0.9565 0.9610 0.9530 0.9615 0.9635 0.9625
(200, 200) 0.9475 0.9520 0.9470 0.9455 0.9480 0.9460

0.90 (50, 50) 0.9655 0.9714 0.9804 0.9748 0.9787 0.9791
(50, 80) 0.9593 0.9631 0.9670 0.9742 0.9750 0.9754
(80, 80) 0.9567 0.9631 0.9665 0.9660 0.9739 0.9759
(80, 100) 0.9534 0.9573 0.9527 0.9582 0.9651 0.9740
(100, 100) 0.9494 0.9568 0.9627 0.9678 0.9652 0.9709
(100, 150) 0.9550 0.9630 0.9604 0.9609 0.9679 0.9649
(200, 200) 0.9520 0.9485 0.9465 0.9454 0.9464 0.9527

0.95 (50, 50) 0.9754 0.9727 0.9760 0.9710 0.9702 0.9727
(50, 80) 0.9717 0.9742 0.9720 0.9754 0.9737 0.9779
(80, 80) 0.9702 0.9752 0.9767 0.9761 0.9791 0.9800
(80, 100) 0.9674 0.9698 0.9711 0.9715 0.9725 0.9747
(100, 100) 0.9618 0.9722 0.9794 0.9758 0.9827 0.9809
(100, 150) 0.9593 0.9587 0.9676 0.9696 0.9739 0.9815
(200, 200) 0.9445 0.9478 0.9527 0.9548 0.9562 0.9624

of pancreatic cancer. Pancreatic cancer is a disease of the
tissues of pancreas where cancer cells are found. It is hard
to diagnose the pancreatic cancer because this organ is hid-
den behind other organs. Furthermore, its early detection
is poor or almost impossible. Therefore, the death rate of

pancreatic cancer patients is extremely high. By the end of
2010 in the United States, it is estimated about 43,140 in-
dividuals will be diagnosed with this condition, and 36,800
will die from the disease, reported by the National Cancer
Institute.
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Table 5. A real example: 95% IPEL confidence intervals for
the AUC of CA19-9 with various observation rates

(π1, π2) ˜δ Confidence interval rX rY
(1.0, 1.0) 0.862 (0.793, 0.913) 51 90
(0.9, 0.9) 0.874 (0.803, 0.924) 46 86
(0.9, 0.8) 0.873 (0.787, 0.931) 47 68
(0.8, 0.8) 0.876 (0.793, 0.931) 42 72
(0.8, 0.7) 0.811 (0.704, 0.891) 39 56
(0.6, 0.6) 0.835 (0.717, 0.916) 27 48

We apply the newly proposed IPEL method to the data
set studied by Wieand et al. [21] on the diagnostic accu-
racy of CA19-9 in detecting pancreatic cancer. The data set
consists of 51 patients in the control group and 90 patients
with pancreatic cancer. We simulated the missing mecha-
nism MCAR to obtain missing data with different observa-
tion rates of (π1, π2), because the original data set is com-
plete. The WMW estimates and IPEL intervals for the AUC
are calculated. The results are presented in Table 5. These
intervals indicate that CA19-9 has moderate to high levels
of diagnostic accuracy in detecting patients with pancreatic
cancer. Under different observation rates, δ̃ is close to the
estimate with complete data, and all confidence intervals
contain δ̃ based on complete data.

5. DISCUSSION

This paper focuses on missing data under the MCAR
assumption. An imputation-based empirical likelihood
method is proposed to construct confidence interval for the
AUC with MCAR data. The random hot deck imputa-
tion is needed for the proposed method. Instead of condi-
tional missing probability, MCAR assumption assures con-
stant missing probability which could be estimated effi-
ciently. Multiple imputation could also be applied in this
paper as in Wang and Chen [20]. Since our simulation re-
sults have shown that the newly proposed methods work
well, for simplicity, multiple imputation is not applied in this
paper. Sometimes, the missing mechanism depends on the
observed data, called missing at random (MAR, see [15, 8]).
The MAR case is a more general case and of more interest.
Direct application of complete data inference procedures to
MAR problems may result in biased estimation and loss of
efficiency. He et al. [6] provided a direct estimate of the AUC
in the presence of verification bias under the MAR assump-
tion. But their inference method required the estimation of
the variance, which is not an easy job. Future work could
be done on the confidence interval for the AUC under the
MAR assumption, which could be free of the estimation of
variance by applying empirical likelihood technique.

APPENDIX: PROOFS

In order to prove Theorem 1, a few lemmas are necessary.

Lemma 1 (Wang and Qin, [19]). F̃ (x) and G̃(y) defined by
(2.1) and (2.1) are uniformly consistent for F (x) and G(y),
respectively. Furthermore, they are asymptotically normal,
i.e.,

1√
m

m∑
i=1

I(X̃i ≤ x)
d→ N (F (x), σ2

X)

where σ2
X = (1− π1 + π−1

1 )F (x)(1− F (x)), and

1√
n

n∑
j=1

I(Ỹj ≤ y)
d→ N (G(y), σ2

Y )

where σ2
Y = (1− π2 + π−1

2 )G(y)(1−G(y)).

Lemma 2. Under the same conditions as in Theorem 1, we
have that:

(i) 1
n

∑n
j=1 W̃

2
j (p)

P→ σ2
0, where σ2

0 = E[F 2(Y )]− δ20;

(ii) ( mn
m+n )

1/2 ˜δ−δ0
S

d→ N (0, 1), where δ̃ is defined by (2).

Proof. (i) From the uniform consistency of F̃ in Lemma 1,
it follows that

1

n

n∑
j=1

F̃ 2(Ỹj)−
1

n

n∑
j=1

F 2(Ỹj)
P→ 0.

By using the similar technique employed in the proof of
Lemma 1, we get that

1

n

n∑
j=1

F 2(Ỹj)

=
1

rY

∑
j∈SrY

F 2(Yj) +
mY

n

1

mY

∑
j∈SmY

(F 2(Y ∗
j )− F̄1r)

P→ E[F 2(Y )],

where F̄1r = 1
rY

∑
j∈SrY

F 2(Yj). Therefore,

1

n

n∑
j=1

F̃ 2(Ỹj)
P→ E[F 2(Y )].

Similarly, we can prove that 1
n

∑n
j=1 F̃ (Ỹj)

P→ E[F (Y )] =
δ0. Combining the above results, from Lemma 2(i), it follows
that:

1

n

n∑
j=1

W̃ 2
j (δ0) =

1

n

n∑
j=1

(
F̃ (Ỹj)− δ0

)2

=
1

n

n∑
j=1

F̃ 2(Ỹj)−
2δ0
n

n∑
j=1

F̃ (Ỹj) + δ20

P→ E[F 2(Y )]− δ20 = σ2
0 .
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(ii) If the data set is complete, Sen [18] has proved a sim-
ilar result. Based on imputed data, some necessary modifi-
cations are needed. Let

αδ =

∫ 1

0

F 2(y)dG(y), βδ =

∫ 1

0

[1−G(x)]2dF (x),

n0 =
mn

m+ n
,

Bn = σ(Ỹj , j = 1, . . . , n), Am = σ(X̃i, i = 1, . . . ,m).

Then, the variance of
√
n0δ̃ can be calculated as follows:

VAR(
√
n0δ̃)(13)

= VAR
(
E(

√
n0δ̃|Bn)

)
+ E

(
VAR(

√
n0δ̃|Bn)

)
.

For the first term of the right-hand side in (13), from

E(
√
n0δ̃|Bn) =

√
n0

mn

n∑
j=1

m∑
i=1

E[I(X̃i ≤ Ỹj)|Bn]

=

√
n0

n

n∑
j=1

[F̃ (Ỹj)],

it follows that

VAR
(
E(

√
n0δ̃|Bn)

)
= VAR

(√
n0

n

n∑
j=1

[F̃ (Ỹj)]

)

→ 1

1 + τ
(1− π2 + π−1

2 )(αδ − δ20),

where the last step follows from Lemma 1.
As for the second term of the right-hand side in (13),

from

VAR
(√

n0δ̃|Bn

)
=

n0

m2n2
VAR

(
n∑

j=1

m∑
i=1

I(X̃i ≤ Ỹj)|Bn

)

=
n0m

m2n2

[
(1− π1 + π−1

1 )VAR

(
n∑

j=1

I(X ≤ Ỹj |Bn)

)

+ oP (1)

]

=
n0

mn2

[
(1− π1 + π−1

1 )

(
n∑

j=1

F (Ỹj)

+ 2
∑
j≤k

E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

−
(

n∑
j=1

F (Ỹj)

)2)
+ oP (1)

]
,

it follows that

E
(
VAR(

√
n0δ̃|Bn)

)

=
n0

mn2

[
(1− π1 + π−1

1 )

(
n∑

j=1

EF (Ỹj)

+ 2
∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
− E

(
n∑

j=1

F (Ỹj)

)2)
+ o(1)

]

=
n0

mn2

[
(1− π1 + π−1

1 )

(
nδ0

+ 2
∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
−

(
VAR

(
n∑

j=1

F (Ỹj)

)
+ E2

(
n∑

j=1

F (Ỹj)

)))
+ o(1)

]

=
n0

mn2

[
(1− π1 + π−1

1 )

(
nδ0

+ 2
∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
−

(
(1− π2 + π−1

2 )n(αδ − δ20) + (nδ0)
2 + o(n)

))

+ o(1)

]
.

From

∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)

= E

[
E

( ∑
j≤k

I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn

)]

= EE

[( ∑
j≤k

j,k∈SrY

+
∑
j≤k

j∈SrY
,k∈SmY

+
∑
j≤k

j∈SmY
,k∈SrY

+
∑
j≤k

j,k∈SmY

)

× I(X ≤ Ỹj)I(X ≤ Ỹk)

∣∣∣∣Bn

]

= EE

[( ∑
j≤k

j,k∈SrY

+
∑
j≤k

j∈SrY
,k∈SmY

+
∑
j≤k

j∈SmY
,k∈SrY

+
∑
j≤k

j,k∈SmY

)

× I(X ≤ Ỹj)I(X ≤ Ỹk)

∣∣∣∣X)

]

= EE

[ ∑
j≤k

j,k∈SrY

(
1−G(X)

)2
+

∑
j≤k

j∈SrY
,k∈SmY

(
1

rY
(1−G(X)) +

rY − 1

rY
(1−G(X))2

)
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+
∑
j≤k

j∈SmY
,k∈SrY

(
1

rY
(1−G(X)) +

rY − 1

rY
(1−G(X))2

)

+
∑
j≤k

j,k∈SmY

1

r2Y

(
rY (1−G(X)) + rY (rY − 1)(1−G(X))2

)
∣∣∣X,σ(δYj , j = 1, . . . , n)

]

= EE

[
n(n− 1)

2
(1−G(X))2

+
∑
j≤k

j or k∈SmY

1

rY

(
(1−G(X))− (1−G(X))2

)
∣∣∣X,σ(δYj , j = 1, . . . , n)

]
= EE

[
n(n− 1)

2
(1−G(X))2

+
n(n− 1)− rY (rY − 1)

2rY

(
(1−G(X))− (1−G(X))2

)
∣∣∣X,σ(δYj , j = 1, . . . , n)

]
,

it follows that

2
∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
= EE

[
2(1−G(X))2 +

(
n(1− π2

2)

π2
+OP (n)

)
×

(
(1−G(X))− (1−G(X))2

)∣∣∣X]
= n(n− 1)βδ

+ EE

[(
n(1− π2

2)

π2
+OP (n)

) (
(1−G(X))

− (1−G(X))2
)∣∣∣X]

.

Therefore,

E
(
VAR(

√
n0δ̃|Bn)

)
→ τ

1 + τ
(1− π1 + π−1

1 )(βδ − δ20),

VAR(
√
n0δ̃) → 1

1 + τ
(1− π2 + π−1

2 )(αδ − δ20)

+
τ

1 + τ
(1− π1 + π−1

1 )(βδ − δ20).

In order to prove Lemma 2(ii), we need to show that S and

VAR(
√
n0δ̃) converge to the same limit. Let

V10(X̃i) =
1

n

n∑
j=1

I(X̃i ≤ Ỹj), i = 1, . . . ,m;

V01(Ỹj) =
1

m

m∑
i=1

I(X̃i ≤ Ỹj), j = 1, . . . , n.

It follows that

S2
10 =

1

m− 1

m∑
i=1

[
V10(X̃i)− δ̃

]2
=

1

m− 1

m∑
i=1

[
V 2
10(X̃i)− 2V10(X̃i)δ̃ + δ̃2

]
.

By Lemma 1, we have

δ̃
P→ δ0, and V10(X̃i)

P∗
→ 1−G(X̃i)

where P ∗ is the probability measure on Am. Thus,

S2
10

P→ βδ − δ20 .

Similarly, we have

S2
01

P→ αδ − δ20 .

Therefore,

S2 =
m(1− π2 + π−1

2 )S2
01 + n(1− π1 + π−1

1 )S2
10

m+ n
P→ 1

1 + τ
(1− π2 + π−1

2 )(αδ − δ20)

+
τ

1 + τ
(1− π1 + π−1

1 )(βδ − δ20).

Based on Sen (1967), S2
01 and S2

10 have the alternative
algebraic expressions in Theorem 1. Finally, from Lemma 1,
the Slutsky’s theorem and the similar procedures of struc-
tural convergence of U-statistics in Sen [17, 18], it follows
that

√
n0

δ̃ − δ0
S

=

(
mn

m+ n

)1/2
δ̃ − δ0
S

d→ N (0, 1).

Proof of Theorem 1. Based on Lemma 2 and the same pro-
cedure of the proof of Theorem 1 in Qin and Zhou [13], it is
straightforward to obtain the result.

Proof of Theorem 2. Based on Theorem 1 and the same pro-
cedure of the proof of Theorem 2 in Qin and Zhou [13], it is
straightforward to obtain the result.
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