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Power of the Cochran-Armitage trend test when
exposure scores are based on empirical quantiles
of exposure
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Epidemiologists often categorize exposures based on
quantiles of exposure and use the Cochran-Armitage trend
test based on such categories to detect associations between
disease and exposure. Power calculations typically assume
that the population quantiles are known, but in practice
quantiles are often estimated from the sample data. We eval-
uated the power of the Cochran-Armitage trend test for co-
hort designs and for case-control designs in which sample
quantiles of exposure in the cohort or in controls from a
case-control study, respectively, are used to define the cut-
points that separate exposure score categories. We give the
asymptotic formulas for size and power for the Cochran-
Armitage test based on empirical quantiles separately for
cohort and case-control designs, together with efficient sim-
ulation methods to estimate size and power. Numerical re-
sults indicate that estimation of sample quantiles has only
a slight effect on power for cohort studies with at least four
categories or with more than 280 subjects. However, esti-
mating quantiles can reduce power appreciably in smaller
studies with fewer than four exposure categories. For case-
control studies of rare diseases, the power loss is limited with
more than 120 cases plus controls if the odds ratio compar-
ing the highest exposure category to the lowest category
is greater than 0.5. However, if that odd ratio is smaller
than 0.5, only samples with more than 360 cases plus con-
trols can guarantee a small loss of power, and increasing the
number of exposure categories does not eliminate the loss of
power.
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1. INTRODUCTION

The Cochran-Armitage test [2, 4] is widely used for test-
ing for a trend in proportions. If there are k categories of
exposure and the logit of the outcome event is linear in an
exposure score, dj for j = 0, 1, . . . , k− 1, then the Cochran-
Armitage score test is locally efficient. Epidemiologists often
use scores dj = j, as we shall do in this paper, and they
often take a continuous exposure, such as micronutrient in-
take, and categorize it into k groups based on population
quantiles ξt. For example, for k = 4, exposure would be cat-
egorized into four groups defined by the quantiles, namely
[0, ξ0.25], (ξ0.25, ξ0.5], (ξ0.5, ξ0.75] and (ξ0.75, 0], and the cor-
responding scores could be dj = 0, 1, 2 and 3. Distribution
theory based on conditioning on both margins of a 2×k ta-
ble [7] implies that the test is applicable to case-control data
as well as to cohort data. This method of categorization has
two advantages, compared to using the continuous exposure
in the logistic model: 1) The continuous measurement may
be subject to error, including outliers, and this recoding re-
duces the impact of error; and 2) the recoded data may fit
the logistic model as a linear trend better than the original
continuous data, just as a log transformed exposure may fit
better than a raw exposure.

In practice, the distribution of the exposure in the general
population is seldom known. Instead, for a cohort study, the
population quantiles are estimated from the sample quan-
tiles in the cohort. For example, [9] used this approach to
relate glycemic index, estimated from food frequency ques-
tionnaires and grouped by quintiles, to the risk of uterine
leiomyoma in a prospective cohort study (N = 21, 861).
For a case-control study, the sample quantiles from controls
are often used. For example, [1] conducted a case-control
study of 91 cases of esophageal squamous cell carcinoma and
103 controls and categorized staining intensity, a continuous
measure, based on quintiles in the controls. Yet sample size
calculations typically assume that the population quantiles
are known. In this paper, we investigate the effects of using
estimated quantiles on the size and power of tests for trend
in cohort and case-control studies.

We give notations and asymptotic formulas for size and
power for the Cochran-Armitage test based on empirical
quantiles separately for cohort and case-control designs in
Section 2. We present numerical results on power, including
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Table 1. 2× k cross-classification of cohort outcomes and
exposure scores, X, based on known quintiles of a continuous

exposure, Z

Exposure scores X Total
d0 d1 . . . dk−1

Y = 1 r0 r1 . . . rk−1 R
Y = 0 s0 s1 . . . sk−1 S
Total n0 n1 . . . nk−1 N

both theoretical calculations and simulations, in Section 3.
We discuss these findings in Section 4.

2. NOTATIONS AND ASYMPTOTIC
THEORY

2.1 Cohort study

2.1.1 Cochran-Armitage trend test for cohort data with
known quantiles

Table 1 describes the outcomes of a cohort study of N
subjects, R of whom develop a disease (Y = 1) and S of
whom remain free of the disease (Y = 0). Exposures are
categorized into k levels based on known population quan-
tiles of a continuous exposure, Z, with distribution F . The
quantiles satisfy F (ξt) = t. Without loss of generality, we
can take Z as uniformly distributed, because if F is known,
we can transform the distribution of Z to uniformity by set-
ting Z∗ = F (Z); then Z∗ is uniformly distributed. Hence,
hereafter, we take Z as uniformly distributed and note
ξt = t. Then, an observation Zi is assigned a score Xi for
i = 1, 2, . . . , N according to Xi = d0 for 0 ≤ Zi ≤ (1/k); and
Xi = dj for (j/k) < Zi ≤ ((j + 1)/k) with j = 1, . . . , k − 1.
The disease outcome Y is related to X through the logistic
regression:

(1) pj = P(Y = 1|X = dj) = {1 + exp(−μ− βdj)}−1

We want to assess the association between X and Y by
testing H0 : β = 0 using the Cochran-Armitage score test.

The test can be based on the statistic U =
∑N

i=1 Yi(Xi−
X̄) =

∑k−1
j=0 rj(dj − d̄), where d̄ =

∑k−1
j=0 njdj/N . Assum-

ing that the variability in d̄ is negligible (Nam, 1987), we

calculate V = Var(U) =
∑k−1

j=0 njpj(1 − pj)(dj − d̄)2. Un-
der the null hypothesis, pj = p ≡ exp(μ)/(1 + exp(μ))
for j = 0, 1, . . . , k − 1. From the maximum likelihood esti-
mate p̂ = R/N , a valid estimate of V is given by V̂0 =

RS
∑k−1

j=0 nj(dj − d̄)2/N2. Hence, the commonly used
Cochran-Armitage score test can be written as

Q = U(V̂0)
−1/2(2)

=

{
k−1∑
j=0

rj(dj − d̄)

}{
RS

k−1∑
j=0

nj(dj − d̄)2/N2

}−1/2

Table 2. 2× k cross-classification of cohort outcomes and
exposure scores, W , based on known quintiles of a continuous

exposure, Z

Estimated exposure scores W Total
d0 d1 . . . dk−1

Y = 1 r′0 r′1 . . . r′k−1 R
Y = 0 s′0 s′1 . . . s′k−1 S
Total N/k N/k . . . N/k N

Under the alternative hypothesis, H1 : β �= 0, the asymp-
totic power of the two-sided trend test is

P(|U(V̂0)
−1/2| > z1−α/2)(3)

= 1− Φ{(z1−α/2σ∗ − EH1U)/σ1}
+Φ{(−z1−α/2σ∗ − EH1U)/σ1}

where σ1=
√
V , EH1U=N/k

∑k−1
j=0 pj(dj−d̄∗), d̄∗=

∑k−1
j=0 dj/

k, σ∗ =
√

EH1(V̂0)=
√

p̄(1−p̄)N/k
∑k−1

j=0 (dj−d̄∗)2, and p̄=∑k−1
j=0 pj/k.

2.1.2 Cochran-Armitage trend test for cohort data with es-
timated quantiles

Because in practice, the theoretical quantiles of Z are
not known, we categorize exposure based on the empiri-
cal quantiles (order statistics) of the sample Z1, Z2, . . . , ZN .
The jth order statistic Z(j) is the jth smallest value of the
sample. We assign an estimated score Wi for observed ex-
posure Zi for i = 1, 2, . . . , N , according to Wi = d0 for
Zi ≤ Z(N/k); Wi = dj for Z(jN/k) < Zi ≤ Z((j+1)N/k) with
j = 1, . . . , k − 2; and Wi = dk−1 for Z((k−1)N/k) < Zi.
This new data set can be represented as in Table 2. Note
that in this table, the column marginal totals are fixed
at N/k.

The naive Cochran-Armitage score test for this table
is obtained by replacing the true exposure score X by
the estimated exposure score W in equation (2) to ob-
tain.

Q′ ≡ U ′(V̂ ′
0)

−1/2(4)

=

{
k−1∑
j=0

r′j(dj − d̄∗)

}{
RS

k−1∑
j=0

(dj − d̄∗)2/(kN)

}−1/2

We now examine whether Q′ has valid size. The variance
of U ′ =

∑k−1
j=0 r

′
j(dj − d̄∗) is V ′ = (N/k)

∑k−1
j=0 P

W
j (1 −

PW
j )(dj − d̄∗)2, where PW

j ≡ P(Y = 1|W = dj) =
EX|W=dj

[P(Y = 1|X)], as shown in Section 2.1.3 under
the assumption P(Y = 1|W,X) = P(Y = 1|X). Under
the null hypothesis H0, which implies that all the PW

j s are
equal to p for j = 0, 1, . . . , k − 1, we have E0(U

′) = 0 and

V ′
0 = (N/k)

∑k−1
j=0 p(1 − p)(dj − d̄∗)2. Plugging in the max-

imum likelihood estimate p̂ = R/N , we obtain a consistent
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estimate of V ′
0 , given by V̂ ′

0 = RS
∑k−1

j=0 (dj − d̄∗)2/(kN).
This estimate is the same as the variance term in equa-
tion (4). Thus, under the null hypothesis, Q′ in equation
(4) is centered and properly standardized and therefore
yields nominal size, at least according to asymptotic the-
ory.

Under the alternative hypothesis H1 : β �= 0, the asymp-
totic power of the two-sided trend test is

P(|U ′(V̂ ′
0)

−1/2| > z1−α/2)(5)

= 1− Φ{(z1−α/2σ
′
∗ − EH1U

′)/σ′
1}

+Φ{(−z1−α/2σ
′
∗ − EH1U

′)/σ′
1}

where σ′
1 =

√
V ′, EH1U

′ = N/k
∑k−1

j=0 P
W
j (dj − d̄∗), d̄∗ =∑k−1

j=0 dj/k, σ′
∗ = EH1(V̂

′
0) = {p̄′(1 − p̄′)N/k

∑k−1
j=0 (dj −

d̄∗)2}1/2, and p̄′ =
∑k−1

j=0 P
W
j /k. Equation (5) can be used

to show numerically that the power based on Q′ is less than
that based on Q (Section 3), a result that is also confirmed
by simulations.

2.1.3 Calculation of PW
j

We calculate PW
j which is needed for equation (5),

as follows. When the quantiles of Z are estimated from
the cohort data, the estimated exposure scores satisfy
P(Wi = dj) = 1/k. Moreover, under the assumption that
Y is conditionally independent of W given X, we ob-
tain

PW
j ≡ P(Y = 1|Wi = dj)

=

k−1∑
h=0

P(Y = 1, X = dh|W = dj)

=

k−1∑
h=0

P(Y = 1|X = dh,W = dj)P(X = dh|W = dj)

=

k−1∑
h=0

P(Y = 1|X = dh)P(X = dh|W = dj)

= EX|W=dj
[P(Y = 1|X)]

To compute PW
j , we need P(Y = 1|X = dh) from equation

(1) and P(X = dh|W = dj) = P(X = dh,W = dj)/P(W =
dj) = kP(X = dh,W = dj), where

P(X = dh,W = dj)

= P(Z(jN/k) < Z ≤ Z((j+1)N/k),

(h/k) < Z ≤ {(h+ 1)/k})

=

(j+1)N/k∑
i=(jN/k)+1

P(Z = Z(i), (h/k) < Z ≤ (h+ 1)/k)

=

(j+1)N/k∑
i=(jN/k)+1

P((h/k) < Z(i) ≤ (h+ 1)/k)

=

(j+1)N/k∑
i=(jN/k)+1

∫ (h+1)/k

(h/k)

(
N − 1

i

)
ui−1(1− u)N−idu

2.2 Case-control study

2.2.1 Cochran-Armitage trend test for case-control data
with known quantiles

The Cochran-Armitage statistic for case-control data
(Table 1) is based on U =

∑N
i=1 Xi(Yi − Ȳ ) =

∑k−1
j=0 (Srj −

Rsj)/N = (Sd′r − Rd′s)/N , where d′ = (d0, d1, . . . , dk−1),
r′ = (r0, r1, . . . , rk−1) and s′ = (s0, s1, . . . , sk−1). From the
retrospective sampling, the cell counts r′ and s′ follow inde-
pendent multinomial distributions with total trial numbers
R and S and respective probabilities p′ = (p0, p1, . . . , pk−1)
and q′ = (q0, q1, . . . , qk−1). For equally spaced uniform quin-
tiles, we have P(X = dj) = 1/k. Hence, from Bayes theorem,

pj = P(X = dj |Y = 1) = (1 + exp(−μ− βdj))
−1(

∑k−1
l=0 (1 +

exp(−μ − βdl))
−1)−1 and qj = P(X = dj |Y = 0) = (1 +

exp(μ + βdj))
−1(

∑k−1
l=0 (1 + exp(μ + βdl))

−1)−1. The mean
of U is E(U) = SRd′(p − q)/N and the variance of U is
V = Var(U) = SR(Sd′Σpd + Rd′Σqd)/N

2, where (Σp)jj =
pj(1 − pj), (Σp)jh = −pjph, (Σq)jj = qj(1 − qj), and
(Σq)jh = −qjqh for j �= h.

The null hypothesis H0 : β = 0 implies pj = qj for
j = 0, 1, . . . , k− 1. Thus EH0(U) = 0 and V0 = VarH0(U) =
SRd′Σpd/N . A consistent estimate of V0 can be obtained by

plugging in estimates p̂j = nj/N to yield V̂0 = SRd′Σ̂d/N ,

where Σ̂jj = nj(N − nj)/N
2 and Σ̂jj = −ninj/N

2.
Thus the Cochran-Armitage trend test for case-control da-
ta is

Q ≡ U(V̂ ′
0)

−1/2(6)

= ((Sd′r −Rd′s)/N)

(
RS

N

(
k−1∑
j=0

d2j
nj

N

(
1− nj

N

)

−
∑∑

j �=k

djdk
njnk

N2

))

For an alternative hypothesis H1 : β �= 0, which implies
pj �= qj , for some j, the asymptotic power of the two-sided
trend test Q is given by

P(|U(V̂0)
−1/2| > z1−α/2)(7)

= 1− Φ{(z1−α/2σ∗ − EH1U)/σ1}
+Φ{(−z1−α/2σ∗ − EH1U)/σ1}

where σ1 =
√
V , EH1U = SRd′(p − q)/N , σ∗ =

{EH1(V̂0)}1/2 = (SRd′EH1(Σ̂)d/N)1/2, EH1(Σ̂ii) = (Rpi +
Sqi)/N − [Rpi(1− pi) + Sqi(1− qi) + (Rpi + Sqi)

2]/N2 and
EH1(Σ̂ij) = −[(R2 − R)pipj + (S2 − S)qiqj + RS(piqj +
pjqi)]/N

2.
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Table 3. 2× k cross-classification of case-control outcomes
and exposure scores, W , based on known quintiles of a

continuous exposure, Z

Estimated exposure scores W Total
d0 d1 . . . dk−1

Y = 1 r̃0 r̃1 . . . r̃k−1 R
Y = 0 S/k S/k . . . S/k S
Total ñ0 ñ1 . . . ñk−1 N

2.2.2 Cochran-Armitage trend test for case-control data
with estimated quantiles

In the case-control study, one can obtain an estimated
score W by classifying Z with the empirical quantiles in
controls. This data set can be represented as in Table 3.
Let ZCO

1 , ZCO
2 , . . . , ZCO

S and ZCA
1 , ZCA

2 , . . . , ZCA
R be the ob-

served continuous exposures in controls and cases respec-
tively. Based on the order statistics and corresponding quan-
tiles of ZCO

1 , ZCO
2 , . . . , ZCO

S , the estimated scores for controls
are defined as Wi = d0 for ZCO

i ≤ ZCO
(S/k); Wi = dj for

ZCO
(jS/k) < ZCO

i ≤ ZCO
((j+1)S/k) for j = 1, . . . , k − 2; and Wi =

dk−1 for ZCO
((k−1)S/k) < ZCO

i . The estimated scores for cases

are Wi = d0 for ZCA
i ≤ ZCO

(S/k); Wi = dj for ZCO
(jS/k) <

ZCA
i ≤ ZCO

((j+1)S/k) for j = 1, . . . , k − 2; and Wi = dk−1 for

ZCO
((k−1)S/k) < ZCA

i . Note that the elements of vector s in

Table 3 are fixed at S/k, and r̃j =
∑N

i=1 YiI[Wi = dj ].

The Cochran-Armitage statistic is Ũ =
∑k−1

j=0 dj(Sr̃j −
RS/k)/N = (Sd′r̃−RSd̄∗)/N , where r̃ = (r̃0, r̃1, . . . , r̃k−1).
Conditionally on the order statistics ZCO

(1) , Z
CO
(2) , . . . ,

ZCO
(S) the cell counts r̃ follow a multinomial distribution

with index R and cell probabilities p̃ = (p̃0, p̃1, . . . , p̃k−1)
with p̃j = P(W = dj |Y = 1) = F1(Z

CO
((j+1)S/k)) −

F1(Z
CO
(jS/k)). Here F1, the cumulative distribution func-

tion of Z in cases, can be computed as in Section 2.2.3.
Because the samples of cases and controls are inde-
pendent, the unconditional mean of Ũ can be com-
puted from results in Section 2.2.3 as μ̃ = E(Ũ) =

RS
∑k−1

j=0 dj [E(p̃j) − 1/k]/N . Likewise, the unconditional

variance is Ṽ ≡ Var(Ũ) = Var(S
∑k−1

j=0 dj r̃j/N) =

(S/N)2[
∑k−1

j=0 d
2
jVar(r̃j)+

∑
j �=k djdkCov(r̃j , r̃k)], where the

unconditional variances and covariances of r̃j are Var(r̃j) =
R2Var(p̃j) + RE[p̃j(1 − p̃j)] and Cov(r̃j , r̃k) = (R2 −
R)E(p̃j p̃k) − R2E(p̃j)E(p̃k). All the moments calculations
for p̃j are presented in Section 2.2.3.

The naive Cochran-Armitage trend test is obtained by
replacing the entries r̃j and sj = S/k from Table 3 in the
formula (6), which is appropriate for known scores (Ta-
ble 2). The resulting naive Cochran-Armitage trend test
is

(8) Q̃≡ Ũ(V̂ ∗
0 )

−1/2 =((Sd′r̃−RSd̄∗)/N)(RSd′ ˆ̃Σd/N)−1/2

where ˆ̃Σjj = ñj(N − ñj)/N
2 and ˆ̃Σjk = −ñj ñk/N

2.

We are interested in whether Q̃ is properly standardized
and therefore has nominal size, at least in large sam-
ples.

Define q̃i = P(W = di|Y = 0). Under H0 : β = 0, which
implies p̃j = q̃j for j = 0, 1, . . . , k − 1, we find E0(Ũ) =

RS(dk−1−
∑k−1

j=0 dj/k)/(N(S+1)) which does not equal to

zero. In particular when dj = j, we have E0(Ũ) = (R(k −
1)/2N)(S/(S + 1). Actually E0(Ũ) increases as the number
of categories increases. However, E0(Ũ) is of order O(1),
which is negligible compared to the variance for large sam-
ples. We have Ṽ0 ≡ VarH0(Ũ) = (S/N)2[

∑k−1
j=0 d

2
jVar0(r̃j)+∑

j �=k djdkCov0(r̃j , r̃k)], where Var0(r̃j) = Rp̃j [1− (S/(S +
1))p̃j ](S/(S+1))((R+S+1)/(S+2)), for j = 0, 1, . . . , k−2;
Var0(r̃k−1) = R(p̃k−1S/(S+1)+1/(S+1))((1−p̃k−1)(S/(S+
1))((R + S + 1)/(S + 2))); Cov0(r̃j , r̃h) = −Rp̃j p̃h(S/(S +
1))2((R + S + 1)/(S + 2)), for j < h ≤ k − 2; and Cov0(r̃j ,
r̃k−1) = −Rp̃j(p̃k−1+1/S)(S/(S+1))2((R+S+1)/(S+2))

for j < k − 2. Thus Ṽ0 is of order O(N), and asymp-

totically we have Ṽ0 → V0. The estimate, ˆ̃V0, of Ṽ0 ob-
tained by plugging in the estimates p̃i = ñi/N , is con-

sistent; thus ˆ̃V0 → Ṽ ∗
0 . It follows that Q̃ is asymptoti-

cally standard normal and has proper size in large sam-
ples.

Under the alternative hypothesis, H1 : β �= 0, which im-
plies p̃j �= q̃j for some j, the asymptotic power of the two-

sided trend test Q̃ is given by

P(|Ũ(V̂ ∗)−1/2| > z1−α/2)(9)

= 1− Φ{(z1−α/2σ̃∗ − EH1Ũ)/σ̃1}
+Φ{(−z1−α/2σ̃∗ − EH1Ũ)/σ̃1}

where σ̃1 =
√

Ṽ , EH1Ũ = RS
∑k−1

j=0 dj [EH1(p̃j) − 1/k]/N ,

σ̃∗ = {EH1(V̂
∗
0 )}1/2 = (SRd′EH1(

ˆ̃Σ)d/N)1/2, EH1(
ˆ̃Σjj) =

(REH1 p̃j+S/k)/N−(R2EH1 p̃
2
j+2SREH1 p̃j/k+S2/k2)/N2,

and EH1(
ˆ̃Σjh) = −((R2 − R)EH1 p̃j p̃h + SREH1(p̃j +

p̃h)/k + S2/k2)/N2. The needed moments are given
next.

2.2.3 Calculations of moments of p̃j and the distributions
F0 and F1 of Z in cases and controls respectively

In the case-control study, the estimated exposure score
Wi is defined in Section 2.2.2 for cases and controls sepa-
rately based on the empirical quantiles of the control sam-
ple ZCO

1 , ZCO
2 , . . . , ZCO

S . In the power calculation (9), we
need to know the following moments of p̃j : E(p̃j), E(p̃2j )
and E(p̃j p̃h). To compute these moments, we need the dis-
tributions F0 and F1 of Z in cases and controls respec-
tively, as given at the end of this Section, and the joint
distribution of pairs and quadruplets of order statistics that
correspond to quantiles of the control distribution. Note
that F0 is not uniform even if Z is uniformly distributed
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in the general population, though it is approximately uni-
form if the disease is rare. The needed moments are given
by

E(p̃j) = E{F1(Z
CO
((j+1)S/k))− F1(Z

CO
(jS/k))}

=

∫ 1

0

∫ ξ1

0

{F1(ξ1)− F1(ξ2)}

× f((j+1)n/k),(jn/k)(ξ1, ξ2)dξ2dξ1,

E(p̃2j ) = E{F1(Z
CO
((j+1)S/k))− F1(Z

CO
(jS/k))}2

=

∫ 1

0

∫ ξ1

0

{F1(ξ1)− F1(ξ2)}2

× f((j+1)n/k),(jn/k)(ξ1, ξ2)dξ2dξ1,

and assuming h− j > 1,

E(p̃j p̃h)

= E[{F1

(
ZCO
((j+1)S/k))− F1(Z

CO
(jS/k))}

× {F1(Z
CO
((h+1)S/k))− F1(Z

CO
(hS/k))}]

=

∫ 1

0

∫ ξ4

0

∫ ξ3

0

∫ ξ2

0

{F1(ξ2)− F1(ξ1)}{F1(ξ4)− F1(ξ3)}

× f
( jn

k ),(
(j+1)n

k ),(hn
k ),(

(h+1)n
k )

(ξ1, ξ2, ξ3, ξ4)dξ1dξ2dξ3dξ4.

When h = j + 1, a similar triple integral results.
In these expressions f(m),(n)(ξ1, ξ2), the joint density
of two order statistics from the control population is
given by N !

(m−1)!(n−m−1)!(N−n)!F
n−1
0 (ξ1)f0(ξ1){Fn−1

0 (ξ2) −
Fn−1
0 (ξ1)}n−m−1f0(ξ2){1 − Fn−1

0 (ξ2)}N−n, where ξ1 ≤ ξ2.
Likewise, the joint density f(m),(n),(s),(t)(ξ1, ξ2, ξ3, ξ4)
of four order statistics in the control population
is N !

(m−1)!(n−m−1)!(s−n−1)!(t−s−1)!(N−t)!F
m−1
0 (ξ1)f0(ξ1) ×

{F0(ξ2) − F0(ξ1)}n−m−1f0(ξ2){F0(ξ3) − F0(ξ2)}s−n−1 ×
f0(ξ3)){F0(ξ4) − F0(ξ3}t−s−1f0(ξ4){1 − Fn−1

0 (ξ4)}N−t,
where ξ1 ≤ ξ2 ≤ ξ3 ≤ ξ4. The related order statistics
formula can be found in [5]. In these formulas, the re-
quired distributions and densities in cases and controls are
given by:

F1(Z)≡ P(Z ≤ z|Y =1)

= P(Z ≤ z, Y =1)/P(Y =1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(1+ exp(−μ))−1/P(Y =1) for z≤ 1/k;(j−2∑
x=0

(1+ exp(−μ−βx))−1/k+(1+ exp(−μ

− (j− 1)β))−1{z− (j− 1)/k}
)
/P(Y =1)

for (j− 1)/k <z≤ j/k, 2<j≤ (k− 1);(k−2∑
x=0

(1+ exp(−μ−βx))−1/k+(1+ exp(−μ

− (k− 1)β))−1{z− (k− 1)/k}
)
/P(Y =1)

for (k− 1)/k <z

and by

F0(Z)≡ P(Z ≤ z|Y =0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(1+ exp(μ))−1/P(Y =0) for z≤ 1/k;(j−2∑
x=0

(1+ exp(μ+βx))−1/k+(1+ exp(μ

+(j− 1)β))−1{z− (j− 1)/k}
)
/P(Y =0)

for (j− 1)/k < z≤ j/k, 2<j≤ (k− 1);(k−2∑
x=0

(1+ exp(μ+βx))−1/k+(1+ exp(μ

+(k− 1)β))−1{z− (k− 1)/k}
)
/P(Y =0)

for (k− 1)/k < z

The corresponding densities are

f1(Z|Y =1)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1+ exp(−μ))−1/P(Y =1) for z≤ 1/k;

(1+ exp(−μ− (j− 1)β))−1)/P(Y =1)

for (j− 1)/k <z≤ j/k, 2<j≤ (k− 1);

(1+ exp(−μ− (k− 1)β))−1)/P(Y =1)

for (k− 1)/k <z

and

f0(Z|Y =0)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1+ exp(μ))−1/P(Y =0) for z≤ 1/k;

(1+ exp(μ+(j− 1)β))−1)/P(Y =0)

for (j− 1)/k < z≤ j/k, 2<j≤ (k− 1);

(1+ exp(μ+(k− 1)β))−1)/P(Y =0)

for (k− 1)/k < z

Here P(Y = 1) = 1−P(Y = 0) = (1/k)(
∑k−1

j=0 (1+exp(−μ−
βdj))

−1is the probability of disease in the source popula-
tion.

3. NUMERICAL RESULTS

We first present data on estimated size and power ob-
tained from simulations and later compare these results with
calculations from the asymptotic formulas in Section 2. Be-
cause simulated results usually agreed very well with the
asymptotic theory (see Figures 5–8), we only present Fig-
ures for the simulated results. For cohort designs, we sim-
ulated by drawing Z from a uniform U(0, 1) distribution,
determining X from known quantiles for Z, and drawing
Y from the Bernoulli distribution in equation (1). After N
such triplets were generated, values W for each triplet were
computed from the order statistics of Z as described in Sec-
tion 2.1.2. For case-control designs, we used the distributions
F1(z) ≡ P(Z ≤ z|Y = 1) and F0(z) ≡ P(Z ≤ z|Y = 0)
given in Section 2.2.3 to generate Z for cases and controls.
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For cases, applying the inverse probability transformation
to a uniform U(0, 1) random variable yielded Z = F−1

1 (U).
A random sample of Z values for controls were likewise gen-
erated from Z = F−1

0 (U). Values of X were determined by
comparing Z to quantiles of the uniform U(0, 1) distribu-
tion, both for cases and controls. Values of W were deter-
mined for controls by the order statistics of in controls, and
values of W for cases were obtained by comparing the Z val-
ues for cases with the order statistics of Z in controls (Sec-
tion 2.2.2).

The simulation results were based on 10, 000 repetitions
independently for each of the parameter settings studied. We
conducted simulations for N = {80, 120, 160, 200, 240, 280,
320, 360}, k = {2, 3, 4, 5} and for a range of odds ratios
comparing highest to lowest categories. Using these data we
sought to determine combinations of N and k that assured
that power loss was no more than 5% from estimating quan-
tiles.

Figure 1 depicts the simulated power for cohort studies
with k = 4 categories (upper panels) or k = 2 categories (lo-
wer panels) as a function of the odds ratio between the high-
est and the lowest categories, denoted as exp(β∗), and shown
on a log scale. Values of μ ∈ {−2, 0, 1} are shown for sample
sizes N = 120 (circles) and N = 280 (triangles). Power for
the test Q based on known exposure scores, X, is shown in
open symbols, and for the test Q′ based on estimated expo-
sure scores, W , in solid symbols. Estimated size was close
to the nominal 0.05 level for an odds ratio of 1.0 in each
case. The power of the test Q′ is less than that of the test
Q. For small N , this difference is appreciable for large val-
ues of |β∗|, namely both for large and small odds ratios. For
example, for exp(β∗) = 4 the powers of the test Q are re-
spectively 0.63, 0.94, 0.87, and 1.00 for {μ = −2, N = 120,
k = 4}, {μ = −2, N = 280, k = 4}, {μ = −2, N = 120,
k = 2} and {μ = −2, N = 280, k = 2}. The corresponding
powers of Q′ are 0.60, 0.93, 0.81, 0.99. For k = 4, over a
range of values of exp(β∗) in [0.1, 8] and μ in {−2, 0, 1}, the
differences in power (power of Q minus power of Q′) ranged
from −0.004 to 0.058 for N = 120 and from −0.003 to 0.026
for N = 280. For k = 2, over a range of values of exp(β)
in [0.1, 4] and of μ in {−2, 0, 2}, the differences in power
ranged from −0.005 to 0.08 for N = 120 and from 0 to 0.05
for N = 280.

To get a clearer view of which combinations of k and N
lead to a power loss greater than 5% when quantiles are
estimated in cohort data, we plotted the power loss in per-
cent against the odds ratio exp(β∗) (Figure 2). For k > 3,
the power loss from using empirical quantiles was less than
5% even for N = 80 (with the exception of the single point
exp(β∗) = 0.1, μ = −2, and k = 4). When k = 2 or 3,
using estimated quantiles can lead to a decrease in power
exceeding 5% with a small sample size such as N = 80 or
120, both for large and small odds ratios.

For case-control data, we are most interested in the rare
disease scenario, i.e. μ = −6, but for completeness, we in-

clude μ ∈ {−6, 0, 1} (Figure 3). The number of cases R
equals the number of controls S in these numerical studies.
Estimated size was close to the nominal 0.05 level for an
odds ratio of 1.0 in each case. For a rare disease (μ = −6)
with k = 4, the power of Q̃ nearly coincides with that of
Q for odds ratios above 1.0. Indeed, the simulated power
of Q̃ can exceed that of Q very slightly, especially if odds
ratio is slightly above 1.0. For N = 360, there is very little
discrepancy for an odds ratio above 1.0. For an odds ratio
below 1.0, the power of Q can exceed that of Q̃ apprecia-
bly, especially for N = 120. For example, with N = 120,
k = 4, and odds ratio 0.3 comparing the highest to the
lowest category, the power of Q is 0.6689, the power of Q̃
is 0.580, and the reduction in power is 0.088. Differences
ranged from −0.0195 to 0.088 for N = 120 and from −0.017
to 0.049 for N = 360. For k = 2 with μ = −6, the esti-
mated sizes of the tests Q and Q̃ were respectively 0.054
and 0.051 for N = 120, and 0.051 and 0.052 for N = 360.
The power of Q tended to exceed that of Q̃ both for odds
ratios above 1.0 and for odds ratios below 1.0 (upper left
panel, Figure 3). There is a small region of positive odds ra-
tios near 1.0 for which Q̃ had slightly greater power than
Q, but the differences were so small as to be impercep-
tible in Figure 3. Larger losses in power from the use of
Q̃, compared to Q, are evident for μ = 0 or 2 (lower
panels, Figure 3). Although case-control designs are usu-
ally used for rare diseases (μ = −6), they could be em-
ployed for common diseases to avoid the need for prospec-
tive follow-up or to reduce costs if exposure assessment is
expensive.

To identify values of k and N for which the power of
Q̃ is appreciably less than that of Q, we plotted the loss
of power against exp(β∗) for case-control data (Figure 4).
For the rare disease setting μ = −6, and with k ≥ 3, power
loss from estimating quantiles is within the range [−5%, 5%]
even for N = 80 for odds ratio exp(β∗) > 0.5. Power loss
can exceed 5% for odds ratios below 0.5, however, if N = 80
or 120. For k = 2, the power loss exceeds 5% for a range
of odds ratios exp(β∗) greater than 3 for N = 80 and 120
and also for odds ratios < 0.7 (Figure 3). For μ = 0 and
μ = 2 (Figure 4), some very large power losses are identi-
fied with N = 80 or 120, even for k = 5, when the odds
ratio is less than 0.7. For odds ratios above 1.6, the loss of
power is appreciable for k = 2 and 3, but less for k = 4
or 5.

We also compared these simulated results with the re-
sults based on asymptotic theory for cohort data (equa-
tions (3) and (5)) and for case-control data (equations (7)
and (9)). The agreement between theory and simulations
was excellent for N = 120 and N = 360, but we noted small
differences for N = 80. Figures 5–8 for N = 80, 120 and
360 provide details respectively for cohort designs for X,
cohort designs for W , case-control designs for X and case-
control designs for W . For cohort data theoretical power
agrees well with simulations for X, but for W , with N = 80
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Figure 1. Estimated power from simulations in cohort designs for the Cochran-Armitage trend test Q with known quantiles
(open symbols) and for the trend test Q′ with estimated quantiles (solid symbols). In each picture, circles and triangles

correspond to total sample size N = 120 and 280 respectively. The upper panel is for k = 2 categories and the bottom panel
is for k = 4 categories.

and k = 2, theoretical power is lower by 0.007 to 0.051 (ab-
solute power difference) for small odds ratios exp(β∗) < 1
when μ = −2 and by 0.046 for large odds ratios when μ=1.
For cohort data with N = 80 and k = 4, theoretical power
for Q′ exceed estimates from simulations by 0 to 0.072 for
small odds ratios when μ = −2 and agrees well with simula-

tions for large odds ratios. For case-control data, theoretical
power agrees well with simulations for X and in most sce-
narios for W except for small N with μ= − 6 and k=2.
The discrepancy between theory and simulations for N =80
ranges from −0.056 to 0.039 and for N = 120 ranges from
−0.041 to 0.035.
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Figure 2. Estimated power loss in percent for cohort data from using estimated quantiles of risk instead of known population
quantiles as a function of odds ratio (comparing the highest to lowest category; abscissa; on log scale) and sample size

N = 80, 120, 280. Results are shown for k = 2, 3, 4 or 5 exposure categories and for logistic intercepts μ = −2, 0, or 1. Power
losses were estimated from simulations.

4. DISCUSSION

We evaluated the power of Cochran-Armitage trend test
for cohort designs and for case-control designs in which sam-
ple quantiles of exposure in the cohort or in controls from a
case-control study, respectively, are used to define the cut-
points that separate exposure score categories. In fact, many

studies proceed in this manner, even though power calcu-
lations for these studies often assume that the population
quantiles for the exposure categories are known, and that
disease risk depends on the known exposure scores through
equation (1). It was therefore of interest to examine the
procedures based on sample quantiles and see if the results
based on known population quantiles were misleading.

244 H. Li and M. H. Gail



Figure 3. Estimated power from simulations in case-control designs for the Cochran-Armitage trend test Q with known
quantiles (open symbols) and for the trend test Q̃ with estimated quantiles (solid symbols). In each picture, circles and
triangles correspond to total sample size N = 120 and 360 respectively. The upper panel is for k = 2 categories and the

bottom panel is for k = 4 categories.

For cohort studies, the trend tests based on estimated
quantiles had near nominal size. For k ≥ 4 power loss
was less than 0.05 except for an uncommon outcome μ =
−2, N = 80, and a very small odds ratio, 0.1, compar-
ing highest to lowest category (Figure 2). With k = 2
or 3, power losses can exceed 0.05 with N = 80 or 120

for large and small odds ratios. Therefore to avoid power
loss above 5% from using sample quantiles in cohort stud-
ies with N = 120 or fewer subjects, we recommend us-
ing at least k = 4 categories. For larger cohorts such as
N = 280 or greater, loss of power is minimal, even with
k = 2.
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Figure 4. Estimated power loss in percent for case-control data from using estimated quantiles of risk instead of known
population quantiles as a function of odds ratio (comparing the highest to lowest category; abscissa; on log scale) and sample
size N = 80, 120, 360. Results are shown for k = 2, 3, 4 or 5 exposure categories and for logistic intercepts μ = −6, 0, or 1.

Power losses were estimated from simulations.

For case-control studies of rare diseases (μ = −6), the
trend tests based on estimated quantiles also had near nom-
inal size. For case-control studies with N = 360 cases plus
controls, power loss from estimating quantiles from con-
trols is minimal. For smaller studies (e.g. N = 80 or 120)
the power loss can exceed 0.05 for odds ratios of 0.7 or
less, even with k = 5; for odds ratios of 3.5 or more,

power loss can exceed 0.05 if k is less than 4. In the lat-
ter case, using k = 4 or 5 largely eliminates this power
loss. Based on these analyses, we would recommend that
to avoid power loss from estimating quantiles, case-control
studies of rare diseases have a sample size of 360 or more
cases plus controls. Smaller sample sizes won’t lead to ap-
preciable power loss from estimating quantiles if k is 4 or
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Figure 5. Theoretical (open symbols) and simulated (solid symbols) power estimates in cohort designs for the
Cochran-Armitage trend test with known quantiles X with k = 2 (upper panel) and with k = 4 (lower panel) with k = 2. The

left, middle and right columns correspond to μ = −2, 0, 1 respectively.

more and the odds ratio comparing highest to lowest ex-
posure categories exceeds one. For case-control studies of
common events, such as progression of previously diagnosed
macular degeneration, power losses can be more extreme
but can be controlled by using the guidelines for rare dis-
ease.

In the Introduction, we discussed the cohort study of
[9], which was designed to relate glycemic index, grouped
by quintiles, to the risk of uterine leiomyoma. Because
N = 21, 861 in this study, there is no power loss from esti-
mating quintiles. On the other hand, [6] reported on a cohort
study of renal allograft rejection in 91 transplanted patients.
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Figure 6. Theoretical (open symbols) and simulated (solid symbols) power estimates in cohort designs for the
Cochran-Armitage trend test with known quantiles W with k = 2 (upper panel) and with k = 4 (lower panel) with k = 2. The

left, middle and right columns correspond to μ = −2, 0, 1 respectively.

They were interested in studying the effects of continuous
immunologic parameters, such as the percentage of lympho-
cytes that expressed an immunologic marker, on the risk of
rejection. Their primary analysis compared marker percent-
ages in those who did or did not have allograft rejection. Had
they instead fit a logistic model for risk of rejection in this

small cohort based on quantiles of the distribution of marker
percentage, it would be necessary to use at least k = 4
categories to avoid power loss from estimating quantiles.
Likewise consider the small case-control study of staining
intensity in 91 cases of esophageal cancer and 103 controls
[1]. Because the investigators used k = 5 categories based
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Figure 7. Theoretical (open symbols) and simulated (solid symbols) power estimates in case-control designs for the
Cochran-Armitage trend test with known quantiles X with k = 2 (upper panel) and with k = 4 (lower panel) with k = 2. The

left, middle and right columns correspond to μ = −6, 0, 1 respectively.

on quintiles, power loss from estimating quintiles should be
less than 0.05, provided that risk increased with screening
intensity, as was the case in these data (Figure 4).

Our work addresses a different problem and uses differ-
ent analytical techniques than the paper by [3]. They con-
sidered the joint distribution of two continuous exposures,
calculated the quantiles of each marginal distribution, and

developed the joint asymptotic distribution of counts in cells
formed by jointly categorizing the two exposures based on
their respective quantiles. The asymptotic theory has appli-
cations to problems such as calculating the distribution of
the kappa statistic and other measures of agreement. [3] did
not consider relating a categorized exposure to an outcome,
as in the current paper, however.
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Figure 8. Theoretical (open symbols) and simulated (solid symbols) power estimates in case-control designs for the
Cochran-Armitage trend test with known quantiles W with k = 2 (upper panel) and with k = 4 (lower panel) with k = 2. The

left, middle and right columns correspond to μ = −6, 0, 1 respectively.

Our methods for cohort data are simpler and quite differ-
ent from those needed for case-control data. The simplicity
of the approach for cohort data derives from the facts that
quantiles are estimated from the entire sample and that the
problem can be treated as a measurement error problem
with errors in a baseline covariate. In contrast, for the case-
control design, quantiles are estimated from controls only,

and, with respect to the retrospective likelihood, catego-
rization affects the outcomes, rather than the conditioning
variable (case status).

The guidelines we present and Figures 1–4 give informa-
tion on the effects of estimating quantiles on study power for
a broad range of cohort and case-control designs. However,
the practitioner who is concerned about the potential loss
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in power from using estimated quantiles, especially when
the sample size is small (e.g. less than 120), can estimate
power with simulations, as described in Section 3. This sim-
ulation method is applicable regardless of the actual distri-
bution of exposure, because the category-based trend tests
depend only on ranks. The asymptotic power computations
in this paper are likewise general. They are based on theory
for order statistics and require numerical integrations (see
Section 2). Asymptotic theory and simulations agree well
for N = 120 and N = 360, but simulations are preferred
for sample sizes such as N = 80, for which the theoretical
power deviates slightly from the simulated estimates.
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