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Blockwise empirical likelihood for
model assessment

MARK S. KAISER AND DANIEL J. NORDMAN®T

We propose a class of procedures for the assessment of
Markov random field models based on spatial blockwise em-
pirical likelihood (SBEL). These SBEL procedures have dis-
cernible asymptotic properties and provide a means for test-
ing particular assumptions made in model formulation, such
as distributional form and neighborhood structure. Based on
the ideas of empirical likelihood, SBEL procedures are non-
parametric in that they do not depend on parameterized
likelihood functions per se. However, the moment conditions
that are the focus of SBEL tests may themselves reflect data
behaviors that are dictated by specific components of fully
parametric models. Model assessment based on SBEL, then,
produces completely data-driven procedures for testing the
assumptions of parameterized Markov random field models.
The procedures require two sets of moment conditions that
are formulated as estimating functions. One set of estimat-
ing functions provides identification of parameter values and
the other serves to define aspects of model behavior that we
wish to assess relative to the behavior of observed data. We
illustrate the use of SBEL procedures using null (assumed)
models that have Gaussian and binary conditional distribu-
tions when data are simulated from both these, and other,
models. Among other results, we demonstrate that an ap-
propriate SBEL procedure is capable of detecting incongru-
ence between assumed and true neighborhood structure on
a regular lattice.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62M30,
62G09; secondary 62F03.
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1. INTRODUCTION

Empirical likelihood (EL) is a statistical methodology for
formulating likelihood-type inference without specifying a
joint parametric distribution for the data. For independent
data, Owen [32, 33] first proposed the method for inference
on mean parameters and certain M-estimators, and Qin and
Lawless [37] extended EL in an important, broad direction
by allowing estimating functions and general parameters
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spatial Markov

satisfying moment conditions. Recently, Nordman [29] de-
veloped an EL approach for inference with stationary, spa-
tial lattice data for testing and estimation of a variety of
spatial parameters, such as means, smooth model functions
of means, as well as parameters specified by estimating func-
tions. This approach, called spatial blockwise empirical like-
lihood (SBEL), represents a spatial extension of general EL
methods for time series based on “data blocking” techniques,
where blocks of data serve to capture the underlying (usu-
ally unknown) dependence structure by preserving groups of
neighboring observations. For weakly dependent time pro-
cesses, Kitamura [21] first proposed a data-block-based, or
“blockwise,” EL for weakly dependent time series in the
framework of estimating functions, which has been success-
fully applied in a variety of time series inference scenarios,
such as goodness-of-fit tests [10], several types of regres-
sion [4, 39, 40, 43, fitting autoregressive [8] and non-linear
[5] models, quantile and density estimation [9, 25] and for
various dependence structures such as negative/positive as-
sociation [44] or long-memory [31]. Data-blocking concepts
have also extended bootstrap and subsampling methodolo-
gies from independent to dependent data, such as the mov-
ing block bootstrap of Carlstein [7], Kiinsch [23] and Liu
and Singh [26] for time series, and the spatial subsampling
methods of Politis and Romano [35] and Sherman [42]; see
[24, 36] for detailed overviews of block resampling or sub-
sampling methods for temporal and spatial data.

In previous works, Nordman [29] and Nordman and
Caragea [30] have investigated the estimation properties
of SBEL for spatial parameters, such as means and vari-
ograms. The purpose of this manuscript differs in that we
seek to demonstrate and investigate SBEL for spatial model
assessment. In particular, we consider the specific, but chal-
lenging, problem of assessing whether or not a fitted spa-
tial Markov random field model provides an adequate de-
scription of spatial data, which depends on factors such as
the specified model class and neighborhood structure in the
Markov model. In the SBEL framework, this issue can be ad-
dressed through formal tests of certain types of moment con-
ditions. In econometrics, much research has focused on EL,
and relatedly generalized method of moments estimators,
for testing moment restrictions and conducting model diag-
nostics; see, for example, [5, 22, 28]. However, in contrast to
the time series case, the potential of EL for testing moment
conditions and performing formal data-structure diagnostics
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with spatial observations has not previously been explored.
Established theory suggests that the SBEL method should
be asymptotically valid for these purposes with stationary
lattice data (cf. [29]), but the practical effectiveness of the
method for using moment tests to assess models is a topic
we wish to explore here, focusing on Markov random field
models for concreteness.

We also note that tests for general spatial dependence
structures, such as isotropy or covariance separability, have
been developed in the literature, with some based on data-
blocking methods such as the block bootstrap or spatial sub-
sampling (cf. [14, 27, 45]). In principle, the SBEL method
could be used for similar tests and more, going beyond the
particular assessments of Markov random field models con-
sidered here. This is because inference in the spatial EL is
based on a likelihood function which has a common con-
struction for any estimating functions used to identify spa-
tial parameters or dependence conditions. The likelihood
function can be maximized for point estimators, chi-square
calibrated to set confidence regions, or applied to moment
tests (also with a chi-square calibration). Hence, applying
the SBEL method to different spatial problems requires only
specifying appropriate estimating functions to prescribe the
inference scenario. Additionally, the SBEL method for test-
ing does not directly require any variance estimates in its im-
plementation, which is useful in spatial settings where stan-
dard errors for test statistics can be difficult to obtain under
potentially complicated spatial dependence structures.

The rest of the manuscript is organized as follows. In
Section 2, we describe a large class of spatial Markov ran-
dom field models, having conditionally specified distribu-
tions, and develop general estimating functions that can be
used in the SBEL method to perform model assessment. In
addition to estimating functions used for fitting the models,
we consider two fundamental types of additional estimat-
ing functions for assessing conditional model specifications:
one based on conditional moments and the other based on
conditional independence. Section 3 provides the construc-
tion of the SBEL ratio as well as a distributional result for
formally testing Markov model assumptions, entailing the
SBEL ratio has a chi-squared limit when certain model con-
ditions hold. Sections 4 and 5 evaluate and summarize the
simulation performance of the SBEL method for assessing
conditional Gaussian and conditional binary spatial Markov
models, respectively. Section 6 provides a data illustration of
the method for evaluating neighborhood selection in mod-
eling a plant disease. In Section 7, we provide concluding
remarks and discussion on the use of SBEL in model assess-
ment.

2. SBEL FOR ASSESSING SPATIAL
MARKOV MODELS

To understand the implementation of the spatial EL
method, an important aspect is establishing a set of appro-
priate estimating functions with respect to the spatial data
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at hand. Because we wish to assess Markov random field
models, which have a specification in terms of conditional
distributions, the estimating functions should appropriately
incorporate information on the form of such conditional dis-
tributions (and their corresponding parameters) and con-
nect these to the data. We describe a general formulation of
this in the following.

2.1 A class of Markov random field models

We assume data from a real-valued, strictly stationary
process {X(s) : s € Z%} on the planar integer grid Z?2,
and will later describe a more concrete sampling framework
where observations are collected at sites within a spatial
sampling region. But, for now, we are interested in consider-
ing a conditionally specified or Markov model for the spatial
process {X(s) : s € Z?}. For clarity, we will use exclusively
bold font for denoting spatial locations on the grid Z? (i.e.,
s € Z2, zero vector 0y € Z2).

In such models, a conditional distribution for each ran-
dom variable, X (s), s € Z?2, is typically expressed through
a neighborhood structure. For instance, using some fixed
template region M C Z?2 \ {0} of finite size, many com-
mon neighborhood structures for X (s) can be formulated as
N(s) = s + M. Neighborhoods which fit this form include
so-called 4- or 8-nearest neighbor schemes, pictured below
(where * denotes a neighbor of s € Z?),

4-nearest neighbor 8-nearest neighbor

* ok ok
(1) *x 8§ % * 8 ok
* * k%

for which M = {(-1,0)’,(1,0)’,(0,1)",(0,-1)"} and M =
{(u,v)" € Z? : max{|ul, |v|} = 1}, respectively. Throughout,
we shall assume such neighborhood structures A/ (s) = s+.M
based on a template M, which is reasonable for many spatial
Markov models for data on regular lattices.

Under a Markov assumption, the conditional cumulative
distribution of an observation X (s), s € Z? can be written
as

P(X(s) < z|X(t),t #s € Z?)

= P(X(s) < #|X(t),t € N(s)), w€R,

which is functionally dependent only on neighboring obser-
vations (cf. [11], ch. 6). In the model development, we allow
this conditional distribution for X (s) to potentially depend
on a p-dimensional parameter vector # € © C RP and be
expressed in terms of a conditional probability density func-
tion (in the continuous case) or conditional probability mass
function (in the discrete case) written as

(2) folw [ {X(t) : t € N(s)}),

having a common form for all variables X(s), s € Z%. Be-
sag [2] introduced several conditional distributions of this

r €R,



form involving exponential family models, such as the auto-
normal model where the conditional density of X (s)|{ X (t) :
t € N(s)} in (2) is Gaussian with conditional variance 72 >
0 and conditional mean pu(s) = a + 13 e p(s) (X (t) — o,
the latter being a function of an unconditional mean pa-
rameter EX(s) = a € R and a dependence parameter 7
(e.g., |n| < 1/4 for a 4-nearest neighborhood structure); in
this case, for example, § = (@, 7n,7)". Arguably, the most
common Markov model specifications involve some type of
conditional Gaussian distributions [41], but other distribu-
tional forms are possible including beta [16, 19], binary [6],
Poisson [2] and Winsorized Poisson [18]. Quite general con-
ditional specifications are available for many exponential
family models as well [1, 19].

2.2 Estimating functions for model fit
and assessment

Similarly to the EL frameworks of Qin and Lawless [37]
and Kitamura [21] for iid and dependent data, respec-
tively, we require a set of estimating functions to link model
forms to potential observations (under an expectation con-
straint). In particular, as the basis of spatial EL inference
for conditionally specified distributions (2), we first require
p-estimating functions to describe the involved model pa-
rameters § € © C RP. For this purpose, at a given location
s € Z?, we use p score-functions based on (2) to write esti-
mating functions
(3) GplCy(s); 0]

_ Dlog fo(X(s) | {X(£) : t € N(5)})

o 00

€RP,

evaluated at § € © and a collection of variables Cp(s) =
{X(t) : t=sorteN(s)} containing X(s) and its neigh-
bors under the model specification (2). For many Markov
random fields based on exponential-family models, score-
functions satisfy the moment condition

EG,[Cy(s); 0] =0, € RP

at the true parameter 6y value. This moment restriction
serves to identify the parameters in estimation and, in fact,
these same score-based estimating functions are often used
to produce maximum pseudo-likelihood estimators as the
solution to Y- | Gp[Cp(s;); 0] = 0, € RP (Besag, 1975).
The p estimating functions in (3) suffice to pro-
duce point estimators and confidence regions for 6 €
© C RP in the SBEL method. However, for purposes of
model assessment, we need to augment (3) with an addi-
tional set of g-dimensional (¢ > 1) estimating functions
Ga[Cp(s),Ca(s); 0] € R?, which can be functions of variables
Cp(s) in addition to a potential collection of augmenting
variables Cq(s) = {X(t) : t € N9(s)} defined by an aug-
mentation neighborhood N (s) C Z? of location s € Z2.
The augmentation neighborhood will typically depend on

the question being assessed and may be empty as well, and
we generally define N**9(s) = s + A as a translation of
some finite template set A C Z? so that the augmentation
neighborhoods have the same form for each location. We
will describe examples of this in more detail below.

In general, then, letting C(s) = C,(s) U C,(s), we sup-
pose a total set of ¢ + p estimating functions G[C(s); 6] =
(GplCp(5); 8], GalCp(s),Cu(s); 6]) € RYTP which satisfy the
moment condition

(4)

at the true parameter 6. We mention two general and flexi-
ble strategies for formulating the additional estimating func-
tions in G,[-; 6]

EGIC(s); 60] = Og+p>

Conditional moments From the conditional distribution
of X(s) in (2) and integer r >1, consider the rth condi-
tional moment, say p,(s;6) € R, of this distribution, as a
function of # and the neighborhood variables {X(t) : t €
N(s)}. One may then define G4[Cp(s),Cq(s); 6] through a
g-dimensional vector of differences X" (s) — p, (s; 0) based
on moments 71, ..., 74, for which the moment condition (4)
will hold under the (correctly specified) model (2). Alterna-
tively, one could use centered moments, say pé(s;6) € R, as
well with estimating functions of form [X(s) — u1(s;0)]" —
16(s; 0). Note that, in using the conditional moments, we
take N (s) and Cq(s) = 0 as only the same variables
Cp(s) from the score-functions (3) are needed. However,
if any conditional moments already appear in the score-
functions G,[Cp(s); 6], these should not be repeated in defin-
ing G4[Cp(s),Cq(s); 0], because these add no new informa-
tion about the conditional model.

Conditional covariances with non-neighbors Suppose a lo-
cation t # s is not an element of A/(s) under the conditional
specification (2); that is, X (s) and X (t) are not neighbors.
Then, supposing p1(s;6) € R and pq(t;0) € R denote the
first conditional moment of X (s) and X (t) under (2), then
by the Markov assumption and conditional independence,

B[X(8)X(t) — pu1(s:00)pa (t:60)| X (h), h # s, t]
— E[X(s)X(t)|X(h),h € N'(s) UN(t)]
— pa(s;00)pa (5 60) = 0,

implying that the marginal expectation of X(s)X(t) —
w1(s;0)p(t;0) is also zero at the true parameter 6.
This suggests that, in designing G,[-; 6], one could use
estimating functions of the form X (s) X (t) — p1(s; 0) 1 (t; 0)
by choosing N%%9(s) to correspond to some subset of
locations t ¢ N(s). The choice of augmenting locations,
which are not neighbors of s under the model specification
(2), would be driven by a particular model assessment
issue. For example, suppose the neighborhoods N(s)
have been chosen according to a 4-nearest neighbor
strategy, and one would like to assess the adequacy of
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this against a possible 8-nearest neighbor strategy. One
could select C,(s) to contain the 8-nearest neighbors of
s that are not also 4-nearest neighbors along with the
4-nearest neighbors of these as well, that is, N9 (s) =
{t:t=s+ (u,v) ort € N(s+ (u,v)’), |u| = |v]| = 1} which
contains a total of 16 locations

h h
h t n t h

n s n
h t n t h

h h

as depicted above by locations n,t and h. An assessment
estimating function for the question of 4-nearest versus 8-
nearest neighbors would then be

(5) GalCy(s),Cauls); 0]

>

t=s+(u,v) ENUI(s),
[ul=|v|=1

[X(8) X (t) = pa(s; O)pa (85 0)]

having expectation zero (4) at 6y under a correctly specified
4-nearest neighbor arrangement. Here, the locations denoted
as “n” in the above picture are the 4-nearest neighbors of s
and are needed to compute pu1(s;6); the locations denoted
by “t” are the 8-nearest neighbors of s that are not also 4-
nearest neighbors and represent the locations summed over
in (5); finally, the locations denoted as “h” above are addi-
tional locations needed to compute w1 (t;0).

Alternatively, to simplify computation, one might define
Cal(s) ={t: t =s+ (u,0), [u] = |v]| =1}
and consider

[X(s) = pa(s; 0)] X(t),

>

teNaug(s)

which also has expectation zero under a correctly specified
4-nearest neighbor scheme but only involves variables at 9
locations in C(s) = Cp(s) U Cq(s) rather than 17 (i.e., the
“h” locations are no longer needed).

Because g > 1, the estimating functions G are said to
“over-identify” § € © C R? (cf. [37]) and this plays a role
in the EL framework for testing the null hypothesis Hy :
“EG[C(s); o) = 0g4p holds for some parameter 6y.” Hence,
formal tests with spatial EL are possible to assess whether
or not spatial data support the conditional model properties
described by the estimating functions under the moment
condition (4). We next briefly recall the construction of the
spatial blockwise EL (SBEL) function and a distributional
result for conducting moment tests.
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3. SBEL CONSTRUCTION

Let D,, C R? denote a spatial sampling region and sup-
pose the available data are {X(s) : s € D,, N Z?} located
at Z? sites within D,,, where |D, N Z? = n denotes the
sample size of the observed process {X(s) : s € Z?}. Sup-
pose further that, for each location s € Z2, there is a (fi-
nite) collection C(s) = Cp(s) U C,(s) of random variables
such that estimating functions G[C(s); 0] € R?*P, based on
parameters § € © C RP in the conditional model specifica-
tion (2), satisfy the moment condition (4). Correspondingly,
we then have an observed spatial sample {C(s) : s € S,,},
where S,, = {s € Z% : N(s) UNI(s) C D, } denotes the
collection of available sampling sites for the vector process
{C(s) : s € Z?}. Figure 1 provides an illustration of the dif-
ference between Sy and the original sampling sites D,, N Z?
for X(+).

To construct a SBEL function for 6, we require spatial
blocks of observed vectors G[C(s);0], s € S, as follows.
With a sequence b = b,, of positive integers, define general
blocks of b? integers By (i) = {s € Z* : s € i+bU},i € Z?, by
scaling the unit square U = (—1/2,1/2]? by b; we shall com-
ment more about conditions on the block scaling b below,
but blocks are intended to be smaller in size than D,, or the
sampling region for C(+). Let {i1,...,in} = {i € Z? : B,(i) C
S} denote the index set of all integer-translated squares
By(+) lying completely inside the sampling sites S,, for the
C(-)-observations. That is, {By(i1),. .., By(in)} represents a
collection of N (overlapping) blocks, each containing b? sam-
pling sites of C(-); see Figure 1(c) for an illustration. The
data blocks serve to keep neighboring observations of C(-)
together in order to preserve the their underlying spatial
dependence in the SBEL function to follow; the same idea
applies in the time series setting of EL (cf. [21]).

Given a parameter value 6, for each data block j
1,..., N, we compute the sample average of the estimat-
ing functions G(ij;0) = b2 > sesy i) ClC(s); 6] € RI*P over
the b? observations of C(-) within the block. Then, to assess
the plausibility or likelihood of a given parameter value 6
with respect to the estimating functions under the moment
constraint (4), the SBEL function L., () and ratio R, () for
0 € © are determined by

L (6)

N N N
=supq [[piipi =0,> pj =1, p;iG(i;:0) = 0gpp g
j=1 =1 =1

Ln(0)

7 (0 .
The SBEL function for § € © maximizes a multino-
mial likelihood based on probabilities p; assigned to each
block average G(ij;0) of estimating functions, under an

expectation-type linear constraint that mimics the moment
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Figure 1. (a) Sampling region D,, for original process X (s) with sampling sites denoted as e or o. (b) Sampling sites S,, for
observations C(s) = {X(t) : t € N'(s) UNI(s) = s+ ({02} UM U A)}, where M or A could be
{(0,0), (=1,0)",(1,0)’,(0,1)", (0, —=1)"} or {(u,v) € R?: |ul, |v| < 1}, these sites match positions e in (a). (c) lllustration of
data blocks within S,, as integer translates of scaled squares b(—1/2,1/2]?.

condition (4). Without the expectation constraint in L, (),
the product has a maximum at the empirical distribution
of the block averages (i.e., each p; = 1/N), leading to the
SBEL ratio in (7). The computation of the SBEL function
for 6 is the same as that for EL with iid data; see [33, 34, 37]
for these computational details. In brief, when 044, lies in
the interior convex hull of {G(i;;6) : j = 1,..., N}, then
L,(0) is a positive, uniquely achieved maximum and (7)
may be written as

1
[1+ 256 (15:0)]

N
®) Lu0) = [[2s0). ps(0) = 5 € (0. 1)

where \g € RI? solves Zjvzl G(i;;0)/[1+XNG(i;;0)] = 0gtp-
Similarly to parametric likelihood, the SBEL function (7)
can then be maximized to provide a point estimator 0, (a
maximum SBEL estimator) for § € © C RP.

The next result gives an asymptotic chi-square x§ dis-

tribution for the log SBEL ratio R, (6,) (evaluated at the
maximum SBEL estimator) for testing the moment condi-
tion (4) as our basis of assessing conditional model specifi-
cations. The degrees of freedom ¢ are equal to the number
of estimating functions in G,[-;6]. The large-sample results
are established in a so-called “increasing domain asymp-
totic” framework (cf. [11]), in which more gridded spatial
observations X (-) are obtained by considering increasingly
larger spatial sampling regions. The following result recasts
Theorem 3 of Nordman [29] for the Markov model assess-
ment problem here. We provide a rigorous statement that
simplifies the underlying technical assumptions; these are
generally mild for the model assessment problem, as will be
briefly explained.

Theorem 3.1. Suppose an increasing domain framework
with b=t + bv%2/\/n — 0 as n — oo and that appropriate
weak dependence conditions are satisfied for the stationary
process {X(s) : s € Z?} under the conditional distributions

(2). In addition, suppose that G[-;0] is a smooth function
of 0 in a neighborhood of 6y, that E{OGI[C(s);0]/00|9=0, }
has full column rank p and the (¢ + p) x (¢ + p) matric
> sezz Cov (G[C(02); 60], G[C(s); 0o]) is positive definite.

Then, under the null hypothesis Hy : “the moment condi-
tion (4) holds for some parameter 6y under the conditional
model specification (2)”, the log-ratio satisfies

2

72 log Ry, (6,,) A Xg as n — 0o.

Note above that b~2 represents an adjustment factor to
the usual “—2 log-likelihood-ratio” due to the overlapping
blocks of size b?; a similar block adjustment exists for EL
with time series (cf. Kitamura [21]). Regarding the block
condition in the SBEL method, we require b — oo as n —
oo (so that blocks grow with increasing samples) but with
b%/\/n — 0, which entails that the size of the blocks is small
relative to the overall sample size n. Often a block size of the
form b = Cn'/® for C' € [1,2] can be appropriate for a range
of dependence structures (e.g. [29] for interval estimation).
We consider choice of block size in the simulations to follow.

In terms of the assumptions involved, the asymptotic
limit generally requires the underlying process {X(s) : s €
Z?} to exhibit weak dependence, stipulated in terms of a-
mixing conditions (e.g. [12]). However, in the model assess-
ment case here, if the conditional model specification (2) is
such that the spatial process satisfies Dobrushin’s unique-
ness condition (e.g. [15]), then {X(s) : s € Z?} is strongly
mixing at an exponential rate and, hence, the a-mixing con-
ditions hold trivially. The smoothness conditions on the es-
timating functions are that, in a neighborhood of 6y, the
partial derivatives 9G[-,0]/00, 0°G|-,0])/0006' are contin-
uous in 6 with cubed matrix norms that are bounded by
integrable function; this holds for many exponential-family
conditional distributions (2). Finally, in the increasing do-
main sampling framework, we suppose the sampling region
D,, = \,Dy C R? is obtained by inflating a template set
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Dy C (—1/2,1/2]* (containing an open neighborhood of
02) by an increasing positive sequence A, of scaling fac-
tors. To avoid pathological regions, the number of integers
(sampling sites) n = |D,, N Z?| and the volume vol(D,,) are
assumed to be asymptotically equivalent n/vol(D,,) — 1.
Similar sampling structures have been considered by several
authors [24, 42] in spatial resampling, which allows a variety
of shapes for D,,. See [29] for more details.

4. ASSESSMENT OF CONDITIONAL
GAUSSIAN MODELS

In this section, we summarize simulation studies per-
formed to evaluate SBEL methods for model assessment.
Here the null model (i.e., the model chosen for data fit-
ting and subsequent assessment) is taken to be conditional
Gaussian with a 4-nearest neighbor structure N'(s) = s+M,
s € Z? with M = {(-1,0),(1,0)",(0,1),(0,—1)'} as in (1).
That is, in (2), the conditional distributional X (s)|{X (t) :
t € N(s)} is normal with conditional variance 72 > 0 and
conditional mean

psionn) =a+n Y [X(t)—
teN(s)

involving (marginal mean) « € R and dependence parame-
ter |n| < 0.25. In this case, the score-based estimating func-
tions (3) are equivalent to p = 3 and

X(s) — p(s;;m)
GplCp(s); a,m, 7] = ZteN (s) X (£)[X(8) — p(s; 0, m)]
— [X(s) — p(s; o)

where again C,(s) {X(t) t=sorteN(s)}. We
consider over-identifying estimating functions G,[-; a,n, 7]
along the two strategies outlined in Section 2.2. One set of
functions we base on two conditional (centered) normal mo-
ments

[X(s)

. _ — uls;a,m))’
GG[CP(S)’CG(S)’a7an] [X(S) ’

— p(s;a,m)]t =37

taking C,(s) = 0. Note that we use the third and fourth cen-
tered conditional moments, as the first and second such mo-
ments already appear in the score functions Gp[Cy(s); o, 0, 7]
above. Under the null model, the moment condition (4)
holds, and we refer to the resulting (“moment-based”) SBEL
test statistic as “SBEL.M” which will have a large-sample
Xﬁ:z distribution under Theorem 3.1. We base another type
of over-identifying estimating function on conditional covari-
ances

Gﬂ [CP (S)v Ca (S)a «, nv T] =
teNaua(s)
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Table 1. Spatial data-generating models considered in fitting
the null (4-nearest neighbor) Gaussian model. As listed below,
the conditional models have distributional forms,
neighborhood structures, and parameters o = 0,7 =1 and n
(determining weak or strong dependence), with the
parameters having the same functional relationship as in the
null Gaussian model

Distribution Neighbors Weak n Strong n
Conditional Gaussian 4-nearest 0.18 0.24
Conditional Gaussian 8-nearest 0.09 0.12

log-Conditional Gaussian 4-nearest 0.18 0.24
log-Conditional Gaussian 8-nearest 0.09 0.12
with N9 (s) = {s + (u,v)" : |u] = |v| = 1} as in (6)

involving a sum over all variables in an 8-nearest neigh-
bor structure around s, that do not also appear in the 4-
nearest neighbor structure. We refer to the resulting (“condi-
tional covariance-based”) SBEL test statistic as “SBEL.C”
which will have a large-sample X<2;:1 distribution under The-
orem 3.1. With the same augmenting variables C, (s), we also
considered another version, referred to as “SBEL.C2,” that
splits the above sum into two parts

GalCp(s),Cals); ,m, 7]

>

t=s+(u,v) €Z?,—u=v=1

— p(s; o, m)]

— pu(s; o, m)]

t=s+(u,v)' €Z2,—u=v=—1

the resulting SBEL.C2 test statistic has ¢ = 2 degrees of
freedom with performance results here that were very sim-
ilar to SBEL.C. We shall illustrate this point, but focus on
comparing SBEL.C and SBEL.M tests in the following.

To evaluate these test statistics in assessing the null
model, we considered four spatial data-generating models
with conditional specifications, each with two parameter set-
tings entailing weaker and stronger forms of dependence.
These models are listed in Table 1. For each model, we gen-
erated data on two sampling regions, 30 x 30 and 50 x 50
(using 2,000 simulations in every case), and computed the
SBEL test statistics using a block scaling of b = 1.5n/5
or b = 3n'/® where n denotes the sample size (e.g., 900 or
2,500). The data-generations were based on a Gibbs sam-
pler where, after a burn-in of 10,000 iterations, every 500th
iteration was retained as a spatial sample.

Table 2 shows that the actual sizes of different SBEL
tests, with block scaling b = 1.5n'/%, matched nominal levels
quite well under both weaker and stronger forms of depen-
dence. This choice of block scaling also supports the simula-
tion results in Nordman (2008), who found that block scal-
ing Cn!/>,C € [1,2] tended to be a good range for SBEL
confidence intervals in terms of coverage accuracy for mean
parameters with other types of (non-conditionally specified)
spatial processes. Figure 2 shows power curves to compare
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Figure 2. Power curves for testing the null (4-nearest neighbor conditional Gaussian) model. Plots correspond to conditionally
specified data-generating models, SBEL tests (b = 1.5n1/5 ), and sampling regions; within a plot, curves represent either
4-nearest neighbor structure with weak (—) or strong (- -- ) dependence or 8-nearest neighbor with weak (---) or strong (——)

dependence in the data-generating model.
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Table 2. Actual sizes (expressed as percentages) of SBEL.M, SBEL.C, SBEL.C2 tests, at nominal levels of 10%, 5% and 1%,
for assessing the null (4-nearest neighbor conditional Gaussian) model when the data-generating model belongs to this model
class with « = 0, T = 1 and either weak n = 0.18 or strong n = 0.24 dependence parameters. The SBEL tests involve the
block scaling b= 1.5n/® here

30 x 30 region

50 x 50 region

weak n = 0.18 strong n = 0.24 weak n = 0.18 strong n = 0.24
Nominal 10 5 1 5 1 10 5 1 10 5 1
SBEL.M 10.1 5.0 1.3 5.4 1.1 10.8 5.1 0.9 9.5 5.2 1.2
SBEL.C 12.4 6.1 1.1 10.3 6.0 1.3 11.2 6.0 1.3 11.6 6.0 1.1
SBEL.C2 11.0 5.0 1.0 10.9 5.3 1.1 11.1 5.6 0.9 11.6 5.6 0.9

Table 3. Median parameter estimates for («,n,7) in fitting the null (4-nearest neighbor conditional Gaussian) model with
regular maximum pseudo-likelihood (P) and maximum SBEL estimates from SBEL.M (M) and SBEL.C (C) functions (7) with
b= 1.5n"/°; these are divided by different data-generating models involving weak and strong dependence and different
sampling region sizes. In the case where data-generation occurs under the null model, median absolute deviations from the
true parameters (. =0, 7 =1, n = 0.18 (weak) or 0.24 (strong)) appear in italics

Gaussian, 4-nearest neighbor structure

30 x 30 region

weak dependence

strong dependence

50 x 50 region
weak dependence

strong dependence

@ n T @ n T @ n T @ n T

P —0.003 0.180 0.998 0.003 0.240 0.999 0.000 0.180 0.999 0.005 0.240 1.000
0.053 0.011 0.017 0.155 0.005 0.016 0.033 0.007 0.010 0.097 0.003 0.011

M —0.005 0.180 0.995 0.001 0.239 0.996 0.002 0.179 0.999 0.004 0.240 0.999
0.049 0.013 0.019 0.155 0.006 0.019 0.027 0.007 0.011 0.080 0.003 0.011

C —0.005 0.179 0.998 0.004 0.240 0.999 0.001 0.179 1.000 0.002 0.240 1.000
0.047 0.011 0.019 0.146 0.005 0.019 0.026 0.007 0.011 0.078 0.003 0.011

Gaussian, 8-nearest neighbor structure

P —0.002 0.114 1.015 —0.003 0.185 1.035 —0.001 0.116 1.017 0.000 0.187 1.038
M 0.000 0.113 1.013 —0.004 0.186 1.031 —0.001 0.116 1.016 0.001 0.188 1.037
C 0.003 0.130 1.003 —0.005 0.210 0.994 —0.001 0.132 1.008 0.014 0.211 1.001

SBEL.M and SBEL.C tests (with b = 1.5n'/%) of the null
(4-nearest neighbor conditional Gaussian) model under all
the data generating-models in Table 1. Table 3 displays the
median parameter estimates from the SBEL methods in fit-
ting the null model under the various data-generating mod-
els and, for comparison, includes estimates from standard
maximum pseudo-likelihood applied to the null model.

These results indicate that all SBEL tests achieved proper
sizes with both weaker and stronger levels of dependence.
The greatest difference between nominal and observed val-
ues in Table 2 was 2.4% for SBEL.C at nominal level 10%
with weak dependence on the smaller lattice (30 x 30). Of
the 32 situations represented in Table 2, 6 had observed test
sizes that differed from the nominal levels by more than 1%,
3 that differed by more than 1.5%, and only 1 that differed
by more than 2%. Maintenance of proper test size may also
be seen in the top four panels of Figure 2 for which power
is essentially equal to size for data generated from mod-
els having 4-nearest neighbor structure and either weak or
strong dependence; recall that the fitted model for all sit-
uations depicted in Figure 2 assumed a 4-nearest neighbor
structure.
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The top four panels of Figure 2 show that SBEL.M was
unable to detect departures from an assumed neighborhood
structure of 4-nearest and an underlying true structure of 8-
nearest neighbors, while SBEL.C was able to detect this dif-
ference between true and assumed models. When lattice size
was smaller (30 x 30) power was greater for SBEL.C when
dependence was stronger (top left panel of Figure 2) but this
difference was not evident for the larger lattice size (second
panel in the first column of Figure 2). Fitted models are
apparently able to reflect the behavior anticipated in higher
moments even when fit to data using an incorrect neigh-
borhood assumption. The summary of estimation presented
in Table 3 indicates why this is the case. Estimated depen-
dence parameters for fitted models using 4-nearest neighbors
were larger than the actual values used in generating data
from models with 8-nearest neighbors, which were n = 0.09
for weak dependence and n = 0.12 for strong dependence.
Conditional expected values for the Gaussian models of this
section involve the dependence parameter multiplied by the
sum of deviations from marginal means at neighboring lo-
cations (see the beginning of Section 4). These deviations
are similar among all neighbors, regardless of whether there



Table 4. Actual sizes (expressed as percentages) of SBEL.M, SBEL.C and SBEL.C2 tests, at nominal levels of 10%, 5% and
1%, for assessing the null (4-nearest neighbor conditional Gaussian) model when the data-generating model belongs to this
model class with « = 0, 7 = 1 and either weak n = 0.18 or strong n = 0.24 dependence parameters. The SBEL tests reported
here used the block scaling b = 3n'/®

30 x 30 region

50 x 50 region

weak n = 0.18 strong n = 0.24 weak n = 0.18 strong n = 0.24
Nominal 10 5 1 10 5 1 10 5 1 10 5 1
SBEL.M 7.2 4.1 1.7 7.3 4.0 1.4 6.6 2.8 0.4 6.1 2.8 0.4
SBEL.C 7.0 3.4 0.7 6.8 3.3 1.0 7.4 3.0 0.7 7.6 2.9 0.4
SBEL.C2 8.2 4.0 2.0 8.0 4.5 2.0 6.6 2.5 0.3 6.2 2.3 0.3

are 4 or 8. Thus, fitting a model that assumes 4-nearest
neighbors to data generated using 8-nearest neighbors re-
sults in a smaller sum of neighboring deviations than the
truth which, to reflect observed values, is then multiplied
by a dependence parameter estimated as larger than the
truth. This results, then, in estimated conditional expecta-
tions that are similar for both true and estimated models.
The phenomenon evidenced in the first and second panels
of the second column in Figure 2 is that this seems to also
hold for higher conditional moments. In contrast, estima-
tion cannot compensate for assumed model structures that
incorrectly specify relations that should hold between sets
of locations (i.e., conditional covariances in SBEL.C). The
power of SBEL.C to detect an incorrect assumption of 4-
nearest neighbors when data are generated using 8-nearest
neighbors is high, as evidenced in the first and second panels
of the first column in Figure 2.

In marked contrast to the the ability of SBEL.C but not
SBEL.M to detect incorrect assumptions of neighborhood
structure, SBEL.M was better able to detect departures of
distributional form than was SBEL.C, as shown in the lower
four panels of Figure 2. Here, unless the assumed neigh-
borhood structure also departed from the actual situation,
SBEL.C was relatively ineffective in detecting an incorrectly
specified distribution in the null model (third and fourth
panels in the first column of Figure 2). The assessment of
SBEL.M using higher moments, however, could always un-
cover this inadequacy in the assumed model.

In total, the values presented in Table 3 indicate that
estimation using SBEL procedures is roughly equivalent to
estimation using a single pseudo-likelihood function for an
entire set of data. Median parameter estimates for both
SBEL.C (labeled C in Table 3) and SBEL.M (labeled M
in Table 3) are quite similar to estimates produced using
pseudo-likelihood (values labeled P in Table 3). The simi-
larity between SBEL and pseudo-likelihood in median abso-
lute deviations between estimated and true parameter values
when the assumed (fitted) and true models are the same also
indicates that the incorporation of pseudo-likelihood esti-
mating equations in an SBEL procedure produces essentially
maximum pseudo-likelihood estimates. As would be antici-
pated, these median deviations were somewhat smaller for

simulations conducted using the larger 50 x 50 lattice than
for those conducted using the smaller 30 x 30 lattice.

Repeating the simulation results with a larger block scal-
ing b = 3n'/5 produced qualitatively similar results in both
power curves and parameter estimates though the sizes of
SBEL tests tended to be less accurate than with the scal-
ing b = 1.5n/5. Table 4 shows the sizes of SBEL tests with
b = 3n'/5. In choosing the block scale b, there exists a trade-
off where blocks should be large enough to capture the un-
derlying spatial dependence (among the evaluated spatial
estimating functions), but overly large block scaling entails
that fewer data blocks are available as input in defining the
SBEL ratio (7). The latter degrades performance and, in
our simulation studies, the block scaling b = 3n'/® reduced
the number of available data blocks by roughly half com-
pared to b = 1.5n'/%. In this sense, a slightly worse per-
formance with b = 3n'/® might be expected for the weakly
dependent Markov models here. In practice, block scaling
could potentially be chosen by computing SBEL ratio over
a series of b and then selecting from a range where the
SBEL evaluations appear to stabilize, which is the “mini-
mum volatility” method of block selection by Politis, Ro-
mano and Wolf [36] (sec. 9.3.2); see [29].

5. ASSESSMENT OF CONDITIONAL
BINARY MODELS

In this section, we consider the SBEL method for model
assessment in binary Markov models. The null model is
taken to be conditional binary (i.e., auto-logistic) with a
4-nearest neighbor structure N (s) = s + M, s € Z? with
M = {(-1,0),(1,0),(0,1)",(0,-1)"} as follows. In (2),
the conditional distributional X (s)[{X(t) : t € N(s)} is
Bernoulli p(s; k,n) where

logit[p(s; k,n)] = logit(k) + 7 Z [X(t) — ]
teN(s)

and £ € (0,1) represents the Bernoulli mean in an inde-
pendence model and 1 € R is a dependence parameter; de-
pending on the range of 1, k will also essentially match the
marginal mean of X(s) (e.g. [6]). Here, the score-based es-
timating functions (3) are equivalent to
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. _ X(s) —p(s;x,1m)
Goles(8::11 = [x(s) pfo ] Saei X))

where p = 2 and C,(s) = {X(t) : t =s or t € N(s)}. For
augmenting estimating functions, we will present results for
two cases. One case involves

GalCp(s); ko] = ([X(s) — p(s; k)]
—p(s; k(1 = p(sik,m)]) > X(t),

teN (s)

a (neighbor-sum-scaled) conditional variance, which results
in a (conditional moment-based) test statistic referred to
here as “SBEL.M.” The other estimating function involves
conditional covariances

GalCy(s).Cals)imeml = D X(t)[X(s) = p(s; m. )],

teNaug(s)

with (similarly to the last section) a sum over all obser-
vations C,(s) in an 8-nearest neighbor arrangement, not
appearing in the 4-nearest neighbor scheme; we again re-
fer to the resulting (“conditional covariance-based”) SBEL
test statistic as “SBEL.C.” Both SBEL test statistics here
have large sample x? distributions. We also tried formu-
lations of test statistics with other estimating functions,
such as using the conditional variance [X (s) — p(s; k,7)]? —
p(s; k,m)[1 — p(s;K,n)] alone or in combination with the
conditional-variance-based G,[C,(s); k,n] above, or split-
ting the conditional covariance-based estimating function
Ga[Cp(s),Cu(s); Kk, n] above into two sums (as in the last sec-
tion). However, the results were qualitatively similar with

Table 5. Spatial data-generating models used in simulations
to examine the performance of SBEL assessments of a fitted
null conditional binary model. Dependence parameters listed
correspond to 1 in the conditional binary model or 1) in the
conditional Gaussian-based binary mixtures

Distribution Neighbors Weak Strong
Conditional Binary 4-nearest 0.5 0.8
Conditional Gaussian-based 4-nearest 0.18 0.24
Binary Mixture
Conditional Gaussian-based 8-nearest 0.09 0.12

Binary Mixture

these variations and, to ease the presentation of results, we
focus on the performance of SBEL.M and SBEL.C tests for
the null model.

To evaluate the test statistics for the null model, we
considered three spatial data-generating models based on
conditional specifications, each with two parameter settings
entailing weaker and stronger dependence. The first data-
generating model matched the null model structure with
conditional Binary distributions, having a 4-nearest neigh-
bor arrangement with x = 0.5 and varying the dependence
parameter = 0.5 or 0.8 for weak or strong dependence.
The two other models for data-generation involved a binary
mixture distribution, described as follows. For each location
s € Z2, a binary probability 5(s;7j) was generated as

logit[p(s; 71)] = Z(s),

where {Z(s) : s € Z?} were values of a latent Markov ran-
dom field process having conditional Gaussian distributions
(as in the last section) with either a 4- or 8-nearest neigh-
borhood structure and parameters (& = 0,7 = 1,7), where
the dependence parameter n was varied to produce roughly
weak or strong spatial dependence. Conditioned on the val-
ues p(s;7) € (0,1), s € Z?, each observation X (s) was then
generated by an independent Bernoulli p(s;7) trial. Note
that, because Z(-) has a marginal mean & = 0, the resulting
X (+)-observations have mean 0.5, which roughly matches the
marginal mean in the null data-generating model (k = 0.5).
That is, all data-generating models produce binary observa-
tions with essentially the same marginal mean of 0.5. These
three data-generating models are summarized in Table 5.

For each model, we again generated data on two sampling
regions, 30 x 30 and 50 x 50, using 2,000 simulations in every
case. The SBEL test statistics were then computed using a
block scaling of b = 1.5n'/% or b = 3n'/5. With block scal-
ing b = 1.5n!/, Table 6 presents the observed sizes of the
SBEL tests, and Figure 3 displays power curves to compare
SBEL.M and SBEL.C tests of the null (conditional binary
4-nearest neighbor) model for the three data generating-
models in Table 5. Table 7 presents median parameter es-
timates from the SBEL methods in fitting the null model
for each of the data-generating models, and again includes
maximum pseudo-likelihood estimates for comparison.

The observed test sizes of Table 6 are not as close to
nominal levels as were tests with the Gaussian conditionals

Table 6. Actual sizes (expressed as percentages) of SBEL.M and SBEL.C tests, at nominal levels of 10%, 5% and 1%, for
assessing the null conditional binary model when the data-generating model belongs to this model class with either weak

1n = 0.5 or stronger n = 0.8 dependence parameters. The SBEL tests reported here used block scaling b = 1.5n

1/5

30 x 30 region

50 x 50 region

weak n = 0.5 strong n = 0.8 weak n = 0.5 strong n = 0.8
Nominal 10 5 1 10 5 1 10 5 1 10 5 1
SBEL.M 7.7 3.4 0.7 9.6 4.6 0.4 8.5 4.2 0.7 9.5 4.6 1.1
SBEL.C 11.5 6.1 1.3 11.4 5.6 1.1 11.6 5.7 1.1 11.5 5.9 0.9
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Figure 3. Power curves for testing the null (4-nearest neighbor conditional binary) model. Plots represent weak/strong
dependence in data-generating models, SBEL tests (b = 1.5n1/5 ), and sampling regions; within a plot, curves correspond to
data-generating models of 4-nearest neighbor conditional binary (—) or 4- and 8-nearest neighbor conditional Gaussian-based

binary mixtures, denoted as (---) and (——).

model, but are not terribly far out of line with those values
either. Similarly to the Gaussian case, the observed test sizes
did not seem to be influenced by the size of lattice or the
strength of dependence. In contrast to this, power curves
for testing the null model of conditional binary distributions

with a 4-nearest neighbor structure were impacted by both
the size of lattice and the strength of dependence used in
data generation. The graphs of Figure 3 indicate that, for
the data generating models investigated, SBEL.M proved
ineffectual in distinguishing between the conditional binary
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Table 7. Median parameter estimates for (x,n) in fitting the null (4-nearest neighbor conditional binary) model with regular
maximum pseudo-likelihood (P) and maximum SBEL estimates from SBEL.M (M) and SBEL.C (C) functions (7) with
b= 1.5n"/°; these are divided by different data-generating models involving weak and strong dependence and different

sampling region sizes. In the case where data-generation occurs under the null model, median absolute deviations from the

true parameters (k = 0.5, n = 0.5 (weak) or 0.8 (strong)) appear in italics

Conditional binary, 4-nearest neighbor

30 x 30 region

50 x 50 region

weak dependence

strong dependence

weak dependence

strong dependence

K n K n K n K n

P 0.499 0.495 0.501 0.799 0.499 0.499 0.499 0.798

0.017 0.064 0.037 0.064 0.011 0.038 0.022 0.038

M 0.501 0.495 0.499 0.798 0.501 0.500 0.4985 0.796

0.018 0.070 0.0420 0.070 0.011 0.042 0.023 0.042

C 0.500 0.491 0.500 0.793 0.500 0.499 0.499 0.796

0.012 0.072 0.040 0.066 0.011 0.039 0.022 0.039
Conditional Gaussian-based binary mixture, 4-nearest neighbor

P 0.500 0.157 0.500 0.344 0.500 0.164 0.500 0.354

M 0.501 0.153 0.498 0.350 0.500 0.165 0.500 0.354

C 0.500 0.160 0.500 0.366 0.500 0.169 0.500 0.377
Conditional Gaussian-based binary mixture, 8-nearest neighbor

P 0.500 0.104 0.501 0.242 0.500 0.108 0.500 0.252

M 0.500 0.103 0.501 0.242 0.501 0.106 0.500 0.255

C 0.500 0.104 0.501 0.257 0.501 0.112 0.500 0.266

model and its mixture counterparts with either 4-nearest
or 8-nearest neighbors, while SBEL.C was able to detect
departures from the null conditional binary with 4-nearest
neighbors. The power of SBEL.C was low (< 0.2) when data
were generated on the smaller lattice (30 x 30) with weaker
dependence (n = 0.50). Increasing dependence (n = 0.80)
more than doubled power across the entire range of sizes
(compare the first and second panels in the left column of
Figure 3). Increasing lattice size to 50 x 50 had a similar, but
perhaps less dramatic, effect (compare the first and third
panels in the left column of Figure 3). To achieve power
greater than 0.75 for some test sizes less than 0.10 required
both a larger 50 x 50 lattice and stronger dependence of
n = 0.80 (see the fourth panel in the left column of Figure 3).

The estimation results reported in the upper portion of
Table 7 again indicate that using pseudo-likelihood estimat-
ing equations in SBEL procedures produces estimates that
are similar to straight-up maximum pseudo-likelihood using
data from the entire lattice to construct only one objec-
tive function. Fitting the null model of conditional binary
distributions having 4-nearest neighbors to data generated
from Gaussian-binary mixtures resulted in estimates that
correctly reflect the marginal binary probability (0.50) that
is the expected value in both the Gaussian Markov random
field and the resulting spatial mixture. It is not clear what
the dependence parameter of the null model should be for
these mixture data sets, and we do not attach any partic-
ular meaning to correspondence or lack of correspondence
between values of 1 in the conditional Gaussian mixing dis-
tributions used to generate data and the estimated values
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of n for the conditional binary model used for estimation.
Parameter estimates of n for the null model, however, do
correctly reflect the the weaker and stronger dependencies
used in data generating models.

Again, repeating the simulation results with a larger
block size b = 3n!/> produced qualitatively similar, al-
though slightly less accurate, results to the block choice of
b = 1.5n'/%. We illustrate this in Table 8 by showing the
median estimates and estimation errors under the null data-
generating model, which compare favorably with the values
of Table 7.

6. VERIFYING NEIGHBORHOOD
SELECTION IN MODELING PLANT
DISEASE

As an example of the use of the SBEL methods pro-
posed here we consider the selection of neighborhoods in
a binary Markov random field model for presence/absence
of a plant disease in an agricultural field. Bean pod mot-
tle virus (BPMV) is a disease that affects soybeans and
other legumes. It can decrease both the yield and the qual-
ity of soybeans and there are no known varieties of soy-
beans that are completely resistant to BPMV [13]. Trans-
mission of BPMV is believed to occur through an insect
vector of leaf eating beetles and the pattern, if any, of how
the virus is spatially distributed in fields is of interest to
plant pathologists and agronomists in attempting to de-
velop controls for spread of the disease. Figure 4 shows one



Table 8. Median parameter estimates for (k,n) in fitting the null (4-nearest neighbor conditional binary) model with
maximum SBEL estimates from SBEL.M (M) and SBEL.C (C) functions (7) with b = 3n'/®, when the null model is true for
data-generation. Median absolute deviations from the true parameters (k = 0.5, n = 0.5 (weak) or 0.8 (strong)) appear in
italics

Conditional binary, 4-nearest neighbor

30 x 30 region

weak dependence strong dependence

K n K n
M 0.500 0.498 0.499 0.806
0.021 0.0802 0.047 0.077
C 0.499 0.489 0.499 0.793
0.022 0.081 0.045 0.078

50 x 50 region

weak dependence strong dependence

K n K n

0.500 0.501 0.499 0.798
0.013 0.048 0.025 0.048
0.500 0.499 0.498 0.796
0.013 0.044 0.025 0.044
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Figure 4. Presence (solid symbol) and absence (open symbol)
of bean pod mottle virus in a soybean field.

soybean field, from a study at Iowa State University, di-
vided into 150 quadrats as a lattice having 6 rows and 25
columns. While the scaling of Figure 4 is not proportional
to the true physical situation, it is true that locations were
somewhat closer together in the horizontal direction (which
corresponded to within agricultural rows) than in the ver-
tical direction (which corresponded to across agricultural
rows). Each quadrat contained four plants, and the disease
was recorded as present or absent in each quadrat. A binary
Markov random field model was formulated for analysis of
these data in the following manner. For a spatial location
s = (u,v)’, where u is an integer-valued horizontal coor-
dinate and v an integer-valued vertical coordinate, define
a random variable Y(s) = 1 if BPMV was present at the
location and Y(s) = 0 otherwise. Given its neighborhood
N(s), each location is assigned a conditional binary prob-
ability mass function fo(Y (s)|[{Y(t) : t € N (s)) under the
Markov assumption described earlier as, with parameters
0= (k,n) €(0,1) xR and

logit [fg(Y(s) =1{Y(t): t € N(s))}
:1og(1fﬁ) 0 Y {Y ()~ k).

teN(s)

Based on the visual impression of Figure 4 and knowledge
that spacing was somewhat wider among than within rows,
neighborhoods were specified as N (s) = {s + (u,v) : u =
+1, v = 0}, that is, adjacent locations but within rows only.
This definition of neighborhoods is arbitrary, and we would
like to have some justification for the choice made. A nat-
ural alternative would be a four-nearest neighbor structure,
which is commonly used in agricultural applications. It is
this alternative that we wish to assess.

Because of the neighborhood structure specified, which
can be described as a two-nearest within-row structure, for
initial fitting purposes, we defined G,[Cp(s);0] as in (3)
with p = 2 using a border strip consisting of the right-
most and left-most data columns in Figure 4. That is, the
sampling region D, of Section 3 was all locations shown
in Figure 4, while the sampling sites S,, for C,(s) were all
locations except for the two end columns (c.f., Figure 1).
The resulting SBEL estimates were 4 = 0.257 with a 90%
interval of (0.107, 0.736), and 7 = 1.549 with a 90% in-
terval of (0.843, 2.357) using a block size b = 3 ~ n'/5
with n = 150. The block size here follows the rule of
thumb given by Nordman [29] and the simulations of Sec-
tions 4 and 5. To test our selected neighborhood spec-
ification against an alternative of four-nearest neighbors,
the augmentation neighborhood of Section 3 was taken to
be the two-nearest north and south locations N%“I(s) =
{s + (u,v)’ : w=0,v = £1} which constitute observations
in a four-nearest neighborhood structure not already ap-
pearing in N (s). Using SBEL.C with this augmented neigh-
borhood gave a procedure analogous to the comparison of
four-nearest and eight-nearest neighbors in the previous sim-
ulations, with one minor difference for simplicity. Namely,
we defined the additional covariance-type estimating func-
tion as G4[C(s); 0] = [Y (s) —u1(s, 0)]M(s), s € Sp, using the
sample mean M(s) = 3¢ nraus(s)ns, X (£)/[N9(s) N Sy
of augmented neighboring observations of location s within
Sy, which is similar to (6) and has mean zero under the
specified neighborhood structure, but does not create ad-
ditional border strips from the first and last rows of Fig-
ure 4. The test of a two-nearest within-row neighborhood
structure against the alternative of four-nearest neighbors
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resulted in a p-value of 0.768, providing justification for the
selection of within-row neighbors. In this application, the
pattern of BPMV within the field is highly structured in a
manner that can be represented as statistical dependence
within rows.

7. DISCUSSION

Applying Markov random field models to problems that
involve spatial structure requires that a number of choices be
made in the process of model formulation. One must select
distributional forms for conditional density or mass func-
tions used to represent responses, the neighborhood struc-
ture that dictates conditional dependencies, whether or not
to include a large-scale model component such as trend, and
the manner in which dependence is assumed to have influ-
ence (e.g., unidirectional, directional, or time-varying). The
number of tools available to help guide these decisions is
increasing, such as the model-based exploratory diagnostic
called the S-value by Kaiser and Caragea [17]. Similarly,
overall assessment of the plausibility that a given model
could have led to data of the type observed in a problem
is more feasible than in the past through the use of tools
such as the generalized spatial residuals and accompany-
ing tests of Kaiser, Lahiri and Nordman [20], which may be
considered ubiquitous goodness of fit procedures. In this ar-
ticle we have provided development of practical procedures
for assessing model structures that are more closely con-
nected with particular modeling choices that must be made.
These procedures are based on the theory of spatial block-
wise empirical likelihood (SBEL in this article) developed
by Nordman [29], and their efficacy in model assessment
hinges on the selection of estimating functions in the form of
moment conditions to reflect particular aspects of assumed
model behavior. For example, conditional covariances com-
puted for sets of locations that, under an assumed model,
should be conditionally independent (called SBEL.C in this
article) are effective in detecting departures from the neigh-
borhood structure used in model construction. The intelli-
gent construction of augmentation neighborhoods and asso-
ciated estimating functions to arrive at the set of equations
Ga[Cp(s),Ca(s)] of Section 2.2 has potential for detection
of departures from a variety of particular modeling assump-
tions such as the small-scale structure assumed in a model
(e.g., unidirectional dependence) or an assumption of con-
stant conditional variance (a common assumption for mod-
els with Gaussian conditionals). The use of conditional mo-
ments and conditional covariances with non-neighbors used
in this article only scratches the surface of what may be
possible.

Because they depend critically on the selection of test-
ing conditions, SBEL procedures function in an arena that
lies somewhere between model selection and goodness of fit
tests. They provide a test procedure for specific questions
about assumed model structures and in this sense provide
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goodness of fit results. At the same time, they provide such
results only about the particular aspects of model behavior
embodied in the augmentation estimating functions (or test-
ing conditions) selected for use and are thus not necessarily
indicative of overall model performance. Ubiquitous good-
ness of fit tests provide useful indications of whether or not a
fitted model could be viewed as a reasonable “data generat-
ing mechanism” for a set of observed values. And statistical
estimation can be viewed as a process that, under a chosen
criterion, optimizes the ability of the model structure to re-
flect data values. Overall goodness of fit procedures, then,
can only provide a global picture of the adequacy of a model.
While this is important, some problems demand a more de-
tailed assessment of model structure, given a prerequisite of
overall plausibility. A simple example is provided by the con-
ditional Gaussian models of Section 4. If data are simulated
from such a model with an underlying 8-nearest neighbor-
hood structure but a model assuming 4-nearest neighbors is
fit to those data, the fitted model will provide estimates of
conditional expectations that are nearly the same as would
be obtained by fitting a model with 8-nearest neighbors.
Given correct assumptions of constant conditional variance
and normal distributions, then, the overall goodness of fit
procedures of [20] will not reject a 4-nearest neighborhood
structure as a plausible model. The model fitted using an in-
correct neighborhood assumption represents conditional dis-
tributions at each location quite well. For this same reason,
SBEL procedures based on conditional moments (SBEL.M
in this article) will not provide any indication of model in-
adequacy. But, an SBEL procedure based on conditional co-
variances between locations that are not (assumed) neigh-
bors of each other will detect the incorrect assumption of
neighborhood structure. The question, then, is whether the
model fitted with 4-nearest neighbors is “adequate” or “in-
adequate,” and the answer clearly depends on what use
is being made of that model. If the concern is estimation
of conditional distributions at each location, then the fit-
ted model must be considered adequate. But if the concern
is the extent of spatial structure that can be represented
through a lack of conditional independence, then the fitted
model must be considered inadequate. The SBEL method-
ology presented in this article provides a formal approach
to answering questions of adequacy for specific aspects of
model behavior that may be important in a given applica-
tion. As such, SBEL procedures compliment both model-
based diagnostics that may motivate choices in model for-
mulation, and overall goodness of fit procedures that assess
fitted models from a global viewpoint.
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