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In [11], a random thresholding method is introduced to
select the significant, or non-null, mean terms among a col-
lection of independent random variables, and applied to the
problem of recovering the significant coefficients in non-
ordered model selection. We introduce a simple modifica-
tion which removes the dependency of the proposed estima-
tor on a window parameter while maintaining its asymp-
totic properties. A simulation study suggests that both
procedures compare favorably to standard thresholding ap-
proaches, such as multiple testing or model-based clustering,
in terms of the binary classification risk. An application of
the method to the problem of activation detection on func-
tional magnetic resonance imaging (fMRI) data is discussed.

Keywords and phrases: Random threshold, Non-ordered
model selection, FDR, Mixture modeling, Binary risk, Ora-
cle risk, fMRI.

1. INTRODUCTION

In [11], the following model is considered:

(1) Yi = μi + εi, i = 1, . . . , n,

where μi are unknown constants, some of which are zeros,
and εi are independent, identically distributed (iid) zero-
mean random variables, with known cumulative distribution
function (cdf) Fε. We will also note in the following F|ε| the
cdf of their absolute values |εi|, given by: F|ε|(x) = P (|ε1| ≤
x) = (Fε(x)− Fε(−x))1{x≥0}.

With this model, the problem of selecting the significant
coefficients μi �= 0, based on the observations Yi, is studied.
Such a problem arises in many different application areas,
such as genomics [8], or neuroimaging [7], to cite just a few.

Many methods have been proposed to perform this task.
Multiple testing procedures for instance (see [8] for an
overview of existing methods), have been developed to con-
trol a certain type I error rate, such as the familywise error
rate (FWER), or the false discovery rate (FDR) [2] at a
user-fixed level. It can be argued however that the choice of
a level, which ultimately defines the subset of selected coef-
ficients, is arbitrary, as there is no safe guideline to what an
‘optimal’ level of false detections should be.
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An alternative, that allows to control both type I and
type II error rates, consists in fitting a mixture model to
the data, with one class for the null (zero-mean) data, and
one, or more, for the non-null data. A detection threshold
can then be derived, which minimizes a certain classification
risk, such as the binary risk, associated to the 0 –1 loss func-
tion, resulting in a ‘naive Bayes’ classifier [12]. The main dif-
ficulty with this approach lies in the choice of a distribution
for the non-null data, which may influence significantly the
resulting classifier. Many authors have proposed to deal with
this issue through model selection techniques (see [6, 9, 13]
for instance), however it remains an open-ended problem.

In view of these difficulties, the random threshold (RT)
approach introduced in [11] appears as a promising candi-
date, since it does not require the specification of a type-I
error level, nor of a model for the non-zero mean observa-
tions. The principle of RT lies in estimating the number of
significant coefficients, based on a random centering of the
partial sums of the ordered observations. Because it relies on
as little assumptions as possible, we expect RT to be more
robust than the above-mentioned approaches.

However, to date very little is known concerning the clas-
sification performances of RT procedures; [11] essentially
gives a minimal separation speed between null and non-null
data for the method to attain perfect classification asymp-
totically. Furthermore, the algorithm described therein still
depends on a window parameter, which may have some in-
fluence in presence of noisy data.

This article describes a simple modification of the RT
procedure, which removes its dependency on the window
parameter, while maintaining its asymptotic properties. We
then study the classification performances of both tech-
niques using numerical experiments, in comparison to the
above-mentioned standard approaches.

An issue that is not addressed here is that of statistical
dependency. Indeed, the methods presented in this paper
are all based upon the assumption that the observations are
independent. This may not always be the case in real-life
situations; hence, assessing the robustness of the random
threshold method to violation of this independence assump-
tion, either theoretically or through numerical experiments,
is important for certain applications.

However, before conducting such an assessment, it would
be necessary to specify the form of dependency that is con-
sidered of interest. Indeed, there are infinitely many differ-
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Figure 1. Test of the presence of significant coefficients: the cumulative sums (Tj) (solid line) and their conditional null
expectations (Qj) (dashed lines), under the global null H0 (left) and in presence of significant coefficients (right).

ent ways of introducing dependency between random vari-
ables, and each way can lead to potentially different re-
sults in terms of robustness. To cite just a few examples,
in [3], the BH procedure is shown to be conservative for
a particular form of dependency called positive regression
dependency, and a modified version of the BH procedure
is introduced that is conservative under very general con-
ditions. However, this modification may be overly conserva-
tive in certain situations. Hence more specialized algorithms
have been devised. For instance, in [10], a procedure is con-
structed specifically for data that can be divided into inde-
pendent groups of correlated variables. Many other forms
of dependency have also been considered, such as subset
pivotality [8], or through hierarchical modeling, (assuming
that the observations are independent conditional on a set
of hidden variables), to cite just two. Hence, it seems to us
that choosing a particular form of dependency and studying
the ensuing properties of the random threshold approach is
an open problem, which goes well beyond the scope of the
present work.

The rest of this article is organized as follows. In Sec-
tion 2, the original RT method is reviewed. The variable
window extension is introduced in Section 3. In Section 4
the results of numerical experiments are presented, which
show the good properties of RT in terms of classification. An
application to fMRI data analysis is discussed in Section 5,
and we conclude in Section 6 by considering the perspectives
opened by this work.

2. ORIGINAL RANDOM THRESHOLDING
PROCEDURE

2.1 Testing the presence of significant
coefficients

We start by recalling how the presence of non-zero means
is tested, that is, how the null hypothesis H0 : ∀i ∈

{1, . . . , n}, μi = 0 is tested in [11]. This is done by com-
paring the cumulative sums of the ordered observations to
their conditional expectations under H0, according to the
following steps:

1. Order the observations |Y(1)| ≥ |Y(2)| ≥ · · · ≥ |Y(n)|.
2. For i = 1, . . . , n, let X(i) = − log(1− F|ε|(|Y(i)|)).
3. Let Tj =

∑j
i=1 X(i) and Qj = EH0(Tj |Tn).

4. Define the test statistic Dn = maxj |Tj −Qj |/
√
n. The

null hypothesis is rejected if Dn > dα, with dα such
that PH0(Dn > dα) ≤ α.

Note that the cumulative sums are not computed di-
rectly from the ordered observations, but from the trans-
forms X(1), . . . , X(n) which, under H0, are an ordered series
of E(1) random variables, where E(λ) stands for the expo-
nential distribution with rate parameter λ. The conditional
expectations Qj = EH0(Tj |Tn) can then be computed using
the following result (see [11] for details).

Theorem 1 (Conditional expectations of ordered exponen-
tial variables). Under H0, the X(i) are an ordered series of
E(1) random variables. It follows that:

i) EH0(X(i)) =
∑n

�=i
1
� .

ii) EH0(Tj) = j + j
∑n

�=j
1
� .

iii) EH0(Tj |Tn) =
EH0

(Tj)

EH0
(Tn)

Tn.

Furthermore, for n ≥ 100, it is shown in [11] using Monte-
Carlo simulations that:

(2) PH0(Dn > 0.65) ≈ 0.05,

which provides an approximate calibration for the above
test. It is illustrated in Figure 1, on a dataset of n = 500
observations Yi simulated according to model (1), with noise
terms εi sampled from the N (0, 1) distribution.

Under the global null H0, that is, when all μi are equal to
zero, (Figure 1, left), the gap between the curve representing

264 M. Keller and M. Lavielle



the cumulative sums (Tj) and that of their conditional ex-
pectations (Qj) remains small. Consequently, the resultant
test statistic value Dn = 0.27, does not exceed the critical
value 0.65 given by (2).

In contrast, when we add n1 = 100 non-zero means
μ1 = · · · = μ100 = 5, (see Figure 1, right), the Tj ’s become
substantially larger than their expected values Qj under H0,
resulting in a gap between the corresponding curves. Note
that this gap is most significant around j = 100, because, for
all j, Tj is the sum of the j largest observations (after trans-
formation), containing mostly non-zero means for j ≤ 100.
Consequently, the ensuing test statistic Dn = 21.28 is far
above the critical value 0.65.

2.2 Selecting the significant coefficients

Upon rejection of the null hypothesis, the following task
consists in selecting the significant coefficients. The proce-
dure for doing so can be interpreted in a data-dependent
‘multiple hypothesis testing’ setting, as described hereafter.
Consider the null hypothesis H0, as defined in Section 2.1,
and the set of alternative hypotheses:

H1,k : ∀i ∈ {1, . . . , k}, μ(i) > 0, and

μ(k+1) = · · · = μ(n) = 0.

In other terms, H1,k corresponds to the hypothesis that
the k largest observations only have non-zero means. Even
though in real-life datasets null and non-null data are never
perfectly separated, in general one cannot expect more than
to discriminate between such hypotheses in non-ordered
model selection. Note that this is equivalent to choosing a
certain detection threshold to separate null from non-null
data.

The RT procedure first computes the X(i)’s using the
same steps 1 and 2 as in Section 2.1, then adds the following
steps:

3. Let Kn be some positive integer. For 1 ≤ k ≤ n −Kn

and 1 ≤ j ≤ Kn, compute:

Tk,j =

k+j∑
i=k+1

X(i)

Qk,j = EH1,k
(Tk,j |Tk,Kn)

ηk = max
1≤j≤Kn

|Tk,j −Qk,j |/
√
n.

4. Let k̂n = argmin1≤k≤n−Kn
ηk.

As in the previous section, for each k, X(k+1), . . . ,
X(k+n−k) is an ordered series of E(1) variables under H1,k,
so Qk,j can easily be computed using Theorem 1. Heuristi-
cally, the partial cumulative sums Tk,j are compared to their
conditional expected values Qk,j under the hypotheses H1,k,
for k = 1, . . . , n−Kn. The number of significant coefficients

Figure 2. Random threshold procedure: partial cumulative
sums (Tk,j)j (solid lines) and their conditional null

expectations (Qk,j)j (dashed lines) for k = 0 (top), k = 100
(middle), and k = 200 (bottom), with window width

Kn = 200.

is estimated as the index k̂n corresponding to the minimal
gap between Tk,j and Qk,j , as evaluated by ηk.

This is illustrated in Figure 2, using a dataset simulated
exactly as in Section 2.1, that is, with n1 = 100 significant
coefficients. Loosely speaking, the procedure uses a sliding
window with width Kn, and compares the cumulative sums
Tj within this window to their conditional expectations un-
der the hypothesis that the window contains the Kn largest
null terms. For k = 1, the window contains in fact mainly
significant terms, so that the T1,j ’s are well above their ex-
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Figure 3. Random threshold procedure: the sequence ηk on a
logarithmic scale; its minimum is attained for k̂n = 99.

pected values, yielding a normalized gap of η1 = 14.99. For
k = 100, the window indeed contains mostly the Kn largest
null terms, so T100,j and Q100,j are of the same order, yield-
ing a much smaller gap (η100 = 0.14). Finally, for k = 200,
the window contains null terms, but not the Kn largest,
so the cumulative sums (Tk,j) become lower than their ex-
pected values. Consequently, the gap increases (η200 = 0.5).
Figure 3 shows the complete sequence of ηk values, with
a clear minimum at k̂n = 99, close to the true number of
significant coefficients.

3. EXTENSIONS AND ASYMPTOTIC
PROPERTIES

3.1 Unknown distribution extension

The RT method recalled in the previous section may be
difficult to apply to real-life problems, where the noise dis-
tribution Fε is in general unknown. In [11], an extension is
proposed to the case where Fε is a parametric distribution
Fε(· ; θ), with θ unknown. Quite naturally, this consists in
estimating θ under each hypothesis H1,k from the null data
Y(k+1), Y(k+2), . . . , Y(n), then using this estimate to derive
the transforms X(i), for i = k + 1, . . . , k + Kn. More pre-
cisely, having chosen some positive integer Kn, the exten-
sion consists in performing for 1 ≤ k ≤ n−Kn the following
steps:

1. Let θ̂k = θ̂(Yk+1, . . . , Yn) be an estimate of θ.

2. For i = 1, . . . , n, let X(i)(θ̂k) = − log(1 − F|ε|(|Y(i)| ;
θ̂k)).

3. For 1 ≤ j ≤ Kn, compute:

• Tk,j(θ̂k) =
∑k+j

i=k+1 X(i)(θ̂k),

• Qk,j(θ̂k) = EH1,k
(Tk,j(θ̂k)|Tk,Kn(θ̂k)).

4. Compute ηk(θ̂k) = max1≤j≤Kn |Tk,j(θ̂k) − Qk,j(θ̂k)|/√
n.

Finally, the estimated number of components is given as
before by

k̂n = argmin1≤k≤n−Kn
ηk(θ̂k).

This simple extension is much more computationally in-
tensive than the original procedure, since the X(i)’s for
i = k + 1, . . . , k + Kn must be re-computed for each k,
instead of once and for all.

To illustrate this, we applied the unknown distribution
extension to the same simulated dataset used to illustrate
the original procedure. We defined the null distribution as
the GaussianN (0;σ2), and the unknown variance σ2 was es-
timated by the usual mean squares: σ̂2

k = 1
n−k

∑n
i=k+1 Y

2
(i).

The estimated number of significant coefficient, k̂n = 105,
was still found close to its true value, and so was the corre-
sponding standard error estimate σ̂2

̂kn
= 0.93.

3.2 Varying window extension

As we have seen previously, the RT procedure depends
on a parameter Kn which can be interpreted as a window
width, since ηk is a function of X(k+1), . . . , X(k+Kn). Kn

must be smaller than the number of null coefficients, but at
the same time not too small, or ηk would become unstable.
Hence choosing an appropriate value for Kn may be a hin-
drance in practice, especially since we want the RT method
to be adaptive and depend as little as possible on any form
of tuning.

This issue can be avoided by re-defining ηk as a function
of X(k+1), . . . , X(n), thus replacing the fixed width Kn by a
varying width n−k, which requires no prior tuning. We de-
fine the following procedure, starting with the same steps 1
and 2 as in Section 2.1, and adding the following steps:

3. Let κn be a lower bound on the number of null coeffi-
cients. For 1 ≤ k ≤ n−κn and 1 ≤ j ≤ n−k, compute:

(3)

Tk,j =
∑k+j

i=k+1 X(i)

Qk,j = EH1,k
(Tk,j |Tk,n−k)

ηk = max1≤j≤n−k |Tk,j −Qk,j |/
√
n− k.

4. Let k̂n = argmin1≤k≤n−κn
ηk.

In other terms, ηk would be strictly equal to the
test statistic Dn defined in Section 2.1, if the se-
quence (X(i))1≤i≤n were replaced by the subsequence
(X(i))k+1≤i≤n, i.e., the set of null terms under H1,k.

Notice that k̂n is independent from κn, as long as η
reaches its global minimum on {1, . . . , n − κn} (see below
for a discussion on the choice of κn). The varying window
extension presented here can of course be combined with the
unknown distribution extension in Section 3.1.

Figure 4 illustrates the varying window extension on the
same simulated dataset as previously. Intuitively, the ‘slid-
ing’ window is replaced by a ‘shrinking’ window, which at
first encloses all observations, than progressively reduces
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Figure 4. Random threshold with a varying window width:
partial cumulative sums (Tk,j)j (solid lines) and their

conditional null expectations (Qk,j)j (dashed lines) for k = 0
(top), k = 100 (middle), and k = 200 (bottom).

in width as the largest observations are left out. Other-
wise the same observations as in the fixed-width case hold:
when k = 1, the cumulative sums (Tk,j)j are larger than
their conditional expectations (Qk,j)j , resulting in a large
gap (η0 = 21.04). This gap is considerably reduced when
k = 100 as the Tk,j ’s and the Qk,j ’s become of the same
order (η100 = 0.5), then the gap increases again for k = 200
as the cumulative sums become smaller than their expected
values (η200 = 0.93). Though not shown here, the sequence

ηk attains its minimum in k̂n = 99, satisfyingly close to the
true value.

Choosing Kn and κn Both Kn and κn must satisfy the
constraint of being lower bounds on the number of null data.
Since in most datasets null data outnumber non-null data,
tuning both parameters to half the number of observations
seems reasonable.

However, in the original random threshold method, Kn is
a key parameter as it determines the number of points used
to calculate the criterion ηk for all k = 1, . . . , (n−Kn), which
in turn serves to select the number of non-null observations.
Hence, changing the value of Kn mechanically changes the
set of observations detected as non-null.

In contrast, in the varying window extension, the cri-
terion ηk is calculated using (n − k) observations for k =
1, . . . , (n − κn), and κn simply specifies the minimal num-
ber of points required to compute the criterion, in order to
ensure that it is not too noisy. Hence it is essentially in-
cluded as a safeguard to prevent erratic values at very high
threshold values; the result of the selection procedure does
not depend on the value of this parameter, so long as it re-
mains in a reasonable range of values. In this respect the
varying window extension is truly adaptive, since it requires
no parameter tuning.

3.3 Asymptotic properties

The estimator of the number of significant coefficients
presented in Section 2.2 is consistent. This is the main result
in [11], and it can be extended to the varying window setting.
We start by recalling the following asymptotic framework:

AF1 There exists t� ∈ (0, 1) and a subset Ik�
n
of {1, . . . , n},

with k�n = [t�n] and |Ik�
n
| = k�n, such that μi �= 0 if

i ∈ Ik�
n
. For all other index, μi = 0.

AF2 For any i ∈ Ik�
n
, |μi| ≥ αn, where αn → ∞ according to

the distribution of the (εi).More specifically, letΦ(1) be
the distribution of max1≤i≤n |εi| and (an, bn) such that
Φ(1)(an+bnx) → W (x) for some fixed distribution W .
Then (αn) satisfies

αn − 2an
bn

→ ∞.

AF3 κn/n → c such that 0 < c < 1− t�.

We then have the following result:

Theorem 2 (Consistency of the random threshold). Let

k̂n stand for the estimator defined in Section 2.2. Under
assumptions AF1, AF2, AF3, k̂n is consistent in the sense
that

(4) P

(∣∣∣∣ k̂nn − t�
∣∣∣∣ > un

)
→ 0,

for any positive decreasing sequence (un) such that
√
nun →

∞.

This result is refined in [11] by deriving an upper bound,
which we do not detail here, on the convergence rate of the
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probability in Equation (4), for a particular choice of se-
quence (un). Consistency also holds in the unknown distri-
bution case, under a different set of assumptions which we
do not recall here, and under the varying window extension,
as shown in Appendix A.

This theorem is interesting in that it gives a conver-
gence rate for k̂n, provided that a minimal signal-to-noise
(SNR) ratio is attained, represented by a lower bound αn

on the absolute values |μi| of the non-zero means (assump-
tion AF2). Note that, in order for the random threshold
(or any other threshold for that matter) to asymptotically
separate perfectly null from non-null data, the SNR must
necessarily become arbitrarily large as the sample size in-
creases.

However, this theorem provides no clue to what happens
when the SNR remains bounded, as we expect to be the case
in real-life applications. In the remainder of this paper, our
goal is to explore the behavior of the RT approach in such
cases.

4. SIMULATION STUDY

In order to assess empirically the classification prop-
erties of RT, we designed several numerical experiments.
Our goal was to compare the binary classification risk of
the RT procedure (with both fixed and varying window
width), to those obtained by model-based clustering and
FDR control techniques. Specifically, we used a mixture-
model, estimated via an expectation-maximization (EM)
algorithm [5] to approximate the risk minimizing detec-
tion threshold, and the Benjamini-Hochberg (BH) proce-
dure [2] to derive a threshold controlling the FDR at a cer-
tain level. We dismissed FWER control techniques as they
essentially yield constant thresholds at a given level, and
are therefore of little interest when compared to adaptive
approaches.

We considered two cases, depending on whether the null
distribution Fε was considered as known or not. Note that
the BH procedure is based on the p-values pi = 1−F|ε|(|Yi|),
hence it requires that Fε be known, whereas this same dis-
tribution can be estimated using the EM algorithm. So in
order to compare methods on a fair basis, we compared RT
to the BH procedure when the null distribution was known,
and to mixture model fit otherwise.

4.1 Results with known null distribution

We chose in this first experiment to directly simulate the
Xi, rather than the Yi. Datasets of n = 10,000 observations
were generated, containing each n1 = 1,000 signicant terms.
These were sampled from the Gamma distribution G(α, β),
where β is a scale parameter (the chosen values for these
parameters are given below). The remaining 9,000 null terms
were sampled from the E(1) distribution.

Note that the data simulated in this fashion does not
have the additive structure specified by (1), but rather fol-
lows a mixture of two distributions (an exponential and a
gamma). Hence only the null distribution (the exponential)
is available to the algorithm, the alternative (the gamma)
being misspecified with respect to the above formulation.
This is important as it means that the random threshold
procedure does not benefit here from any additional infor-
mation as compared to the BH procedure, and ensures that
the comparison is fair in this respect.

Table 1 shows the average classification risks obtained
by the different methods over 100 simulated datasets and
for different choices of the Gamma distribution parame-
ters. More precisely, we chose to compute the ratio of each
attained risk to the lowest achievable (oracle) risk, which
makes more sense since perfect classification is in general
unattainable.

The binary risk and oracle threshold can be computed
as follows. Consider a given dataset (Xi, Zi)i, where Zi is
a binary variable, equal to 0 if Xi is a null term (sampled
from the E(1) distribution), and 1 if Xi is a non-null term
(sampled from the Gamma distribution). Then the overall
classification error associated with a given detection thresh-
old t is given by:

c(t) =
∑
Zi=0

1{Xi>t} +
∑
Zi=1

1{Xi≤t},

that is, the sum of type I (false detections) and type II
(false non-detections) errors. The oracle threshold t∗ is then
chosen to minimize this classification error:

t∗ = argmin
t

c(t).

It can be seen that both RT approaches perform in
general better than FDR control through the BH procedure,

Table 1. Ratio of binary classification risks with respect to the lowest attainable (oracle) risk for FDR control at different
levels and for the RT procedure with fixed (Kn = 5,000) and variable (κn = 5,000) window width, averaged over 100

simulated datasets. For each method, the highest attained risk ratio is shown in bold

β β β β
1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0

5.0 1.88 1.85 1.36 1.6 1.08 1.12 1.31 1.06 1.65 1.31 1.15 1.11 1.24 1.13 1.10
α 6.0 2.4 1.66 1.14 1.59 1.04 1.61 1.19 1.33 3.00 1.30 1.14 1.14 1.25 1.12 1.14

7.0 2.7 1.37 1.09 1.42 1.21 2.91 1.07 2.01 6.02 1.27 1.13 1.16 1.23 1.12 1.17

FDR 0.01 FDR 0.05 FDR 0.1 fix. RT var. RT
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Table 2. Ratio of binary classification risks over oracle risk for model-based clustering (left) and for the RT procedure with
fixed (Kn = 500) and variable (κn = 500) window width (middle and right), averaged over 100 simulated datasets. For each

method, the highest attained risk ratio is shown in bold

σ σ σ
1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0

1.0 1.03 1.03 1.08 1.03 1.06 1.02 1.03 1.06 1.03
μ 2.0 1.06 1.03 1.04 1.32 1.13 1.05 1.30 1.12 1.05

3.0 1.11 1.06 1.04 1.60 1.19 1.08 1.55 1.18 1.08

GMM fit fix. RT var. RT

with a slight advantage to the varying window extension.
Most importantly, the classification risks they attain is
never more than 1.31 and 1.25 times the oracle risk for the
fixed and varying window versions, respectively. In contrast
to these near optimal performances, whatever the chosen
level of FDR control, the BH procedure always performs
poorly for at least one model, with an average classification
risk that rises as high as 6.02 times the optimal one in the
worst case.

Of course, it can be argued that comparing the RT and
BH methods in terms of the binary classification risk is un-
fair, since the BH aims to control the FDR, which is es-
sentially a type I error rate. Our goal here is to compare
RT with a standard thresholding method. Such methods are
usually multiple-testing based, and so aim at maximizing the
test power while maintaining a type I error rate under a pre-
specified level. What we show here is that an equally simple
procedure can balance type I and type II error rates without
requiring any pre-specified level, but rather by adapting to
the SNR in the dataset at hand.

The above results suggest that the RT approach, due to
its adaptive nature, is more stable than error rate control
techniques, that depend on the choice of a false detection
level, as we had anticipated. Moreover, the excellent per-
formance of the RT methods, which attained near optimal
risks on all the simulated datasets, is very encouraging for
this approach.

4.2 Results with unknown null distribution

To illustrate the unknown distribution case, we simulated
n = 1,000 observations Yi, among which n1 = 100 where
sampled from the N (μ, σ2) distribution with μ > 0 and
represented the significant terms, and n − n1 = 900 where
sampled from the N (0, 1) distribution and represented the
null terms. We used less observations than in the known
distribution case because the unknown null distribution ex-
tension is much more computer-intensive.

We implemented an EM algorithm to estimate a two-
class Gaussian mixture model (GMM) from the data, with
one zero-mean class to model the null data. As is often the
case with iterative algorithms, providing initial values for
the model parameters was the main problem we encoun-
tered. We found an efficient strategy for doing so, taking ad-
vantage of the fact that the negative data contained mostly

Table 3. Results for bimodal non-null data (averaged over
100 simulated datasets)

4.01 2.03 1.89

GMM fit fix. RT var. RT

null terms, and could provide a good initial guess for the
null distribution variance and mixture weight. Details of the
algorithm are given in Appendix B. Table 2, shows the aver-
age ratios of the classification risks obtained by the different
methods with respect to the oracle risk, over 100 simulated
datasets and for different choices of the Gaussian distribu-
tion parameters for the significant terms.

All methods performed satisfyingly, yielding close to op-
timal risks, with model-based clustering performing slightly
better than the RT methods. This comes as little surprise,
since in this case the former approach has several advan-
tages: it is based on a parametric model for the significant
terms that is precisely the one used to simulate the data, and
it explicitly minimizes the binary classification risk. In con-
trast, the RT approach is not based on the probability model
used to generate the data, and does not explicitly minimize
a classification risk. Nevertheless, it gave good results.

Furthermore, performances of model-based methods can
deteriorate when based on the wrong assumptions. To illus-
trate this, we simulated n = 5,000 observations Yi among
which n1 = 950 where sampled from the N (3, 1) distribu-
tion, n2 = 50 from the N (20, 1) distribution, and the re-
maining 4,000 from the N (0, 1) distribution and represented
the null data. Consequently, the significant terms had a bi-
modal distribution. Most of these terms were next to the
null mode, and a small number where next to a more dis-
tant mode.

This way, we hoped to trick the mixture model, which as-
sumed a unimodal distribution for the significant terms, into
detecting only the distant mode, while merging the other
mode with the null distribution. This is exactly what hap-
pened, as can be seen in Table 3: the mixture-model fit per-
forms significantly worse than the RT approach in this case,
the latter maintaining a reasonable, though also degraded,
classification risk.

Of course it can be argued that such a dataset does not
represent a realistic situation; our point here is simply to
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illustrate the increased robustness of RT due to the fact
that it requires no assumptions other than a noise model.
It can also be discussed that an alternative to the simplis-
tic two-class GMM used here would be to allow a variable
number of classes, combined with a model selection frame-
work [6, 9, 13]. However, implementing such complex strate-
gies would be non-trivial, especially concerning the algo-
rithm’s initialization. This last issue could be addressed for
instance by using stochastic extensions of the EM, such as
the stochastic averaging EM (SAEM) [4], in order to reduce
dependency to initial values. In contrast to such sophisti-
cated strategies, the simplicity of the RT approach, which
requires minimal implementation and virtually no tuning,
appears as a key advantage in practice, especially in view of
the good performances suggested by this study.

5. APPLICATION TO FMRI DATA
ANALYSIS

We now apply the random threshold approach to func-
tional magnetic resonance imaging (fMRI) data analysis.
fMRI is a modality of in vivo brain imaging that allows
to measure the variations of cerebral blood oxygen levels in-
duced by the neural activity of a subject lying inside a MRI
scanner and submitted to a series of stimuli. A sequence
of three-dimensional (3D) images of the brain is thus ac-
quired, measuring over time a vascular effect of neural activ-
ity known as the blood oxygenation level dependent (BOLD)
effect. From the time series recorded in each voxel, and the
occurrence times for each stimulus, one may compute an
estimate of the BOLD effect of the subject in response to
any given stimulus, and more generally to any difference or
combination of stimuli (contrast) [7, 18].

Thus, the fMRI data for one subject generally consists in
a spatial map of z-scores (Y1, . . . , Yp), where p is the num-
ber of voxel in the search volume (which can be as high
as 100,000), and Yi the estimated BOLD effect at voxel i.
This map of measures of cerebral activity, also termed ac-
tivation map, is plagued by several sources of uncertainty:
the natural variability of brain activity, and the estimation
noise induced by the MRI scanner. Thus, model (1) pro-
vides a potentially good representation of the activation map
(Y1, . . . , Yp), with significant terms corresponding to vox-
els in brain regions involved in the task under study. More
precisely, in the classical fMRI data analysis terminology,
voxel i is said to be inactivated if μi = 0, activated if μi > 0
and deactivated if μi < 0, using the notations of model (1).

Of course, it is only reasonable to model the activation
map (Y1, . . . , Yp) according to (1) if the Yi can be consid-
ered as statistically independent, meaning that the BOLD
effect measurement errors in neighboring voxels are inde-
pendent. It turns out that this independence assumption is
standard in the fMRI literature (see [7, 18] for instance).
This is justified by the fact that the data goes through a
series of pre-processing steps that includes a whitening step

that renders the voxels spatially independent. Typically, a
certain amount of spatial dependency is then re-introduced
in a controlled way through smoothing (whose primary goal
is to increase signal to noise ratio and inter-subject match-
ing of homologous brain areas), but standard detection pro-
cedures remain voxelwise and ignore this dependency (see
[14] for a review of such procedures). The data considered
here is smoothed using a 5 mm full-width at half maximum
(FWHM) Gaussian filter, hence the amount of spatial de-
pendency is very small, given that the voxel width is 3 mm.

In a typical fMRI study however, not one but several
subjects are recruited from a population of interest, and
scanned while submitted to the same series of stimuli. Ac-
tivation maps associated with a given contrast are obtained
for each subject, as described above, and used as input data
for inference at the between-subject level, where the goal is
to evidence a general brain activity pattern. Mass univari-
ate, or voxel-based, detection [7] is to date the most widely
used approach to address this question. It starts with nor-
malizing individual images onto a common brain template
using nonrigid image registration. Next, a t-statistic is com-
puted for each voxel to locally assess mean group effects.

In both single-subject and multi-subject fMRI data anal-
ysis, the problem of activation detection can be formulated
statistically as that of detecting non-zero means among a
collection of observations. The most common approach con-
sists in thresholding a statistical map of brain activity [7].
Multiple-testing techniques are widely used [14, 15], as well
as mixture models. The Gamma-Gaussian mixture model
(GGM) is most often used in this context [1]. It uses a Gaus-
sian distribution for null, or inactivated, data, a Gamma
distribution for activated data, and a negative Gamma dis-
tribution for deactivated data.

These methods suffer from certain limitations, as dis-
cussed in the previous sections, hence the RT appears as
an appealing alternative in this context. Thus, we decided
to compare the regions detected by the different approaches,
to see if RT succeeded in recovering regions known to be in-
volved in certain well-studied cognitive tasks.

5.1 Data acquisition and preprocessing

We used a real fMRI dataset from the Localizer
database [16], involving a cohort of 38 right-handed sub-
jects, and acquired as follows. The participants were pre-
sented with a series of stimuli or were engaged in tasks such
as passive viewing of horizontal or vertical checkerboards,
left or right click after audio or video instructions, compu-
tation (subtraction) after video or audio instructions, sen-
tence listening and reading. Events occurred randomly in
time (mean inter stimulus interval: 3s), with ten occurrences
per event type, and ten event types in total.

Functional images were acquired on a General Electric
Signa 1.5T scanner using an Echo Planar Imaging sequence.
Each volume consisted of 34 64× 64 3 mm-thick axial con-
tiguous slices. A session comprised 130 scans. Anatomical T1
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Figure 5. Axial slice from a z-score map for the “sentence
minus checkerboard” contrast, using a temperature palette

(not shown here) for the z-score values. From top to bottom:
Unthresholded, thresholded by GGM model fit,

varying-window and fixed-window (Kn = 15,000) random
thresholding. Detected activations are shown against the

subject’s anatomical image.

weighted images were acquired on the same scanner, with a
spatial resolution of 1× 1× 1.2 mm3. Finally, the cognitive
performance of the subjects was checked using a battery of
syntactic and computation tasks.

Single-subject analyzes were conducted using SPM5
(http://www.fil.ion.ucl.ac.uk). Data were submitted
successively to motion correction, slice timing, normaliza-
tion to the MNI template and spatial smoothing using an
isotropic 5 mm-FWHM Gaussian filter. For each subject,
BOLD contrast images were obtained from a fixed-effect
analysis on all sessions. Group analyzes were restricted to
the intersection of all subjects’ whole-brain masks, compris-
ing 43,367 voxels.

We considered the t-score maps computed for different
contrasts of experimental conditions. These were first con-
verted to z-score maps, to obtain approximatively Gaus-
sian statistics in inactivated voxels. Using these maps as
input data, we then compared the detection thresholds
obtained by Gamma-Gaussian mixture modeling (GGM),
fixed-window random thresholding and the varying-window
extension, also using the unknown variance extension in
both cases (see Section 3.1). For simplicity, we only present
here the results obtained for a fixed window equal to Kn =
15,000.

5.2 Individual subject activation map

Our first illustration concerns the activation map of a sin-
gle subject, for the “sentence minus checkerboard” contrast.
This contrast subtracts the effect of viewing horizontal and
vertical checkerboards from that of reading video instruc-
tions, thus allowing to detect brain regions specifically im-
plicated in the reading task.

Figure 5, left, shows an axial slice from the z-score map
before thresholding. Activations are clearly seen in Wer-
nicke’s and Broca’s areas (right and upper right), which are
known to be involved in language processing (see [17], for
instance). The detection threshold found by GGM fit for the
z-score map (2.03) was much lower than those found by the
random threshold procedure, both with a varying window
(3.19) and a fixed window (3.33).

The random thresholds with fixed and variable windows
yield very similar activation maps in this case, which seem
to capture the activated regions seen in the raw map. In
contrast, the much lower threshold found by mixture mod-
eling detects several smaller clusters, some of which may be
false positives.

5.3 Group activation map

In this second example, we consider a group activation
map, specifically a map of t-statistics computed from the
individual contrast maps of 15 subjects, thus enabling to
infer regions of positive mean effects in the parent popula-
tion. Our choice of limiting the number of subjects, rather
than using the whole cohort, was driven by the fact that
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Figure 6. Axial slice from the group activation z-score map
for the “calculation minus sentences” contrast, using a

temperature palette (not shown here) for the z-score values.
From top to bottom: Unthresholded, thresholded by GGM
model fit, varying-window and fixed-window (Kn = 15,000)
random thresholding. Detected activations are shown against

the mean anatomical image of all subjects.

many fMRI studies are conducted on groups of less than 20
subjects.

We report results for the “calculation minus sentences”
contrast, which subtracts activations due to reading or hear-
ing instructions from the overall activations detected during
the mental calculation tasks. This contrast may thus reveal
regions that are specifically involved in the processing of
numbers.

Figure 6, left, shows an axial slice from the activation map
before thresholding, with clear activations in the bilateral
anterior cingulate (upper middle), bilateral parietal (lower
left and right) and right precentral (upper right) regions, all
known to be involved in number processing [16].

Though sorted in the same order as previously, the vary-
ing window random threshold (2.49) is now roughly at equal
distances from the threshold found by GGMmodeling (1.79)
and the fixed window (Kn = 15,000) random threshold
(3.06).

The three methods detected activations in the regions
described above, though the fixed window random threshold
seemed to miss some activations, and the GGM approach
further detected smaller clusters, some of which may be false
positives.

Of course one cannot conclude from these examples alone
that RT is ‘better’ at detecting activations than GGM fit.
However, the varying window extension successfully de-
tected regions known to be involved in the two cognitive
tasks considered here, while avoiding isolated peaks in other
regions, which may be part of the background noise. These
results suggest that the RT succeeded in capturing only the
active regions, while the GGM approach seemed to detect
spurious activations.

6. DISCUSSION

In this paper, we have introduced a simple modification
to the random threshold (RT) procedure proposed in [11],
to obtain an entirely unsupervised procedure for recovering
non-null mean terms from a collection of independent ran-
dom observations, based solely on a parametric model of
the null terms. Our modification, which requires no prior
tuning, conserves the consistency properties of the original
procedure.

We have implemented all the different versions of
the random threshold method in a Python package.
This was integrated into the Neuroimaging in Python
(NIPY) open-source library, freely downloadable from
http://nipy.sourceforge.net.

We validated this approach through extensive numerical
experiments, and showed that both the original procedure,
based on a fixed window-width, and our extension, which
uses a variable window, compare favorably to multiple test-
ing procedures, as well as model-based clustering, in terms
of the binary classification risk, with a slight advantage to
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our varying window extension. On the vast majority of sim-
ulated datasets, the risks achieved where close to the low-
est achievable (oracle) risk, whereas each of the other ap-
proaches behaved poorly in at least one case.

The random threshold procedure does not provide ex-
plicit control over a type I error rate as a classical multi-
ple test procedure would do, which may appear as a weak-
ness. Rather, it selects an optimal threshold to separate null
from non-null data, hence finds a compromise between type
I and type II errors that is different for each dataset. It
is important to understand that the aim of this approach
is not to achieve a type-I error control to a user-specified
level, but rather provide a completely adaptive tool that
optimally classifies the data into null and non-null classes,
without the need for any prior tuning, thus excluding user-
chosen levels. Our simulation results show that indeed our
approach performs remarkably well in terms of classifica-
tion.

Thus RT appears as a very promising method for non-
ordered model selection whenever no parametric assump-
tions are available concerning the data distribution. Such
methods are needed in many application domains, as we
have illustrated in the case of activation detection for fMRI
data analysis.

The good classification performances of RT evidenced
empirically in our simulations suggest that a promising di-
rection for future research would be to study its proper-
ties in the mixture-model setting, and especially its large-
sample behavior. An interesting question to answer would be
whether the random threshold converges to a certain limit
when the SNR remains constant, and if so, how does this
limit compares to the oracle threshold.

Finally, as mentioned in the introduction of this article,
assessing the robustness of RT, or adapting it, to cases where
the independence assumption is violated, is important for
many applications, hence provides another perspective for
future works.
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APPENDIX A. PROOF OF THE
CONSISTENCY THEOREM

FOR THE VARYING
WINDOW EXTENSION

Following [11], we first recall some notations. Set Ui = Yi

for i ∈ Ik�
n

and vi = Yi for i /∈ Ik�
n
; notice that (vi) is

a sample from the distribution Fε. Let (u(i))1≤i≤k�
n

and
(v(i))1≤i≤n−k�

n
be the sequences (|Ui|) and (|vi|) in decreas-

ing order. Let Ωn be the subset of Ω where v(1) < αn/2 and
u(k�

n)
> αn/2.

A first lemma in [11] shows that P (Ωn) → 1, i.e., the
collections (u(i)) and (v(i)) are stochastically in order with
high probability. The proof can then be restricted to Ωn.

Now, let EH1,k
(Tk,j) and Qk,j be defined as in Equa-

tion (3). Using Proposition 1, we have:

EH1,k
(Tk,j) = j

(
1 +

n−k∑
i=j+1

1/i

)
;

Qk,j =
EH1,k

(Tk,j)

EH1,k
(Tk,n−k)

Tk,n−k

= Bk,j,nTk,n−k.

Also, let ai = E0(Z(i)) =
∑n

�=i 1/�. Equation (4) can be
shown separately for k > k�n and k < k�n. Since the two cases
are treated similarly, we will restrict ourselves here to the
case k > k�n. On Ωn:

Tk,j −Qk,j = Tk,j −Bk,j,nTk,n−k

=
(
Tk,j − EH1,k�

n
(Tk,j)

)
−Bk,j,n

(
Tk,n−k − EH1,k�

n
(Tk,n−k)

)
+ EH1,k�

n
(Tk,j)−Bk,j,nEH1,k�

n
(Tk,n−k)

= Rk,j + Sk,j .

Thus Tk,j −Qk,j is decomposed into a random part Rk,j

and a deterministic part Sk,j . Over Ωn, Rk,j is a function
of v(k), . . . , v(n−k�

n)
. Before going further, we now recall the

following result:
Let Z(1) ≥ · · · ≥ Z(n) be an ordered sequence of in-

dependent Exp(1) random variables. For 1 ≤ j ≤ n, let

Tj =
∑j

i=1 Z(i). Introduce for t ∈ [0, 1] the random process
dn(t) = T[nt] − E(T[nt]|Tn). Then it is shown in [11] that
1√
n
dn(t), as a process indexed on t ∈ [0, 1], converges in

distribution to a certain zero mean Gaussian process Δ.
To use this result, let k = [tn] and j = [sn], for 0 <

t < 1 − c and 0 < s < 1 − t� − t, for c in [AF3]. Then
1√
n−k

(Tk,j−Qk,j)1Ωn = 1√
n−k

(T[tn],[sn]−Q[tn],[sn])1Ωn , as a

process indexed by (t, s) ∈ (0, 1)2, converges in distribution
to the zero-mean Gaussian process:

Γt,s =

√
1− t�

1− t

[
Δ

(
t+ s− t�

1− t�

)
−Δ

(
t− t�

1− t�

)]
,

similarly, 1√
n−k

Bk,j,nEH1,k�
n
(Tk,n−k)1Ωn converges in distri-

bution to another zero-mean Gaussian process, and so does
their sum, 1√

n−k
Rk,j1Ωn .

On the other hand,

(5) Sk,j =

k−k�
n∑

i=1

(ai+j − ai +Bk,j,n(ai+n−k − ai)),

so that there exists a constant γ > 0, which depends on c in
[AF3], such that for all n ≥ 1, k�n < k ≤ n −Kn, we have
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sup1≤j≤n−k |Sk,j | ≥ γ(k − k�n). Finally we use the following
inequality:

Pk�
n
(k̂n − k�n > nun) ≤ P(ηk�

n
> inf

k−k�
n>nun

ηk).

From Equation (5), Sk�
n,j

= 0, hence it follows that:√
n− k�n ηk�

n
= sup

1≤j≤n−k�
n

|Rk�
n,j

+ Sk�
n,j

|

= sup
1≤j≤n−k�

n

|Rk�
n,j

|

≤ sup
k≥k�

n

sup
1≤j≤n−k

|Rk,j |.

On the other hand,
√
n− k inf

k−k�
n>nun

ηk = inf
k−k�

n>nun

sup
1≤j≤n−k

|Rk,j + Sk,j |

≥ inf
k−k�

n>nun

sup
1≤j≤n−k

|Sk,j |

− sup
k≥k�

n

sup
1≤j≤n−k

|Rk,j |,

so that we have:

Pk�
n
(k̂n − k�n > nun)

≤ P(C sup
k≥k�

n
1≤j≤n−k

|Rk,j | ≥ inf
k−k�

n>nun

sup
1≤j≤n−k

|Sk,j |)

+ P(Ωc
n)

≤ P(C sup
k≥k�

n
1≤j≤n−k

|Rk,j | ≥ γnun) + P(Ωc
n),

where C is a constant which depends on c in [AF3]. This
last probability vanishes as n goes to infinity, due to the
weak convergence of Rk,j1Ωn .

APPENDIX B. DETAILS OF THE EM
ALGORITHM FOR THE

TWO-CLASS GMM WITH A
ZERO-MEAN CLASS

We consider the following model:

Yi|Zi = j
iid∼ N (μj , σ

2
j ), i = 1, . . . , n, j = 0, 1,

Zi
iid∼ B(1, p1),

(6)

where μ0 = 0, and pj represents the proportion of data
in class j, so that the vector of model parameters is: θ =
(p0, μ1, σ0, σ1).

Having initialized θ to θ(0), the EM algorithm alternates
the following steps:

E-step. Compute the conditional law of the indica-
tor variable Zi at step t, that is, the Bernoulli defined
by:

P(Zi = j|Yi, θ
(t)) =

f(Yi|Zi = j, θ(t))p
(t)
j∑

j f(Yi|Zi = j, θ(t))p
(t)
j

(7)

:= p
(t)
ij .

M-step. Update the estimates of model parameters
by maximizing the conditional expectation of the
complete log-likelihood,

θ(t+1) = argmax
θ

E

[∑
i

log f(Yi|Zi, θ)|Y , θ(t)

]
,

the expectation being taken with respect to the
conditional distribution of the indicator variables Zi

computed in the previous step. This yields:

p
(t+1)
j =

∑
i p

(t)
ij

n
;

μ
(t+1)
1 =

∑
i p

(t)
ij Yi∑

i p
(t)
ij

;

σ2
j
(t+1)

=

∑
i p

(t)
ij (Yi − μ

(t)
j )2∑

i p
(t)
ij

.

(8)

Note that, throughout the iterations, μ
(t)
0 ≡ 0.

B.0.0.1. Initialization. An initial guess for σ2
0 is pro-

vided by the negative data, which consists mainly of null
data:

σ2
0
(0)

= 
{Yi < 0}−1
∑
Yi>0

Y 2
i .

Then, we use a kernel estimate of the data density:

(9) f̂(x) =
1

n

∑
i

K
(

x−Yi

hn

)
hn

,

for a symmetric, positive kernel K, and a bandwidth hn. In
practice, we used the Gaussian kernel K(x) = 1/

√
2πe−x2/2,

and hn =
√
n.

By identifying the null mode of the data density
kernel estimate to the null component of the mixture
model, we then obtained an initial guess for the mixture
weights:

p
(0)
0 = f̂(0)

√
2πσ2

0
(0)

.

Finally, the conditional law of the indicator variables is
approached by:

p
(0)
i1 = min

⎧⎨⎩1;
p
(0)
0 exp{−(Y 2

i /2σ
2
0
(0)

)}√
2πσ2

0
(0)

⎫⎬⎭ .

These initial guesses are used to derive initial model param-
eter values θ(1), via the M-step described above, for t = 0.
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