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Adjusted empirical likelihood with high-order
one-sided coverage precision
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Constructing confidence intervals with high-order cover-
age probability precision is more difficult for one-sided in-
tervals than for two-sided intervals. Many existing methods
can achieve precision of order n−2 for two-sided intervals
but only n−1/2 for one-sided intervals. Through a creative
use of adjusted empirical likelihood, we develop a new pro-
cedure that attains coverage precision of order n−3/2 for
one-sided intervals while retaining order n−2 precision for
two-sided intervals. We provide detailed comparisons of the
asymptotic properties of the new method and those of rep-
resentative existing methods. Simulation results show that
the new method offers many advantages.
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1. INTRODUCTION

The problem of constructing high-precision confidence in-
tervals based on a random sample for the population mean
has perhaps been over-analyzed in statistical literature. For
a population with a normal distribution, a confidence inter-
val based on a student-t statistic (or, more precisely, pivot)
gives a perfect solution. Even if the data are from a non-
normal distribution, the t-interval is still highly satisfactory.
Nevertheless, when the population distribution is skewed
and/or the parameter has natural boundaries, we look for
superior alternatives. For instance, the variance stabilization
method is used for the binomial and Poisson distributions
to obtain sensible asymmetric intervals. Bartlett correction
is used to obtain likelihood intervals with higher-order pre-
cision. Resampling methods are used to achieve high-order
coverage precision under minimum distributional assump-
tions (Efron, 1987; Hall, 1988; Loh, 1991). The empirical
likelihood or EL (Owen, 1990; Hall and La Scala, 1990) al-
lows us to obtain confidence intervals with a data-driven
shape and range-preserving and transformation-respecting
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properties. The EL is further found to be Bartlett cor-
rectable (DiCiccio, Hall and Romano, 1991) which leads to
confidence regions with high-order precision.

In some applications, we are interested in a lower bound
on the parameter of interest. For instance, an accounting
firm may search for a lower bound on the average over-
claim (Kvanli, Shen and Deng, 1998). In such applications,
the population contains a large number of zeroes and other
observations are positive and heavily skewed. Constructing
precise one-sided confidence intervals for such applications is
challenging. A two-sided confidence interval may have over-
coverage at the lower limit and under-coverage at the upper
limit with a satisfactory overall coverage probability. When
the population is skewed, a two-sided t-interval has coverage
error of order O(n−1), whereas the corresponding one-sided
t-interval has error of order O(n−1/2), where n is the size of
the random sample.

Many papers specifically target the precision of one-sided
confidence intervals, particularly in the presence of popula-
tion skewness. Johnson (1978) proposed transforming the t-
statistic to improve the precision of the coverage probability.
Because this transformation is neither monotone nor invert-
ible, the resulting confidence set is complex. Its asymptotic
coverage errors remain O(n−1) and O(n−1/2) for two-sided
and one-sided confidence intervals respectively. Hall (1992)
introduced a monotone transformation for constructing both
one-sided and two-sided confidence intervals for the popula-
tion mean. In Hall’s interval the two-sided coverage error re-
mains O(n−1) and the one-sided coverage error is improved
to O(n−1). Kvanli, Shen and Deng (1998) proposed an inter-
val based on a parametric mixture model. The application
of the plain EL confidence intervals to such populations is
investigated in both Chen, Chen and Rao (2003) and Chen
and Qin (2003). They found that the one-sided EL inter-
vals are satisfactory without posing a restrictive parametric
assumption on the population distribution.

We find that the adjusted empirical likelihood or AEL
(Chen, Variyath and Abraham, 2008) provides more satis-
factory one-sided confidence intervals with high-order pre-
cision. The AEL method adds pseudo-observations to the
original data set before the usual EL procedure is applied.
It removes a non-existence problem associated with the EL
and hence eliminates a blind spot in EL applications. The
AEL has the same first-order asymptotic properties as the
EL and its numerical computation is much simpler. In ad-
dition, Liu and Chen (2010) found the level of adjustment
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at which the AEL achieves the same high-order precision
as the Bartlett-corrected EL. The idea is more broadly ap-
plicable (Li et al., 2011). However, the improvement in the
precision of one-sided confidence intervals is less than that
for two-sided intervals.

We report in this paper that an AEL with two fine-
tuned pseudo-observations improves the one-sided coverage
accuracy to O(n−3/2) and the two-sided coverage accuracy
to O(n−2). This is an improvement on the transformation
method of Hall (1992). While high-order Edgeworth expan-
sion (Hall, 1988) or iterative resampling (Loh, 1991) may
lead to the same high-order precision, our method is con-
ceptually straightforward and provides another interesting
dimension of the EL/AEL methodology.

The rest of the paper is organized as follows. In Section 2,
we review several existing methods. Section 3 presents the
proposed method and its asymptotic coverage errors. A sim-
ulation study is reported in Section 4. All proofs and deriva-
tions are postponed to the Appendix.

2. EL CONFIDENCE INTERVALS

Let Xi, i = 1, 2, . . . , n be a set of independent and iden-
tically distributed random variables with common distribu-
tion F , and xi be the observed value of Xi. The empirical
likelihood (Owen, 1990) of F is then given by

Ln(F ) =

n∏
i=1

pi

with pi = P (Xi = xi). Let μ = E(X1) and assume its
finiteness. The profile empirical likelihood function of μ is
defined as

Ln(μ) = sup

{
n∏

i=1

pi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

pi(xi−μ) = 0

}
.

Replacing
∑n

i=1 pi(xi − μ) = 0 by
∑n

i=1 pig(xi; θ) = 0 for
some g(x; θ), Qin and Lawless (1994) successfully extended
EL for parameters defined through estimating equations.

We focus on the mean of a one-dimensional population.
Note that Ln(μ) attains its maximum value when μ = x̄n,
the sample mean. The empirical log-likelihood ratio function
of μ is defined as

Rn(μ) = 2{logLn(x̄)− logLn(μ)}.(1)

If μ0 is the true value of μ,

pr{Rn(μ0) ≤ x} = pr{χ2
1 ≤ x}+O(n−1)

where χ2
1 denotes a random variable with the χ2

1 distribu-
tion. Thus, an EL confidence set for μ at level (1− 2α) can
be constructed as

Iel = {μ : Rn(μ) ≤ χ2
1,1−2α},(2)

where χ2
1,1−2α is the (1− 2α)th quantile of the χ2

1 distribu-
tion. Clearly the coverage precision of Iel is O(n−1) since

pr{μ0 ∈ Iel} = 1− 2α+O(n−1).

In fact, asymptotically Iel always has lower coverage
probability than the nominal level. This shortcoming can
be corrected by scaling Rn(μ) down via Bartlett correction.
DiCiccio, Hall and Romano (1991) found that

pr{Rn(μ0) ≤ (1 + b/n)x} = pr{χ2
1 ≤ x}+O(n−2)(3)

as n → ∞, where the Bartlett correction factor

b = (1/2)α4/α
2
2 − (1/3)α2

3/α
3
2 = (1/2)κ− (1/3)γ2 + (3/2)

with αk = E(X−μ)k for k = 1, 2, . . ., where γ and κ are the
population skewness and kurtosis. The Bartlett-corrected
EL (BEL) confidence interval is given by

Ibel = {μ : Rn(μ) ≤ (1 + b/n)χ2
1,1−2α}.

Its coverage precision is improved to O(n−2). The moment
relationship implies b > 0, so the BEL-intervals always have
higher coverage probabilities than the EL-intervals. The
Bartlett correction is also applicable to multidimensional
μ and for parameters defined through estimating equations.
See DiCiccio, Hall and Romano (1991) and Chen and Cui
(2006, 2007) for further discussion.

The AEL was proposed by Chen, Variyath and Abraham
(2008) to overcome the obstacle in EL applications caused
by

∑n
i=1 pig(xi; θ) = 0 having no solution in non-negative

p1, . . . , pn. Simplistically, they added a pseudo-observation
gn+1 = −aḡn for some a > 0 where ḡn = n−1

∑n
i=1 g(xi; θ)

to the data set before computing Rn defined similarly to (1).
Choosing a low level of adjustment a retains all the first-
order asymptotic properties of EL and enables a smoother
numerical implementation.

Interestingly, Liu and Chen (2010) found that setting a =
b/2 improves the precision of the AEL two-sided confidence
intervals to O(n−2). Hence, AEL and BEL attain the same
precision. In this paper, we apply AEL to obtain high-order
one-sided intervals.

3. HIGH-ORDER ONE-SIDED AEL
INTERVALS

The likelihood ratio function Rn(μ) in (1) is a convex
function of μ. When μ approaches the maximum or mini-
mum observation, Rn(μ) goes to infinity. Hence, Iel defined
in (2) is a bounded two-sided confidence interval. A one-
sided EL-interval can be easily constructed. Let μ̂1 < μ̂2

be two solutions to Rn(μ) = χ2
1,1−2α. Then two one-sided

(1 − α)-intervals for μ are [μ̂1,∞) and (−∞, μ̂2]. It can be
easily verified that

pr(μ̂1 ≤ μ0) = 1− α+O(n−1/2).

282 J. Chen and Y. Liu



The Bartlett correction given by Diccicio, Hall and Romano
(1991) does not improve the coverage precision of the above
one-sided interval.

Let xn+1 = μ− a1(x̄− μ) and

Ln(μ; a1)

= sup

{
n+1∏
i=1

pi : pi > 0,

n+1∑
i=1

pi = 1,

n+1∑
i=1

pi(xi − μ) = 0

}
.

Define Rn(μ; a1) = 2{logLn(x̄; a1) − logLn(μ; a1)} and let
μ̃1 < μ̃2 be the solutions to Rn(μ; a1) = χ2

1,1−2α. Liu and
Chen (2010) showed that when a1 = b/2 the two-sided in-
terval [μ̃1, μ̃2] contains μ0 with probability 1−2α+O(n−2).

The AEL given by Liu and Chen (2010) mainly inflates
the coverage probability of the EL confidence region to cor-
rect the under-coverage problem. To further improve the
precision of the one-sided interval, we must also address the
imbalance caused by the skewness of the population. For
this purpose, we add another pseudo-observation as follows:

Let xn+1 be the same as before and add a second pseudo-
observation xn+2 − μ = a2. This choice adjusts the center
of the data to provide a more precise one-sided confidence
interval. Let the new AEL profile likelihood function of μ be

Ln(μ;a)

= sup

{
n+2∏
i=1

pi : pi > 0,

n+2∑
i=1

pi = 1,

n+2∑
i=1

pi(xi − μ) = 0

}

where a = (a1, a2), xn+1 = μ−a1(x̄−μ), and xn+2 = μ+a2.
The constrained maximization problem can be easily solved
by the Lagrange multiplier method. We find

logLn(μ;a) = −
n+2∑
i=1

log{1 + λ(xi − μ)} − (n+ 2) log(n+ 2)

in which λ is the solution to

n+2∑
i=1

xi − μ

1 + λ(xi − μ)
= 0.

We hence obtain the profile likelihood ratio function of μ as

R(μ;a) = 2

n+2∑
i=1

log{1 + λ(xi − μ)}.(4)

A choice of a1 > 0 ensures the constraint always has a so-
lution. We further tune a1 and a2 to obtain high-order one-
sided AEL confidence intervals.

Theorem 3.1. Let x1, . . . , xn be a random sample from
population F . Assume that F satisfies Cramér’s condition
and has a finite 18th moment. Denote the true value of
its mean μ0. Let the two pseudo-observations be defined as
xn+1 − μ = −a1(x̄− μ) and xn+2 − μ = a2 with

a1 = (1/2)b; a2 = (1/6)α3/α2 = (1/6)γα
1/2
2

where b is the Bartlett correction factor, and γ = α3/α
3/2
2

is the population skewness. Let the likelihood ratio function
be defined as in (4). Then

Pr{Rn(μ0;a) ≤ χ2
1,1−2α} = 1− 2α+O(n−2).

In addition, let μ̂l < μ̂u be the two solutions to Rn(μ;a) =
χ2
1,1−2α. Then

Pr(μ0 ≥ μ̂l) = 1− α+O(n−3/2);

Pr(μ0 ≤ μ̂u) = 1− α+O(n−3/2);

Pr(μ̂l ≤ μ0 ≤ μ̂u) = 1− 2α+O(n−2).

Under Cramér’s condition and the finite moment assump-
tion, the distribution of the smooth functions of the sample
mean has an Edgeworth expansion. Cramér’s condition re-
quires lim sup|t|→∞ |E exp(itX)| < 1. This condition is sat-
isfied by all continuous distributions.

Interestingly, the recommended level of adjustment for in-
flating the coverage probability is again half of the Bartlett
correction factor b/2. Further, the recommended shift of the
center is related to the population skewness and coincides
with that of Hall (1992). Note that the multiplication factor

α
1/2
2 in a2 makes the adjustment scale-invariant. Compared

to the Bartlett correction given by DiCiccio, Hall and Ro-
mano (1991) and the AEL of Liu and Chen (2010), the new
adjustment attains the same precision for two-sided inter-
vals and improves the precision of one-sided intervals.

The above theorem cannot be directly applied because
the level of adjustment must be estimated. As usual, the
estimation error is of the order of Op(n

−1/2). In contrast
to the results of Diccicio, Hall and Romano (1991) and Liu
and Chen (2010), when we estimate a2 this error has a non-
negligible effect on the precision of the coverage probability.
The sample version of the above theorem must therefore be
revised.

Let α̂k = n−1
∑n

i=1(xi − x̄)k be the moment estimator

of αk, and γ̂ = α̂3/α̂
3/2
2 be the moment estimator of the

population skewness. The result is as follows:

Theorem 3.2. Assume the same conditions as in Theo-
rem 3.1. Let

â1 = b̂−(1/12)α̂−2
2 α̂4, â2 = (1/6)γ̂(α̂2)

1/2+(1/2)(x̄−μ),

and â = (â1, â2). Define the likelihood ratio function as in
(4). Then

Pr{Rn(μ0; â) ≤ χ2
1,1−2α} = 1− 2α+O(n−2).

Let μ̂l and μ̂u be two solutions to Rn(μ; â) = χ2
1,1−2α. Then

Pr(μ0 ≥ μ̂l) = 1− α+O(n−3/2);

Pr(μ0 ≤ μ̂u) = 1− α+O(n−3/2);

Pr(μ̂l ≤ μ0 ≤ μ̂u) = 1− 2α+O(n−2).
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In Theorem 3.2, we replace a2 by its moment estimator
with an additional (1/2)(x̄ − μ). This arrangement allows
a simple and nonnegative â1. There is flexibility in Theo-
rem 3.2 when the corresponding AEL is implemented. In
general, any estimators that differ from â1 by O(n−1/2) and
differ from â2 by O(n−1) do not alter the conclusion of The-
orem 3.2. Through some simulation experiments, we found
that this helps to make the estimation of a1 and a2 robust.
More details will be provided in the simulation section.

4. ASYMPTOTIC COMPARISON OF
ONE-SIDED CONFIDENCE INTERVALS

There are many methods for constructing one-sided confi-
dence intervals. In this section, we make asymptotic compar-
isons of the new method with a number of existing methods.
For each method, we give an asymptotic expansion of its up-
per confidence limit. Because of symmetry, the asymptotic
expansion of the lower confidence limit is the same.

The most commonly used one- or two-sided intervals are
based on a t-statistic. The upper confidence limit of the one-
sided t-interval is given by

Ut = x̄+ n−1/2sntn−1,1−α

where x̄ and s2n are the sample mean and variance, respec-
tively. Its coverage probability is exactly 1 − α when the
random sample is from a normal distribution. When the
population distribution is not normal, this upper limit can
be expanded, under some moment conditions, as

Ut = x̄+ n−1/2snz1−α +Op(n
−3/2).

For notational simplicity, we take s2n = n−1
∑n

i=1(xi − x̄)2.
This minor deviation from the traditional sample variance
does not invalidate the above expansion.

The upper limit of the H-interval (Hall, 1992) is obtained
from a transformed t-statistic. It has the following expres-
sion and asymptotic expansion:

Uh = x̄− 3γ̂−1sn[{1 + γ̂(n−1/2zα − n−1γ̂/6)}1/3 − 1]

= x̄+ n−1/2snz1−α + n−1snγ̂(1 + 2z21−α)/6

+Op(n
−3/2).

The interval of Johnson (1978) is insightful and likely mo-
tivated the above improved version. Because it is asymp-
totically inferior, its asymptotic expansion is not presented
here.

The upper confidence limit of the one-sided EL-interval
is given by

Uel = x̄+ n−1/2snz1−α + n−1snz
2
1−αγ/3

+ n−3/2snz
3
1−α(9 + 9κ− 8γ2)/36 +Op(n

−2).

We have expanded it to order n−2 to demonstrate the
Bartlett correction method that follows.

The BEL inflates the confidence limits by replacing z21−α

with (1 + b/n)z21−α. It affects only the n−3/2 term:

Ubel = Uel + n−3/2snz1−αb/2 +Op(n
−2)

= x̄+ n−1/2snz1−α + n−1snz
2
1−αγ/3

+ n−3/2snz
3
1−α(9 + 18κ− 7γ2)/18 +Op(n

−2).

The AEL of Liu and Chen (2010) has the same expan-
sion as that of Ubel to order Op(n

−2). The AEL-interval of
Theorem 3.2 has an upper confidence limit

Uael = x̄+ n−1/2snz1−α + n−1sn(1 + 2z21−α)γ̂/6

+ n−3/2snz1−α{(9κ− 8γ2 + 9)z21−α/48

+ (30κ− 23γ2 + 54)/72}+Op(n
−2).

The derivations of the three EL-based upper limits will be
given in the Appendix.

The coverage probabilities of the above one-sided confi-
dence intervals are as follows. For simplicity, we keep only
the terms whose order is relevant for demonstrating the
high-order precision. We do not give explicit forms of q1(·)
and q2(·), which are odd and even polynomial functions re-
spectively.

pr{μ ≤ Ut} = 1− α+ (1/6)n−1/2γ(2z21−α + 1)φ(z1−α)

+O(n−1);

pr{μ ≤ Uel} = 1− α+ (1/6)n−1/2γφ(z1−α) +O(n−1);

pr{μ ≤ Ubel} = 1− α+ (1/6)n−1/2γφ(z1−α) +O(n−3/2);

pr{μ ≤ Uh} = 1− α+ n−1q1(z1−α)φ(z1−α) +O(n−3/2);

pr{μ ≤ Uael} = 1− α+ n−3/2q2(z1−α)φ(z1−α) +O(n−2).

Note that Ut, Uel, and Ubel have the same order of preci-
sion. Because φ(·) is an even function, when Uel and Ubel are
combined with their corresponding lower confidence limits,
say Lel and Lbel, over-coverage at one end is balanced out
by under-coverage at the other end. Hence, their two-sided
intervals have higher-order precision.

The one-sided H-interval has straightforward high-order
precision O(n−1). The new one-sided AEL-interval is a clear
asymptotic winner with coverage precision O(n−3/2). This
order is further improved to O(n−2) if a two-sided interval
is constructed.

5. SIMULATION BASED ON ARTIFICIAL
AND REAL POPULATIONS

We now investigate the performances of the new one-
sided AEL-interval and the existing methods reviewed ear-
lier. We report the results for five intervals denoted T, H,
EL, BEL, and AEL. This AEL is not that given by Liu and
Chen (2010). We first simulate random samples from four
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artificial distributions: a standard normal, a chi-squared dis-
tribution with 4 degrees of freedom, an exponential distri-
bution with mean 1, and a standard log normal distribution.
Later we will also use a zero-inflated exponential distribu-
tion and a real data set. The first four populations are in
order of increasing skewness. We use the sample sizes n = 20
and n = 40 and generate 10,000 random samples from each
population. We count the proportions of μ < L and μ > U
where L and U stand for the lower and upper confidence
limits. The target values are 5% corresponding to the one-
sided 95% confidence interval. With 10,000 random samples,
the simulation error is about 0.5%. The results for a target
coverage of 90% are similar.

The direct computation of â1 and â2 in Theorem 3.2 re-
sults in unstable outcomes for the AEL interval. Let x(i)

be the ith order statistic, i = 1, 2, . . . , n. In the simulation,
we replaced x(n) and x(1) by x(n−1) and x(2) when comput-
ing â1 and â2. We also replaced â1 by â1/(1 + 2â1/n). In
addition, we replaced x̄− μ by

(x̄− μ)/{1 + 0.2(x̄− μ)2/α̂2}

to limit the impact when μ is clearly far from μ0. Our asymp-
totic results are based on the assumption that x̄ − μ =
Op(n

−1/2). Hence, the theoretical result works best when
x̄−μ is not exceptionally large. At the same time, the above
modifications do not invalidate Theorem 3.2.

We present the simulation results in two figures, each
containing twelve plots corresponding to two sample sizes,
and one row for each population distribution. In each row,
the first plot gives the non-coverage probabilities of the lower
and upper limits. A one-sided confidence interval is accurate
if its point is close to the horizontal 5% line. The second plot
provides box-plots of the lower confidence limits. Provided
the coverage probabilities are comparable, the larger and
more concentrated the lower limit, the better the interval.
The third plot provides box-plots of the upper confidence
limits. Given similar coverage, those that are smaller and
more concentrated are better.

Let us first examine Fig. 1 where n = 20. The T-interval
is the clear winner under normality, as expected. However,
the other four methods are acceptable in all respects. When
we move down so that the population becomes more and
more skewed, the coverage of the T-interval deteriorates.
The other four methods also get worse for the upper confi-
dence limit but to a lesser degree, and they maintain compa-
rable and accurate coverage for the lower confidence limit. In
terms of the coverage probability, the H-interval is the best
and the EL-interval is the worst. However, the H-interval
has an unstable upper limit. The second row of plots shows
that all the intervals except the T-interval have nearly the
same average lower limits. A closer examination of the lower
coverage probability reveals that the AEL-interval has an
edge over the BEL-interval. Note that the scale change has
partially masked the true difference.

The results for n = 40 are given in Fig. 2. It is clear that
all the methods produce more efficient intervals and more
precise coverage probabilities than for n = 20. Yet the rela-
tive performances are the same. In conclusion, while the new
AEL is not a star among the five methods investigated, it is
a good overall performer. It is a good choice for applications
where the population is apparently skewed.

Now we move to a zero-inflated population and provide a
real-data example. We generated data from a mixture model
that contains 15% nonzero observations from an exponen-
tial with mean 5. Note that 15% is the probability that each
observation is nonzero; a sample with 100 observations does
not necessarily have exactly 15 nonzero observations. Such
populations are common in accounting (Kvanli, Shen, and
Deng, 1998). The challenge is to give an accurate lower con-
fidence limit. We choose a typical sample size, n = 100, in
this simulation. See the plots in the first row in Fig. 3. It is
simple to conclude that the AEL-interval is a good method.
The H-interval has the most accurate coverage probabilities,
but its upper confidence limits are unstable. A stabilization
measure may help but such a measure could reduce the cov-
erage precision.

Our previous examples were all based on artificially
generated populations. Next we conduct a simulation
based on a real data set from Chen, Chen and Rao
(2003). The data from the Canadian Labour Force Sur-
vey of 2000 were provided by Statistics Canada through
the TriUniversity Data Resources website. The address is
http://tdr.uoguelph.ca, but access is restricted. We only
took a random sample containing 10% of the data from
the province of Ontario. We use the number of extra hours
worked as the response variable y. Among the 17,415 sam-
pled observations, there are 3,677 nonzero values. The pro-
portion of nonzero observations is 21%. The mean of the
entire data set is 19.46. We wish to examine the perfor-
mance of the AEL-interval, particularly in comparison with
that of the EL advocated by Chen, Chen and Rao (2003).

We constructed 95% one-sided confidence intervals based
on 10,000 samples (without replacement) of size 100. Be-
cause the sample fraction is small, we ignore the finite-
population correction factor. The outcomes are summarized
via three plots in the second row of Fig. 3. We note that the
H-intervals are impressively accurate. For the more impor-
tant lower limit, AEL is more accurate. AEL has a tighter
average lower limit (12.71) than BEL (12.60) while their
standard deviations are 3.76 and 3.75 respectively. The cor-
responding figures for EL are 12.62 and 3.74. Thus, the AEL-
interval has a better lower limit. The one-sided H-, EL-, and
AEL-intervals have 4.5%, 4.5%, and 4.8% non-coverage, all
of which are close to the 5% target.

These results again show that the new AEL is not a star
among the five methods investigated, but it is a good over-
all performer and a good choice in applications where the
population is apparently skewed or zero-inflated.
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Figure 1. Simulation results for one-sided intervals when n = 20.
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Figure 2. Simulation results for one-sided intervals when n = 40.

APPENDIX A. PROOFS

Denote the true value of the population mean μ0. Let
αk = E(Xi − μ0)

k and Ak = n−1
∑n

i=1(Xi − μ0)
k − αk for

k ≥ 2. Without loss of generality, we assume that α2 = 1 in

the following derivations. Under appropriate finite-moment

assumptions, Ak = Op(n
−1/2). The moment assumptions

are given in Theorem 3.1 so the above order assessments

are subsequently assumed.
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Figure 3. One-sided interval for zero-inflated population.

A.1 Expanding R(μ0; a)

We first give an asymptotic expansion of R(μ0;a) when
a contains two non-random and sample-size independent
constants through its connection with R(μ0;0). We can
easily verify that R(μ0; 0) equals the usual empirical log-
likelihood ratio. Hence, according to DiCiccio, Hall and Ro-
mano (1991),

R(μ0;0) = n{T1 + T2 + T3 +Op(n
−2)}2

where

T1 = A1,

T2 = −(1/2)A1A2 + (1/3)α3A
2
1,

T3 = (3/8)A1A
2
2 − (5/6)α3A

2
1A2 + (1/3)A2

1A3

+ {(4/9)α2
3 − (1/4)α4}A3

1.

Wemay regard
√
n{T1+T2+T3} as a signed root of R(μ0,0).

Given this expansion, we need only investigate the differ-
ence R(μ0;a) − R(μ;0) to find an expansion for R(μ0;a).
The outcome is given in the following lemma:

Lemma 1. Under the conditions of Theorem 3.1, we have

R(μ0;a)−R(μ0;0) = 2a2A1 + (2a1 + 2α3a2 − a22)A
2
1

− 2a2A1A2 + a22n
−1 +Op(n

−3/2).

Proof. The constrained optimization problem of the EL

can be solved by the Lagrange multiplier method, as dis-

cussed previously. The same technique provides a tool for

the asymptotic expansion. Let

φ0(λ) =

n∑
i=1

log{1 + λ(xi − μ0)},

φa(λ) =

n+2∑
i=1

log{1 + λ(xi − μ0)}

with xn+1 and xn+2 being the pseudo-observations defined

in Theorem 3.1. Let λ0 and λa be stationary points of φ0(λ)

and φa(λ) respectively. They are Lagrange multipliers for

the constrained maximization. It is well known (Owen, 2001)

that λ0 = Op(n
−1/2) and we claim without proof that λa =

Op(n
−1/2). The importance of the Lagrange multipliers is

further illustrated by the fact that they satisfy R(μ0;0) =

2φ0(λ0) and R(μ0;a) = 2φa(λa).

In what follows, we link λ0 and λa and other quantities

through asymptotic expansions. Being a stationary point,

λa solves the following equation:

0 = φ′
a(λa)(5)

= φ′
a(0) + φ′′

a(0)λa + (1/2)φ′′′
a (0)λ2

a +Op(n
−1/2).
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The derivatives of φa(·) have the following expansions:

φ′
a(0) = nA1 + a2 +Op(n

−1/2),

φ′′
a(0) = −n(1 +A2) +Op(1),(6)

φ′′′
a (0) = 2nα3 +Op(n

1/2).

Substituting (6) into (5), we get

(7) A1 − (1 +A2)λa + a2n
−1 + α3λ

2
a = Op(n

−3/2).

Because Ak = Op(n
−1/2) and λa = Op(n

−1/2), the above
equation becomes

A1 − λa = Op(n
−1).

This leads to λa = A1+ εn with εn = Op(n
−1). Substituting

λa = A1 + εn back into (7), we find

εn = a2n
−1 + α3A

2
1 −A1A2 +Op(n

−3/2).

Consequently, we find

λa = A1 −A1A2 + α3A
2
1 + a2n

−1 +Op(n
−3/2).

Setting a = 0 in the above expansion, we also get

λ0 = A1 −A1A2 + α3A
2
1 +Op(n

−3/2).

Using the above expansions for λ0 − λa and noting that
φ′
a(λa) = 0, we get

2φa(λ0) = 2φa(λa) + 2(λ0 − λa)φ
′
a(λa) + (λa − λ0)

2φ′′
a(λa)

+Op(n
−3/2)

= 2φa(λa) + a22n
−2φ′′

a(λa) +Op(n
−3/2).

Computing φ′′(λa) with the expansion of λa, we find
φ′′
a(λa) = −n+Op(n

1/2). Hence, we have

2φa(λ0) = 2φa(λa)− a22n
−1 +Op(n

−3/2).(8)

Linking φa(·) with R(μ0;a), and using the relationship be-
tween φa(·) and φ0(·), we find

R(μ0;a) = 2φa(λa)

= 2φa(λ0) + a22n
−1 +Op(n

−3/2)

= 2φ0(λ0) + 2 log{1 + λ0(xn+1 − μ0)}
+ 2 log{1 + λ0(xn+2 − μ0)}
+ a22n

−1 +Op(n
−3/2)

= R(μ0;0) + 2 log{1 + λ0(xn+1 − μ0)}
+ 2 log{1 + λ0(xn+2 − μ0)}
+ a22n

−1 +Op(n
−3/2).

Finally, by expanding the logarithm terms given the expan-
sion of λ0, we get the conclusion of this lemma. �

A.2 Expanding the signed root of R(μ0; a)

While the results of Theorems 3.1 and 3.2 are stated
in terms of the likelihood ratio function, their proofs are
built on Edgeworth expansions of their corresponding signed
roots. As a preliminary step, we first find a signed root of
R(μ0;a) through its relationship with R(μ0;0) obtained in
the last subsection.

Suppose R(μ0;a) has the following decomposition

R(μ0;a) = n{T ∗
1 + T ∗

2 + T ∗
3 +Op(n

−2)}2,

such that T ∗
k = Op(n

−k/2) for k = 1, 2, 3. Matching the
expansion of R(μ0;a) order by order, it is easy to verify
that the following T ∗

k provide a solution to the signed root:

T ∗
1 = T1,

T ∗
2 = T2 + a2n

−1,

T ∗
3 = T3 + [{−a1 + (2/3)α3a2 − (1/2)a22}A1

− (1/2)a2A2]n
−1.

The Edgeworth expansion of
√
nT ∗ =

√
n{T ∗

1 + T ∗
2 +

T ∗
3 } is determined by its cumulants. Let κ∗

k denote the k-
th cumulant of T ∗. When a2 = (1/6)γ that is not random,
some lengthy but simple algebra leads to κ∗

1 = O(n−2), κ∗
3 =

O(n−3), κ∗
4 = O(n−4), and

κ∗
2 = n−1 + {(1/2)α4 − (1/3)α2

3 − 2a1}n−2 +O(n−3).

Thus, by setting a1 = (1/2)b = (1/4)α4 − (1/6)α2
3, which

is half of the Bartlett correction factor, we get a simple
second cumulant value κ∗

2 = n−1+O(n−3). This leads to the
Edgeworth expansion needed in the proofs of the theorems
in the next subsection.

A.3 Edgeworth expansion and the proofs

The neat cumulants of
√
nT ∗ with a specified in Theo-

rem 3.1 translate to a simple Edgeworth expansion as fol-
lows:

Pr(
√
nT ∗ < y) =

∫ y

−∞
{1 + n−3/2p(t)}φ(t)dt+O(n−2),

for some odd-degree polynomial p(t) (up to degree 9), where
φ(t) is the density function of the standard normal distri-
bution. We do not give details on how to obtain the Edge-
worth expansion from the cumulants of T ∗. In general, if two
such statistics have the same first k cumulants, then they
have the same Edgeworth expansion up to order n−(k−2)/2;
see Bhattacharya and Ghosh (1978). Clearly,

√
nT ∗ has the

same first four cumulants as the standard normal, which
leads to the conclusion of Theorem 3.1. When α2 �= 1, the

argument follows with the data xi’s replaced by α
−1/2
2 xi’s.

This completes the proof of Theorem 3.1.
Replacing a2 in Theorem 3.1 by some root-n consistent

estimator â2 makes R(μ0, â) different from R(μ0,a) by a

Adjusted empirical likelihood with high-order one-sided coverage precision 289



quantity of orderOp(n
−1), which is too large to be ignored in

the expansion. Replacing a1 by a root-n consistent estimator
has an effect only on the Op(n

−3/2) term. We prove Theo-
rem 3.2 by quantifying the difference between R(μ0; (a1, â2))

and R(μ0; (a1, a2)) such that a2 = (1/6)γα
1/2
2 , with its re-

placement â2 = (1/6)α̂−1
2 α̂3 +(1/2)(x̄−μ), and a1 = Op(1)

to be determined. Keeping the convention that α2 = 1, it is
easy to show that

â2 − a2 = (1/6)(A3 − α3A2) +Op(n
−1).

It is straightforward to see that for any fixed a1, we have

R(μ0; (a1, â2)) = R(μ0; (a1, a2)) + 2(â2 − a2)A1 +Op(n
−3/2)

= R(μ0; (a1, a2)) + (1/3)(A3 − α3A2)A1

+Op(n
−3/2).

As noticed earlier, the first two terms in the signed root of
R(μ0;a) do not depend on the value of a1 provided it is
Op(1). Because of this, the first two terms of the signed root
of R(μ0; â) are the same as T ∗

1 and T ∗
2 . The third term is

given by

T̃3 = T ∗
3 + (1/6)(A3 − α3A2)n

−1.

Some lengthy but simple algebra shows that the corre-
sponding cumulants have order assessments κ̃1 = O(n−2),
κ̃3 = O(n−3), κ̃4 = O(n−4), and

κ̃2 = n−1 + {(5/6)α4 − (2/3)α2
3 − 2a1}n−2 +O(n−3).

Setting

a1 = (5/12)α−2
2 α4 − (1/3)α−3

2 α2
3 = b− (1/12)α−2

2 α4,

where we have restored α2 for comprehension, we get κ̃2 =
n−1 +O(n−3). The cumulant results lead to the conclusion
of Theorem 3.2.

APPENDIX B. EXPANSIONS OF THE
UPPER CONFIDENCE

LIMITS

The upper confidence limits of EL intervals are obtained
by finding the larger solution in μ to

R(μ;a) = ξ2

where ξ2 is some upper quantile of the χ2
1 distribution. When

a = 0, we get the upper limits of the usual EL intervals.
Thus, deriving a generic asymptotic expansion of R(μ;a) is
the key step. The expansion of R(μ0;a) is no longer useful.

We claim without proof that any of the upper confidence
limits μ = μ0 +Op(n

−1/2) and that a = Op(1). For μ and a
in this range, we further claim that the solution to

(9)

n+2∑
i=1

xi − μ

1 + λ(xi − μ)
= 0

satisfies λ = Op(n
−1/2). These claims imply that x̄ − μ =

Op(n
−1/2) because μ is in an Op(n

−1/2) neighborhood of μ0.
Expanding (9) with respect to λ at λ = 0, we have

(10)
n∑

i=1

{(xi−μ)−λ(xi−μ)2+λ2(xi−μ)3}+a2+Op(n
−1/2) = 0.

Note that the (n+ 1)th term in (9) is Op(n
−1/2) and hence

it has been counted in the above equation. It is easy to see
that

n∑
i=1

(xi − μ) = n(x̄− μ) = nA1;

n∑
i=1

(xi − μ)2 = n{α̂2 + (x̄− μ)2} = n(α̂2 +A2
1);

n∑
i=1

(xi − μ)3 = n{α̂3 + 3α̂2A1}+Op(n
−1/2).

Note that we borrowed an earlier notation A1 = x̄−μ but we
do not require μ = μ0 here. Substituting these into expan-
sion (10), dividing both sides by n and keeping the leading
terms only, we get

(11) A1 − λα̂2 + λ2α̂3 + a2n
−1 +Op(n

−3/2) = 0.

A generic expansion for λ is then found as

(12) λ = α̂−1
2 A1 + α̂−3

2 α̂3A
2
1 + α̂−1

2 a2n
−1 +Op(n

−3/2).

Note that this expansion is not dependent on the size of a1
up to order n−3/2.

With the expansion for λ, we further obtain

R(μ;a) =

n∑
i=1

{2λ(xi − μ)− λ2(xi − μ)2 + (2/3)λ3(xi − μ)3

− (1/2)λ4(xi − μ)4}+ {2λ(xn+1 − μ)

+ 2λ(xn+2 − μ)− λ2(xn+2 − μ)2}+Op(n
−3/2)

= n{2λA1 − λ2(α̂2 +A2
1) + (2/3)λ3(α̂3 + 3α̂2A1)

− (1/2)λ4α̂4}+ {−2λa1A1 + 2λa2 − λ2a22}
+Op(n

−3/2).

We now substitute the expansion of λ given by (12), and
retain terms up to order n−1, to obtain

R(μ;a) = nα̂−1
2 A2

1 + {2α̂−1
2 a2A1 + (2/3)nα̂−3

2 α̂3A
3
1}

+ (2α̂−3
2 α̂3a2 − 2α̂−1

2 a1 − α̂−2
2 a22)A

2
1

+ n{α̂−5
2 α̂2

3 + α̂−2
2 − (1/2)α̂−4

2 α̂4}A4
1

+ α̂−1
2 a22n

−1 +Op(n
−3/2)

where the first line contains Op(1) and Op(n
−1/2) terms,

and the second and third lines contain Op(n
−1) terms and

the high-order residual Op(n
−3/2).
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The remaining task is to solve R(μ;a) = ξ2 for μ based
on the above expansion. This task is equivalent to finding a
solution in A1. When only Op(1) terms are included in the
equation, we quickly find that

A1 = −n−1/2α̂
1/2
2 ξ +Op(n

−1).

Recall that A1 = x̄ − μ and that α̂2 = s2n, the sample
variance. Setting ξ = z1−α, this solution becomes

μu = x̄+ n−1/2z1−αsn +Op(n
−1),

which is the upper confidence limit based on the normality
assumption.

We can refine the above solution to obtain higher-order
terms. Setting

A1 = −n−1/2α̂
1/2
2 ξ + ε1

we obtain an equation for ε1:

nα̂−1
2 A2

1 + {2α̂−1
2 a2A1 + (2/3)nα̂−3

2 α̂3A
3
1} = ξ2 +Op(n

−1).

The solution for ε1 is

ε1 = −{a2 + (1/3)α̂−1
2 α̂3ξ

2}n−1 + ε2

with ε2 = Op(n
−3/2). Repeating this process for ε2, we find

ε2 =
[
− {a1α̂1/2

2 + (1/2)α̂
−1/2
2 a22}ξ

+ {(1/2)α̂1/2
2 + (2/9)α̂

−5/2
2 α̂2

3 − (1/4)α̂
−3/2
2 α̂4}ξ3

]
× n−3/2 +Op(n

−2).

Consequently, we obtain a generic expansion for the upper
confidence limit:

μu = x̄+ n−1/2α̂
1/2
2 ξ + n−1{a2 + (1/3)α̂−1

2 α̂3ξ
2}

+ n−3/2
[
{a1α̂1/2

2 + (1/2)α̂
−1/2
2 a22}ξ

+ {−(2/9)α̂
−5/2
2 α̂2

3 − (1/2)α̂
1/2
2 + (1/4)α̂

−3/2
2 α̂4]}ξ3

]
+Op(n

−2).

Let γ̂ = α̂3/α̂
3/2
2 and κ̂ = α̂4/α̂

2
2 − 3. The upper limit be-

comes

μu = x̄+ n−1/2α̂
1/2
2 ξ + n−1{a2 + (1/3)α̂

1/2
2 γ̂ξ2}

+ n−3/2
[
{a1α̂1/2

2 + (1/2)α̂
−1/2
2 a22}ξ

+ {(1/4)(1 + κ̂)α̂
1/2
2 − (2/9)γ̂2α̂

1/2
2 }ξ3

]
+Op(n

−2).

Setting a1 = a2 = 0 and ξ = z1−α, the above generic expan-
sion results in the Uel obtained via ordinary EL. The effect
of the direct Bartlett correction is to replace ξ = z1−α by

ξ2 = (1+b/n)z21−α. Asymptotically, it affects only the order

n−3/2 term:

Ubel = Uel + n−3/2snz1−α(b/2).

Recall again that sn = α̂
1/2
2 .

The upper limit Uael is the solution to the same equation

when a1 = b̂/2 = (1/12)α̂−2
2 α̂4, and a2 = (1/6)γ̂α

1/2
2 +

(1/2)A1. Because a2 depends on A1, the previous derivation
must be slightly revised. With these specific a1 and a2, we
find that

R(μ;a) = nA2
1 + (1/3)α3A1(1 + 2nA2

1)

+ {(1/2)− (35/36)α2
3 − (1/6)α4}A2

1

+ n{1 + α2
3 − (1/2)α4}A4

1 +Op(n
−3/2).

Setting

A1 = −n−1/2α̂
1/2
2 ξ − (1/6)n−1(1 + 2ξ2)α̂−1

2 α̂3 + ε2

and solving R(μ;a) = ξ2 +Op(n
−3/2) for A1, we get

A1 =− n−1/2α̂
1/2
2 ξ − (1/6)n−1α̂

1/2
2 (1 + 2ξ2)α̂

−3/2
2 α̂3

− n−3/2α̂
1/2
2

[
{(1/4)− (47/72)α̂−3

2 α2
3

− (1/12)α̂−2
2 α4}ξ + {(1/2)− (5/18)α̂−3

2 α2
3

− (1/4)α̂−2
2 α4}ξ2

]
.

Replacing A1 by x̄− μ leads to the expansion of Uael given

in Section 4, after α̂
−3/2
2 α̂3 is denoted as γ̂ and so on.
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