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In the statistical analysis of spatial point patterns, it is
often important to investigate whether the point pattern
depends on spatial covariates. This paper describes non-
parametric (kernel and local likelihood) methods for esti-
mating the effect of spatial covariates on the point process
intensity. Variance estimates and confidence intervals are
provided in the case of a Poisson point process. Techniques
are demonstrated with simulated examples and with appli-
cations to exploration geology and forest ecology.
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1. INTRODUCTION

A common problem in the statistical analysis of spatial
point patterns is to investigate the dependence of the point
pattern on spatial covariates. Applications include spatial
epidemiology (e.g. disease risk as a function of environmen-
tal exposure), spatial ecology (e.g. habitat preferences of or-
ganisms), exploration geology (e.g. prospectivity of mineral
deposits predicted from survey data) and seismology.

Parametric models for this dependence, i.e. spatial point
process models which include an effect due to spatial co-
variates, have been fitted to spatial point pattern data since
the 1970’s [1, 7, 15, 19, 26, 29, 60]. Formal hypothesis tests
for the dependence of a point process on a spatial covariate
function, under parametric assumptions, were developed in
[11, 23, 48, 56, 66].

Nonparametric estimation of the effect of a spatial co-
variate on a spatial point process has received less attention
until recently. An exception is the special case of spatial rela-
tive risk or spatial residual risk where the covariates are the
Cartesian coordinates [12, 13, 25, 38, 43, 44] and/or the time
coordinate [28, 57]. Nonparametric estimation is important
here because simple parametric models are inappropriate,
and the sample size is large.
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In this paper we consider spatial point process models
that depend on one or more spatial covariates with continu-
ous numerical values. We assume the point process intensity
is a function of the covariates, and study nonparametric esti-
mators of this function. Our estimators are rescaled versions
of several existing kernel estimators for a probability density
from biased sample data [30, 42] and their analogues using
local likelihood density estimation [39, 49, 50]. Related ker-
nel estimators were proposed in [33, 34].

Suppose the dataset is a finite set y of points in some
d-dimensional space representing the locations and/or oc-
currence times of events. Additionally we have the values
X(u) of a spatial covariate (real- or vector-valued) at every
spatial location u. We model y as a realisation of a spatial
point process Y (often, but not necessarily, assumed to be a
Poisson process) with intensity function λ(u) depending on
X(u),

(1) λ(u) = ρ(X(u))

where ρ is a function to be determined. This paper proposes
nonparametric estimators of ρ.

In ecological applications where the points are the loca-
tions of individual organisms, ρ is a resource selection func-
tion [53] reflecting preference for particular environmental
conditions x. In geological applications where the points are
the locations of valuable mineral deposits, ρ is an index of
the prospectivity [14] or predicted frequency of undiscovered
deposits as a function of geological and geochemical covari-
ates x.

The simplest and most popular parametric model for de-
pendence of Y on X is the loglinear model

(2) λ(u) = exp(β�X(u))

where β is a parameter vector. In applied literature there
appears to be frequent confusion between the parametric
loglinear model (2) and the nonparametric general relation-
ship (1).

Figure 1 shows a motivating example in which the points
are the locations of gold deposits observed in a geologi-
cal survey of the Murchison region of Western Australia
[68]. Covariate information includes the locations of geo-
logical faults (thick lines). The covariate of primary interest
is X(u), the distance from u to the nearest fault, shown in
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Figure 1. Murchison data. Left: Points: 255 gold deposit
locations in 330× 400 km study region. Right: Covariate:

geological faults in the same region.

Figure 2. Contours of distance to nearest fault in the
Murchison data.

Figure 2. Models of the form (1) postulate that the abun-
dance of gold deposits depends on distance from the nearest
fault. If such a model can be extrapolated to other spatial
regions, then the observed pattern of faults in an exploration
province can be used to identify areas of high “prospectiv-
ity” where gold deposits are more likely [11, 32, 45].

A popular technique for analysing data such as Figure 1
is pixel-based logistic regression [1]. The study region is di-
vided into pixels; in each pixel the presence or absence of
any data points is recorded; then logistic regression is used
to predict the probability of the presence of a point as a
function of predictor variables. Contrary to assertions in the
GIS literature that logistic regression is a “nonparametric”
technique (e.g. [47, p. 24]), pixel-based logistic regression is
essentially equivalent to fitting a Poisson point process with
intensity of loglinear form (2). See [9, 67]. True nonparamet-
ric estimation of ρ in the general form (1) is studied in this
paper.

In practical applications, a nonparametric estimate of ρ
may be the ultimate goal; alternatively a nonparametric es-

timate may serve as an initial guide for building paramet-
ric models (analogous to plotting p against x in binary re-
gression [22]), or as a diagnostic for validating a parametric
model.

Nonparametric estimation of ρ is closely connected to es-
timation of a probability density from biased sample data
[30, 42]. Under regularity conditions, ρ is proportional to the
ratio of two probability densities, the numerator being the
density of covariate values at the points of the point process,
while the denominator is the density of covariate values at
random locations in space. Estimation of ρ is also related to
the estimation of relative densities [37].

Estimation of a spatial point process intensity is slightly
different from estimation of a probability density in several
ways. First, the intensity function is not normalised (i.e.
not required to integrate to unity). Second, in spatial data
analysis it may be inappropriate or contentious to assume a
Poisson point process (corresponding to assuming i.i.d. ran-
dom variables in density estimation) so that techniques for
estimation of intensity are required to remain valid for a gen-
eral point process. Third, the assumption (1) may be false,
and the possibility of misspecification must be considered.

Section 2 lists our technical assumptions. Section 3 de-
rives the basic formulae for ρ. Section 4 develops kernel
estimators for ρ, and confidence intervals for ρ assuming
a Poisson process. Section 5 develops alternative nonpara-
metric estimators based on local likelihood. Various exten-
sions are discussed in Section 6. The method is tested on
synthetic examples in Section 7, on the Murchison data in
Section 8, and on an ecological dataset in Section 9. Sec-
tion 10 describes our computational strategy and software
implementation.

2. ASSUMPTIONS AND PREREQUISITES

For simplicity we assume the random points lie in d di-
mensional Euclidean space R

d, where d is typically 1, 2 or
3. However our methods apply to point processes in general
spaces; the graphical methods are limited by the dimension
of the values of the covariate X, rather than the domain of
the point process.

A spatial point pattern is a finite set y = {y1, . . . , yn}
of points observed in a sampling domain W in R

d, where
neither the number n of points nor their locations are fixed
in advance. The sampling domain W is assumed to have fi-
nite positive volume. The values of the covariate function
X : W → R

m are assumed to be known exactly at all lo-
cations u ∈ W . In practice, the covariate values may have
to be spatially interpolated from observed values at a finite
set of locations uj but we do not consider the errors arising
from this step.

We assume y is a realisation of a point process Y on W
with intensity function λ(u), u ∈ W . Thus the number of
random points falling in any subregion A ⊂ W has expected
value

∫
A
λ(u) du. Sometimes we may additionally assume
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Y is a Poisson process. Processes with a singular intensity
measure, such as earthquake epicentres concentrated along
a geological fault, can be dealt with using a singular baseline
measure as explained in Section 6.1.

Throughout the paper we use the following two facts.
Suppose Y is any point process inW with intensity function
λ(u), and h : W → R is a real function. Then we have
Campbell’s formula

(3) E

[∑
i

h(yi)

]
=

∫
W

h(u)λ(u) du

provided
∫
W

|h(u)|λ(u) du < ∞. Additionally if Y is a Pois-
son process,

(4) var[
∑
i

h(yi)] =

∫
W

h(u)2λ(u) du

provided the right-hand side is finite [24, p. 188].

3. THEORY FOR A REAL COVARIATE

In this section we consider a single, real-valued covariate
function X on W , i.e. a function X : W → R. Let

(5) G(x) =
1

|W |

∫
W

1{X(u) ≤ x} du

be the spatial cumulative distribution function of X, where
|W | denotes the d-dimensional volume of the window W .
Equivalently G(x) = P{X(U) ≤ x} is the c.d.f. of the value
X(U) at a uniformly distributed random point U in W .
Assume G has derivative g; a sufficient condition is that X
be differentiable with nonzero gradient (see Appendix A.1).
It will be convenient to consider the unnormalised versions
G∗(x) = |W |G(x) and g∗(x) = |W |g(x).

We assume G∗ is known exactly, or to a very high accu-
racy. This is true when X is a spatial coordinate, or when
X values are known on a very fine pixel grid, and G∗ is well
approximated numerically.

Suppose Y is a point process inW with intensity function
of the form (1) for some function ρ. Then [24, p. 22], [59, p.
17] the values xi = X(yi) constitute a point process on R

with intensity function

(6) f∗(x) = ρ(x)g∗(x), x ∈ R.

This is the pivotal relationship between the observations xi

and the target function ρ. The expected number of points
in Y is

μ =

∫
W

λ(u) du =

∫
W

ρ(X(u)) du =

∫ ∞

−∞
ρ(x)g∗(x) dx.

Conditional on the number n of data points, the values
x1, . . . , xn are exchangeable, with marginal probability den-
sity f(x) = f∗(x)/μ. If Y is a Poisson process on W , then

the values xi constitute a Poisson process on R, and are
conditionally i.i.d. random variables given n. Hence

(7) ρ(x) =
f∗(x)

g∗(x)
= κ

f(x)

g(x)

where κ = μ/|W | is the average intensity. Apart from a scale
factor, ρ is a relative probability density for the distribution
of the values xi = X(yi) relative to the distribution that
would be obtained if the process Y had constant intensity
on W . For practical interpretation of results, it is important
that the values of ρ(x) are intensities, expressed in units
with dimension length−d.

If (1) does not hold, the formulae in this section remain
true when ρ(x) is replaced by ρ(x), a weighted average value
of λ(u) over the contour {u ∈ W : X(u) = x}. See Ap-
pendix A.2. This issue of misspecification does not arise for
density estimation in one-dimensional space.

4. KERNEL ESTIMATORS OF ρ

Kernel smoothing is the simplest nonparametric method
in this context, with advantages that include theoretical
tractability, superior computational speed and reliability,
and disadvantages including bias. In large datasets, rapid
computation is important and the bias of the kernel estima-
tor is tolerable for appropriate choices of bandwidth. Kernel
estimation of the intensity of a Poisson process is discussed
in [46, section 6.2, pp 236–250] including the optimal rate
of convergence.

Equation (6) shows that estimation of ρ is closely related
to estimating a probability density from a biased sample.
Jones [42] described two kernel estimators for this problem,
and El Barmi and Simonoff [30] a third kernel estimator
based on the probability integral transformation.

In our context the analogues of Jones’ estimators of ρ
from the observed values xi = X(yi) are the “ratio” form

(8) ρ̂R(x) =
1

g∗(x)

∑
i

k(xi − x)

and the “reweighted” form

(9) ρ̂W(x) =
∑
i

1

g∗(xi)
k(xi − x)

while the analogue of El Barmi and Simonoff’s “transforma-
tion” estimator is

(10) ρ̂T(x) =
1

|W |
∑
i

k(G(xi)−G(x)).

Here k is a smoothing kernel on the real line, and again G
is the spatial c.d.f. (5).

Guan [33] proposed a kernel estimator that is similar to
the ratio form (8). It is discussed below.
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The rationale for the ratio form (8) is the plug-in principle
applied to (7), since

(11) ρ̂R(x) =
f̂∗(x)

g∗(x)
= κ̂

f̂(x)

g(x)

where κ̂ = n/|W | is the usual unbiased estimator of κ (and
the MLE if Y is Poisson),

(12) f̂(x) =
1

n

∑
i

k(xi − x)

is the usual fixed-bandwidth kernel estimator of the density

f , and f̂∗(x) = nf̂(x) is the corresponding unnormalised
kernel estimator of f∗(x). The rationale for the reweighted
form (9) is that the random measure with masses 1/g∗(xi) at
the points xi has intensity ρ(x), by an application of (3). The
transformation estimator (10) is justified by the fact that
the values ti = G(xi) have intensity q(t) = |W | ρ(G−1(t))
on [0, 1] (see Appendix A.4).

In the context of density estimation, Jones [42] showed
that neither the ratio nor the reweighting estimator is uni-
formly optimal, but that the reweighting estimator has bet-
ter performance overall. A similar statement is likely to hold
in this context. The transformation estimator ρ̂T is a simple,
fast and appropriate form of variable-bandwidth smoothing
insofar as it depends on the covariate values but is otherwise
not adaptive to features of the point process. It is likely to
improve the accuracy of ρ̂(x) for values x where data are
scarce, and may also improve bandwidth selection. The es-
timator ρ̂T could also be edge-corrected at the endpoints 0
and 1 using standard techniques.

Computational implementation and performance are dis-
cussed in Section 10.

Assuming (1) holds, the expectation of ρ̂R(x) is, by (3),

E[ρ̂R(x)] =
1

g∗(x)

∫
W

k(X(u)− x)λ(u) du(13)

=

∫ ∞

−∞
k(x′ − x)ρ(x′)

g∗(x′)

g∗(x)
dx′

where the last expression is obtained by a change of vari-
ables from u to x′ = X(u). Similarly the reweighting and
transformation estimators have expectation

E[ρ̂W(x)] =

∫ ∞

−∞
k(x′ − x)ρ(x′) dx′(14)

E[ρ̂T(x)] =

∫ 1

0

k(t−G(x))ρ(G−1(t)) dt.(15)

The kernel estimators are biased, as usual (e.g. [17]) with
bias controlled by the kernel bandwidth and the regularity
of ρ and g∗ (with the exception that the regularity of g∗

does not affect the bias of ρ̂W). A proof for ρ̂R is given in
Appendix A.3.

Guan [33] proposed a kernel estimator that is similar
to the ratio form (8) except that g∗(x) is replaced by∫
W

k(X(u)−x) du, a kernel smoothed counterpart of g∗(x),
using the same kernel k for the numerator f∗(x) and denom-
inator g∗(x). However, the numerator and denominator are
based on datasets of different sizes, and this strategy will
typically lead to over-smoothing of the denominator g∗(x).
Calculations similar to those in Appendix A.3 show that
Guan’s estimator typically has greater bias than ρ̂R(x).

Bandwidth selection can be performed using existing
methods for bandwidth selection in density estimation, be-
cause of the close connection between the two problems.
Silverman’s rule of thumb using the fifth root of the number
of points [64, eq. (3.31), p. 48] performed well in our exam-
ples. Cross-validation methods [61, 63] tended to produce
unacceptably small bandwidths.

To construct approximate confidence intervals, we assume
additionally that Y is a Poisson process. Since the values xi

constitute a Poisson process with intensity f∗, the variance
of ρ̂R(x) for fixed x is, by (4),

var[ρ̂R(x)] = g∗(x)−2

∫
W

k(x−X(u))2λ(u) du(16)

= g∗(x)−2

∫ ∞

−∞
k(x− x′)2ρ(x′)g∗(x′) dx′

Similarly

var[ρ̂W(x)] =

∫ ∞

−∞
k(x− x′)2

ρ(x′)

g∗(x′)
dx′(17)

var[ρ̂T(x)] =
1

|W |

∫ 1

0

k(t−G(x))2ρ(G−1(t)) dt.(18)

In particular if k is the Gaussian kernel k(v) = kσ(v) =
(σ
√
2π)−1 exp(−v2/(2σ2)) then kσ(v)

2 = αkτ (v) where τ =
σ/

√
2 and α = 1/(2σ

√
π) = 1/(2τ

√
2π), so that pointwise

unbiased estimators of the variances (16)–(18) are, by (3),

v̂R(x) = αg∗(x)−2
∑
i

kτ (xi − x)(19)

v̂W (x) = α
∑
i

kτ (xi − x)

g∗(xi)2
(20)

v̂T (x) = α|W |−2
∑
i

kτ (ti −G(x))(21)

where again xi = X(yi) and ti = G(xi). This calculation
assumes g∗ (or equivalently G) is fixed and known.

For small bandwidths the variances of the three kernel
estimators behave as

(22) var[ρ̂(x)] ∼ ρ(x)

g∗(x)

as intuitively expected: g∗(x) plays the role of the “sample
size” for estimation of ρ(x) at small bandwidths. Estimator
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variance var[ρ̂(x)] decreases with sample size g∗(x), but in-
creases with intensity ρ(x), due to the variance properties
of the Poisson process.

The kernel estimators (8)–(10) of ρ(x) are asymptotically
normal under large-sample conditions, e.g. [46, p. 240]. How-
ever, confidence intervals for ρ(x) with good small-sample
properties are difficult to construct, because the natural esti-
mators of variance (19)–(21) have strong positive correlation
with the estimators ρ̂(x) themselves. This parallels the well-
known difficulty in constructing confidence intervals for a
probability density based on kernel estimates [16, 35, 36, 40].

In density estimation, the theoretically optimal band-
width for constructing confidence intervals is typically
smaller than the optimal bandwidth for point estimation.
However, this insight did not deliver any practical bene-
fit in our experiments, because confidence bands obtained
using smaller bandwidths were typically too irregular. Ac-
cordingly we propose constructing confidence intervals in the
naive form ρ̂(x)± z

√
v̂(x) from the estimators (8)–(10) and

variance estimators (19)–(21), where z is the 100(1−α/2)%
critical value of the standard normal distribution.

The assumption of a Poisson point process is not essen-
tial. For a general point process, the variance of the ker-
nel estimators can be expressed in terms of the intensity
and pair correlation function of the point process, using the
second order Campbell formula, e.g. [6, 33]. If the point
process is regular (negatively associated) then the Poisson
assumption leads to overestimates of the variance of ρ̂, and
conservative confidence intervals. Concern arises when the
point process is believed to be clustered (positively associ-
ated) so that the variance is underestimated by (19)–(21).
In this case, a more accurate variance estimate could be ob-
tained by estimating the pair correlation function, provided
we are willing to impose additional model assumptions, such
as second-order reweighted stationarity [5] or a Cox process
model [54]. However, explicit model assumptions do not sit
well with the nonparametric approach, and may be diffi-
cult to verify, especially in the case of clustered patterns
[10]. Alternatively, bootstrap confidence intervals might be
obtained by spatial resampling [52]. Further discussion is
beyond the scope of the present paper.

5. ALTERNATIVE NONPARAMETRIC
ESTIMATORS

Alternatives to kernel estimation of ρ include spline
smoothing, locally weighted regression [18] and local like-
lihood density estimation [39, 49, 50].

The appropriate counterparts of the kernel estimators
(8)–(10) can be determined by expressing these estimators
as multiples of the fixed-bandwidth kernel density estimator
f̂(x) = (1/n)

∑
i k(xi −x), and then replacing f̂ by another

nonparametric density estimator.
Let f̃(x | x1, . . . , xn) denote a nonparametric estimator

of the probability density based on observations xi, and

f̃(x | x1, . . . , xn;w1, . . . , wn) the corresponding estimator
when observations xi have prior weights wi. Then the coun-
terparts of the estimators (8)–(10) are

ρ̃R(x) =
κ̂

g(x)
f̃(x | x1, . . . , xn)(23)

ρ̃W(x) = (
∑
i

wi) f̃(x | x1, . . . , xn; w1, . . . , wn)(24)

ρ̃T(x) = κ̂ f̃(G(x) | G(x1), . . . , G(xn))(25)

where wi = 1/g∗(xi) and κ̂ = n/|W |.
The variance of the estimators (23)–(25) depends on

the choice of nonparametric density estimator f̃ . Here we
consider the case of local likelihood density estimation
[39, 49, 50] and assume Y is a Poisson process.

The local likelihood density estimator f̃ is asymptotically
normal in large samples. A normal approximation to log f̃ is
more accurate and more natural. Estimators of the variance
of log f̃ are implemented in open-source software such as the
locfit package [51].

Noting that all the estimators ρ̃ are of the form ρ̃(x) =

Mf̃(x), we have

var log ρ̃(x) = var logM+var log f̃(x)+2cov(logM, log f̃(x)).

Using the delta method we may approximate var logM ≈
(varM)/(EM)2 and

cov(logM, log f̃(x)) ≈ cov(M, f̃(x))

EM Ef̃
≈ E(ρ̃(x)− ρ(x))

ρ(x)
,

the relative bias of ρ̃(x), essentially equivalent to the relative

bias of f̃(x). Estimates of this quantity are available from
the local likelihood procedure.

For the ratio form (23) the scale factor is M = κ̂/g(x) =
n/g∗(x) so that var logM = var logN ≈ E(N)/(E(N))2 =
1/E(N).

For the reweighting estimator (24) we have M =∑
i 1/g

∗(xi) so that

EM =

∫
W

1

g∗(X(u))
λ(u)du

=

∫
1

g∗(x)
ρ(x)g∗(x)dx =

∫
ρ(x)dx

and

varM =

∫
W

1

g∗(X(u))2
λ(u)du

=

∫
1

g∗(x)2
ρ(x)g∗(x)dx =

∫
ρ(x)

g∗(x)
dx.

For the transformation estimator (25) we have M = κ̂ so
again var logM = var logN ≈ E(N)/(E(N))2 = 1/E(N).

These calculations yield approximations to the variance
of log ρ̃(x), which can be used to construct asymptotically
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valid confidence intervals for ρ(x) based on the asymptotic
normal distribution for log ρ̃(x). The finite-sample prop-
erties of these confidence intervals are likely to be bet-
ter than those of the confidence intervals for kernel es-
timates described in the previous section, because of the
abovementioned problems with variance estimation for ker-
nel smoothers.

6. EXTENSIONS

6.1 Relative risk model

Still assuming a real-valued covariateX, consider the gen-
eralization of (1) to

(26) λ(u) = ρ(X(u))B(u)

where B(u) is a fixed and known function, serving as a base-
line. For example, in applications to spatial epidemiology,
B(u) could be the spatially-varying density of the underly-
ing population of susceptible individuals, and ρ(X(u)) the
relative risk of the events represented by the point process,
expressed as a probability or rate relative to the susceptible
population, and depending on an explanatory “risk factor”
X [26, 27]. Alternatively B(u) may be an artificial baseline
which serves to stabilise estimator variability. The theory of
Section 3 can be adapted to this model, yielding the basic
identity

(27) ρ(x) =
f∗(x)

g∗B(x)
= κB

f(x)

gB(x)

where g∗B is the derivative of the B-weighted spatial c.d.f.
of X

(28) G∗
B(x) =

∫
W

1{X(u) ≤ x}B(u) du

and κB = μ/
∫
W

B(u) du is the usual unbiased estimator
(and MLE in the Poisson case) of the constant κ in the
constant relative risk model λ(u) = κB(u).

The estimators proposed in Sections 4 and 5 can be ap-
plied simply by replacing g, g∗, G,G∗ by their B-weighted
counterparts gB , g

∗
B , GB , G

∗
B respectively. Properties of ρ̂

described in Sections 4 and 5 and Appendix A.3 also ap-
ply mutatis mutandis. Thus, for example, the B-weighted
analogue of (8) is

(29) ρ̂R,B(x) =
1

g∗B(x)

∑
i

k(xi − x).

The practical interpretation of the relative risk (or “residual
risk”) term ρ(x) in this Section is slightly different from that
of the absolute intensity ρ(x) in previous Sections. Typically
the baseline function B(u) is a valid intensity function. In
that case, the relative risk ρ(x) is dimensionless, and the

constant value ρ(x) ≡ 1 corresponds to the baseline or null
model λ(u) = B(u).

In many applications, the baseline B(u) would also be
estimated from data. Variance estimation and interval esti-
mation of ρ(x) then depend on the distribution of the esti-
mator B̂(u) and on the joint distribution of the observations
xi with B̂(·). Examples of this analysis arise in case-control
studies in spatial epidemiology [38, 43, 44].

Alternatively the baseline intensity function B(u) may
be replaced by a baseline intensity measure. Then (28) is
replaced by an integral with respect to the baseline measure,
and similarly for gB , g

∗
B , GB . This accommodates situations

where the point process intensity is singular, for example,
where points are concentrated on a curve.

6.2 Vector covariate

Now consider an m-dimensional vector-valued covariate
function X(u) = (X1(u), . . . , Xm(u)). Multivariate density
estimation from weighted samples was discussed in [2].

The approach described above can be applied provided
the spatial distribution of X is absolutely continuous on
R

m. The counterpart of G∗ is the unnormalised joint c.d.f.

G∗(x1, . . . , xm) =

∫
W

1{X1(u) ≤ x1, . . . , Xm(u) ≤ xm} du.

The ratio estimator (8) and reweighting estimator (9), and
their counterparts (23)–(24) for relative/residual risk (Sec-
tion 6.1), can be applied directly to anm-dimensional vector
covariate function X using an m-dimensional kernel k. The
variance formulae (16)–(17) generalise immediately by re-
placing one-dimensional bym-dimensional integration, since
they are derived from (4).

Absolute continuity of the distribution of X implies, in
particular, that the image X(W ) = {X(u) : u ∈ W}
must not be contained in any lower-dimensional subset of
R

m. This excludes algebraically dependent covariates such
as polynomials (i.e. where Xi(u) = Z(u)i is the ith term in
a polynomial in a real-valued covariate Z).

Polynomials are a special case of the separable model

(30) λ(u) = ρ1(X1(u)) . . . ρm(Xm(u))A(u)

where ρj are functions to be estimated, and A(u) is a known
function serving as a baseline. When attention is focused
on one of the functions ρj , holding others fixed, (30) col-
lapses to a model of the form (26). The technique of sec-
tion 6.1 applies, and ρj can be estimated by the analogue of
(29). The appropriate variance calculations depend on the
method used to estimate the reference function B.

If covariates are high-dimensional and if prior information
is lacking, it becomes important to reduce dimensionality.
Dimension reduction techniques for spatial point processes
were proposed in [34].
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7. SIMULATED EXAMPLES

Figure 3 shows simulated realisations of two Poisson point
processes, with intensities

λ(u) = exp(β0 + β1dR(u))(31)

λ(u) = exp(β0 + β2dR(u)
2)(32)

respectively, where (β0, β1) = (5,−3) for the left panel and
(β0, β2) = (5,−4) for the right panel. Here dR(u) denotes the
shortest distance from a given location u to the set of lines
arranged in the shape of the letter “R” shown in the Figure.
Both models (31) and (32) are of the general form (1) with
covariate X = dR and covariate effects ρ(x) = exp(β0+β1x)
and ρ(x) = exp(β0 + β1x

2) respectively.

Figure 3. Simulated data. Left: intensity a loglinear function
of distance to letter R. Right: intensity a log-quadratic

function of distance to letter R.

Figure 4 shows the ratio-form kernel estimates ρ̂R as
a function of the covariate X(u) = dR(u) for these two
datasets, calculated by (8), with ±2 standard deviation
(nominally 95% pointwise confidence) interval calculated
from the variance estimate (19). The true functions ρ are
also shown; the estimates of ρ appear to be quite accurate.
Rug plots [65] show the values xi.

The estimated standard deviation in Figure 4 is roughly
constant as a function of distance x (apart from erratic be-
haviour at large x due to the paucity of data). This is acci-
dental; in the present example, ρ and g are both decreasing
functions of x with roughly similar shape, so that var[ρ̂(x)]
does not vary greatly, by (22).

Figure 5 shows all six estimates (8)–(10) and (23)–(25)
for the data in the right panel of Figure 3. The ratio and
reweighting estimates are very similar here, while the trans-
formation estimate is slightly different. For small x values,
the kernel estimates (left column) are overestimates of ρ,
while the local likelihood estimates (right column) are gen-
erally more accurate. Note that the confidence bands for
the kernel estimates (left column) are pointwise 95% con-
fidence limits, but the confidence bands for the local like-
lihood estimates (right column) are simultaneous 95% con-
fidence limits, due to a technical limitation of the locfit

package.
For comparison, Figure 6 shows the maximum likelihood

estimate of ρ for a model of the correct parametric form (32)
fitted to the data in the right panel of Figure 3, together with
the asymptotic (likelihood based) pointwise 95% confidence
bands.

In other experiments we have found that the results
obtained using the ratio, reweighting and transformation
methods are generally similar, except that the ratio method
is more sensitive to smoothing of g.

Figure 4. Kernel estimates of ρ (thick solid lines) for the simulated point pattern datasets in Figure 3 using the ratio form (8),
with pointwise two-standard-deviation confidence limits (grey shading). Correct function ρ also shown (thin solid lines). Left:

left panel of Figure 3. Right: right panel of Figure 3.
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Figure 5. Six estimates of ρ for the simulated point pattern dataset in the right panel of Figure 3. Left column: kernel
estimates. Right column: local likelihood estimates. Top row: ratio method. Middle row: reweighting method. Bottom row:

transformation method. Estimate ρ̂ (thick solid lines), pointwise or simultaneous 95% confidence limits (grey shading), correct
function ρ (thin solid lines).
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Figure 6. Maximum likelihood estimate of ρ for the right
panel of Figure 3 fitted using the correct parametric form.

Estimate ρ̂ (thick solid lines), pointwise
two-standard-deviation confidence limits (grey shading),

correct function ρ (thin solid lines).

8. MURCHISON DATA

The Murchison data were introduced in Figure 1. The
covariate of primary interest is d(u) = distance from u to the
nearest geological fault, shown in the right panel of Figure 1.

To deal with edge effects, we restrict attention to the
subset W� = {u ∈ W : d(u) ≤ b(u)} of the study region
W , where b(u) denotes the shortest distance from u to the
boundary of W . This subset is shown in Figure 7. By the
“local knowledge principle” [62, pp. 11,49,62], [3] W� is the
largest set on which the value of d(u) is computable from
observations inside W .

Figure 8 shows the six estimates ρ̂ for the Murchison gold
data of Figure 1 (in the restricted set W�) as a function of
distance from the nearest fault. The estimated standard de-
viation of ρ̂ is a generally decreasing function of distance,
because the density g of the spatial distribution of the dis-
tance covariate is decreasing.

Figure 8 suggests ρ is approximately an exponential func-
tion, except for a possible bump at distance x = 5 km. This
impression is confirmed when the y axis is plotted on a log
scale, shown in the left panel of Figure 9. If nonparametric
estimation is used as a preliminary step before choosing an
appropriate parametric model, then Figure 8 would support
the initial choice of a loglinear model

(33) λ(u) = exp(α+ βd(u))

where α, β are parameters to be fitted. This is equivalent
to pixel-based logistic regression of the probability of the
presence of a gold deposit against distance to nearest fault
[1, 9, 67]. We estimated the parameters α, β by maximum
likelihood [9].

Figure 7. Modification of covariate to avoid edge effects.
Contours of distance to nearest fault (thin solid lines) shown

within the restricted domain W� (dotted lines).

Next we apply the techniques for vector-valued covariates
given in Section 6.2. Relative to the loglinear model (33),
Figure 10 shows the relative risk estimate ρ̂ as described in
Section 6.2, using the reweighting method, for the vector co-
variate (Z1(u), Z2(u)), where Z1(u) = X(u) is the distance
to the nearest fault, and Z2(u) is the geographic northing
(Cartesian y-coordinate). This suggests that the fitted log-
linear relationship (33) gives an underestimate of the true
abundance for small distances, and an overestimate for large
distances.

Figure 11 shows the spatial relative risk estimate ρ̂ where
Z1, Z2 are the geographic easting and northing, correspond-
ing to Cartesian x and y-coordinates respectively. This is
an estimate of the familiar spatially-varying residual risk
relative to the fitted model (33). This shows a clear depar-
ture from the loglinear model (33). In the northeast corner,
there is an overdensity of gold relative to the loglinear model
(i.e. the model underestimates the true abundance of gold
deposits) while the northwest and southeast corners show
an underdensity (the model overestimates the true abun-
dance). This strongly suggests that other spatial covariates
need to be taken into account: these might be geostructural
or geochemical observations, or information about the sur-
vey effort.

A perfunctory analysis of the Murchison data using pixel-
based logistic regression, equivalently fitting a Poisson pro-
cess with loglinear intensity (33), would probably have failed
to identify key features of these data that were detected us-
ing nonparametric estimation.

9. BEILSCHMIEDIA DATA

The top panel of Figure 12 shows the positions of 3605
trees of the species Beilschmiedia pendula (Lauraceae) in a
1, 000 × 500 metre rectangular sampling region in a tropi-
cal rainforest. The other panels show the terrain elevation
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Figure 8. Estimates of ρ for Murchison gold deposits (Figure 1) as a function of distance to nearest fault. Left column: kernel
estimates; Right column: local likelihood estimates. Top: ratio estimator; Middle: weighted estimator; Bottom: transformation
estimator. Solid lines are estimates of ρ. Grey shading indicates ±2 standard deviation (nominally 95% pointwise confidence)

intervals.
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Figure 9. Log-transformed kernel estimate log ρ̂ for
Murchison gold deposits (Figure 1) as a function of distance
to the nearest fault. Equivalent to top left panel of Figure 8.

Figure 10. Bivariate relative/residual risk estimate ρ̂(Z1, Z2)
for the Murchison data relative to the fitted loglinear intensity

model (33). Z1 is distance to the nearest fault, Z2 is
geographic northing. Crosses mark the observed values

(Z1(yi), Z2(yi)) at the gold locations yi.

and terrain slope for the same sampling region. This sur-
vey forms part of a much larger study of forest dynamics
on Barro Colorado Island in the Panama Canal [20, 21, 41].
We thank the study authors for releasing this portion of the
data. The data in Figure 12 have been analysed in [55].

The left panel of Figure 13 shows a kernel estimate of
intensity as a function of terrain elevation alone. More pre-
cisely, writing e(u) and s(u) for the terrain elevation and
slope respectively, the left and right panels of Figure 13 show

Figure 11. Spatial relative/residual risk estimate ρ̂(x, y)
for the Murchison data relative to the fitted

loglinear intensity model (33). Crosses mark the gold
locations yi.

Figure 12. Beilschmiedia data. Top: positions of 3,605 trees.
Middle: terrain elevation. Bottom: terrain slope. Reproduced
by kind permission of S.P. Hubble, R.B. Foster and R. Condit.

Data kindly supplied by R.P. Waagepetersen.
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Figure 13. Estimates of B. pendula intensity as a function of terrain elevation alone (Left) and as a function of terrain slope
alone (Right).

Figure 14. Bivariate kernel estimate of intensity as a
function of terrain elevation and terrain slope. Dots show
observed values of elevation and slope at each data point.

estimates of the functions ρE , ρS respectively, in the models

λ(u) = ρE(e(u))(34)

λ(u) = ρS(s(u)).(35)

The estimate of ρE suggests a preference for higher eleva-
tions (up to 150 metres), while ρ̂S suggests a tendency to
avoid very flat terrain but otherwise little preference for par-
ticular slopes.

Figure 14 shows the bivariate kernel estimate of intensity
as a function jointly of terrain elevation and terrain slope.
This broadly reinforces the interpretation of the previous
Figure.

Figure 15. Relative/residual risk estimate of Beilschmiedia
intensity as a function of terrain slope, relative to fitted
function of terrain elevation in left panel of Figure 13.

Figure 15 shows a kernel estimate of relative or residual
risk of B. pendula as a function of terrain slope, relative to
the estimated function of terrain elevation shown in the left
panel of Figure 13. That is, the “separable” model

(36) λ(u) = ρS|E(s(u))ρE(e(u))

was fitted by first estimating ρE as in (34) using (8), then
taking B(u) = ρ̂E(e(u)) and computing the relative or resid-
ual risk estimate (29). Figure 15 shows the estimate ρ̂S|E .
This is very similar in shape to the right-hand panel of Fig-
ure 13, indicating strong support for the separable model.

Figure 16 shows the estimated bivariate relative or resid-
ual risk (for the elevation and gradient) relative to the sep-
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Figure 16. Validation of separable model. Bivariate
(elevation and slope) relative/residual risk estimate of excess
intensity relative to separable model. Crosses show observed

values of elevation and slope at each data point.

arable model (36). The relative risk is close to 1 except at
the upper left of the Figure, corresponding to elevation val-
ues below 130 metres and slopes greater than 0.15. The data
satisfying these constraints are found at the lower left corner
of the study plot in Figure 12 which contains a distinct lin-
ear feature such as a gully or river. The terrain slope values
were derived from the terrain elevation by an image process-
ing algorithm, so the very high values of terrain slope near
the corner may be physically real or may be an artefact of
the computation. In either case it would be prudent to ex-
clude this corner from analysis, and when this is done, the
analogue of Figure 16 shows that the separable model (36)
is adequate.

A final caveat is that clustering is ever-present in forest
data, and this may invalidate the confidence intervals shown
here, which were based on the Poisson assumption.

10. COMPUTATION

All algorithms were implemented in the R language [58]
using the spatial statistics package spatstat [8] to handle
point pattern data, and the locfit package [51] for local
likelihood density estimation. Fixed-bandwidth kernel esti-
mators were computed using the Fast Fourier Transform
(provided by the R base library function fft), while local
likelihood density estimators require an iterative optimiza-
tion algorithm (provided by locfit). The spatial pdf g∗ was
estimated by kernel or local likelihood smoothing of the co-
variate values on a fine pixel grid. Then G∗ was estimated
by numerical integration.

Kernel smoothing bandwidths were selected by Silver-
man’s rule of thumb [64, eq. (3.31), p. 48] applied separately
to each dataset. That is, Silverman’s rule was applied first

to the pixel grid of covariate values to obtain g∗, and then
separately applied to the point pattern data yielding a differ-
ent bandwidth for each of (8)–(10). Local likelihood density
estimates were locally quadratic approximations of the log
density, weighted by the tricubic kernel k(t) = (1 − |t|3)3+.
Due to an apparent bug in locfit, pointwise confidence
intervals were not available, and simultaneous confidence
bands have been provided.

On a 2.5 GHz laptop, computation of each panel of Fig-
ure 5 took about 0.4 seconds, using a 100 × 100 pixel grid,
while computation of each panel in Figure 8 took about 8
seconds using a 512× 512 pixel grid.

Software for computing these diagnostics, along with the
data used in the paper, is available in the authors’ R package
spatstat [4, 8].

APPENDIX A. MISCELLANEOUS PROOFS

A.1 Differentiability of the spatial cdf

Assume that the covariate function X : W → R is dif-
ferentiable with nonzero gradient ∇X(u) at every u ∈ W .
Then by the coarea formula [31, Thm 3.2.22],

G∗(x) =

∫
W

1{X(u) ≤ x} du

=

∫
R

∫
X−1{y}

w(u) 1{X(u) ≤ x} dHd−1(u) dy

=

∫ x

−∞

∫
X−1{y}

w(u) dHd−1(u) dy

where X−1{y} = {u ∈ W : X(u) = y} is the level set
where the covariate takes the value y, and Hd−1 is d − 1
dimensional Hausdorff measure. Here w(u) = (‖∇X(u)‖)−1,
where ‖∇X(u)‖ is the absolute gradient or 1-dimensional
Jacobian of X at u. The integral over X−1{y} is finite for
almost all y. Hence the cdf G(x) is differentiable almost
everywhere, with density

g∗(x) =

∫
X−1{x}

w(u) dHd−1(u).

A.2 Intensity of X values

For any point process Y with any intensity function λ(u),
again using the coarea formula, the values xi = X(yi) have
intensity

f∗(x) =

∫
X−1{x}

λ(u)w(u) dHd−1(u).

If the model λ(u) = ρ(X(u)) holds, then λ(u) = ρ(x) for all
u ∈ X−1(x), so

f∗(x) = ρ(x)g∗(x).
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However, if the model λ(u) = ρ(X(u)) is not true, then we
still have

f∗(x) = ρ(x)g∗(x)

where

ρ(x) = f∗(x)/g∗(x) =

∫
X−1{x} λ(u)w(u) dHd−1(u)∫

X−1{x} w(u) dHd−1(u)

is the weighted average intensity over the level set {u :
X(u) = x} with weight w(u) inversely proportional to the
absolute gradient of X.

A.3 Bound on bias of ρ̂

The fixed-bandwidth kernel estimator ρ̂ in (8) has relative
bias, by (13),

(37) E

[
ρ̂(x)− ρ(x)

ρ(x)

]
=

∫
R

k(t− x)B(t, x) dt

where

B(t, x) =
ρ(t)

ρ(x)

[
g∗(t)

g∗(x)
− 1

]
+

[
ρ(t)

ρ(x)
− 1

]
.

Consider a kernel k of the standard form k(x) = b−1k1(x/b)
where b is the bandwidth. Assume the kernel has compact
support, say k1(x) = 0 for |x| > 1. Define the logarithmic
modulus of continuity of a function h by εh(x, δ) = inf{|t−
x| : ‖h(t)/h(x) − 1‖ ≥ δ}. Assume the functions h = ρ
and h = g∗ both satisfy εh(x, δ) < ∞ for all x, δ, so that
|t − x| < εh(x, δ) implies |h(t)/h(x) − 1| < δ. Then it is
easy to show that, for a given 0 < δ < 1, the relative bias
(37) is smaller than δ in absolute value when b < ε, where
ε = min{ερ(x, δ/2), εg∗(x, δ1/2/4)}.

A.4 Probability integral transformation for ρ̂

Under the model (1), and assuming G has a continuous
inverse function G−1, the values ti constitute a point process
Ψ on [0, 1] with intensity function q(t) = |W | ρ(G−1(t)). If
Y is Poisson then Ψ = {ti} is Poisson.

To prove this, note that the expected number of values ti
satisfying ti ≤ t is

E[#{ti ≤ t}] =
∫
W

1{G(X(u)) ≤ t}λ(u) du

=

∫
W

1{G(X(u)) ≤ t}ρ(X(u)) du

=

∫ ∞

−∞
1{G(x) ≤ t}ρ(x)g∗(x) dx

=

∫ 1

0

1{s ≤ t}ρ(G−1(s))
g∗(G−1(s))

g(G−1(s))
ds

= |W |
∫ t

0

ρ(G−1(s)) ds

by changing variables from u ∈ W to x = X(u) ∈ R and
to s = G(x) ∈ [0, 1]. Hence the intensity of {ti} is q(t) =
|W | ρ(G−1(t)).

Acknowledgements

We thank the referees and Dr Mark Berman (CSIRO)
for substantial input into this paper. Ya-Mei Chang was
funded by CSIRO Office of the Chief Executive. Yong Song
and Adrian Baddeley were funded by CSIRO Mathematics,
Informatics and Statistics.

Received 15 August 2011

REFERENCES

[1] Agterberg, F. P. (1974). Automatic contouring of geological
maps to detect target areas for mineral exploration. Journal of
the International Association for Mathematical Geology 6 373–
395.

[2] Ahmad, I. A. (1995). On multivariate kernel estimation for sam-
ples from weighted distributions. Statistics and Probability Letters
22 121–129. MR1327737

[3] Baddeley, A. J. (1999). Spatial sampling and censor-
ing. In: Stochastic Geometry: Likelihood and Computation
(O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van
Lieshout, eds.) 2 37–78. Chapman and Hall, London. MR1673114

[4] Baddeley, A. (2010). Analysing spatial point patterns
in R. Technical Report, CSIRO. Version 4. Available at
www.csiro.au/resources/pf16h.html.

[5] Baddeley, A., Møller, J. and Waagepetersen, R. (2000).
Non- and semiparametric estimation of interaction in inho-
mogeneous point patterns. Statistica Neerlandica 54 329–350.
MR1804002

[6] Baddeley, A., Møller, J. and Pakes, A. G. (2008). Properties
of residuals for spatial point processes. Annals of the Institute of
Statistical Mathematics 60 627–649. MR2434415

[7] Baddeley, A. and Turner, R. (2000). Practical maximum
pseudolikelihood for spatial point patterns (with discussion).
Australian and New Zealand Journal of Statistics 42 283–322.
MR1794056

[8] Baddeley, A. and Turner, R. (2005). Spatstat: an R package for
analyzing spatial point patterns. Journal of Statistical Software
12 1–42. URL: www.jstatsoft.org, ISSN: 1548-7660.

[9] Baddeley, A., Berman, M., Fisher, N. I., Hardegen, A.,
Milne, R. K., Schuhmacher, D., Shah, R. and Turner, R.

(2010). Spatial logistic regression and change-of-support for Pois-
son point processes. Electronic Journal of Statistics 4 1151–1201.
doi: 10.1214/10-EJS581. MR2735883

[10] Bartlett, M. S. (1964). A note on spatial pattern. Biometrics
20 891–892.

[11] Berman, M. (1986). Testing for spatial association between a
point process and another stochastic process. Applied Statistics
35 54–62.

[12] Bithell, J. F. (1990). An application of density estimation to
geographical epidemiology. Statistics in Medicine 9 691–701.

[13] Bithell, J. F. (1991). Estimation of relative risk functions.
Statistics in Medicine 10 1745–1751.

[14] Bonham-Carter, G. (1995). Geographic Information Systems
for geoscientists: modelling with GIS. Computer Methods in the
Geosciences 13. Pergamon Press/Elsevier, Kidlington, Oxford,
UK.

[15] Brillinger, D. R. (1978). Comparative aspects of the study of
ordinary time series and of point processes. In Developments
in Statistics (P. R. Krishnaiah, ed.) 33–133. Academic Press.
MR0501668

234 A. Baddeley et al.

http://www.ams.org/mathscinet-getitem?mr=1327737
http://www.ams.org/mathscinet-getitem?mr=1673114
http://www.ams.org/mathscinet-getitem?mr=1804002
http://www.ams.org/mathscinet-getitem?mr=2434415
http://www.ams.org/mathscinet-getitem?mr=1794056
http://www.ams.org/mathscinet-getitem?mr=2735883
http://www.ams.org/mathscinet-getitem?mr=0501668


[16] Chen, S. X. (1996). Empirical likelihood confidence intervals
for nonparametric density estimation. Biometrika 83 329–341.
MR1439787

[17] Chu, C. K. and Marron, J. S. (1991). Choosing a kernel regres-
sion estimator. Statistical Science 6 404-436. MR1146907

[18] Cleveland, W. S. (1979). Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statistical As-
sociation 74 829–836. MR0556476

[19] Clyde, M. and Strauss, D. (1991). Logistic regression for spatial
pair-potential models. In Spatial Statistics and Imaging, (A. Pos-
solo, ed.). Lecture Notes – Monograph Series 20 II 14–30. Insti-
tute of Mathematical Statistics ISBN 0-940600-27-7. MR1195558

[20] Condit, R. (1998). Tropical Forest Census Plots. Springer Verlag.
[21] Condit, R., Hubbell, S. P. and Foster, R. B. (1996). Changes

in tree species abundance in a neotropical forest: impact of
climate change. Journal of Tropical Ecology 12 231–256.

[22] Copas, J. B. (1983). Plotting p against x. Applied Statistics 32
25–31. MR0713965

[23] Cox, D. R. (1972). The statistical analysis of dependencies in
point processes. In Stochastic Point Processes (P. A. W. Lewis,
ed.) 55–66. Wiley, New York. MR0375705

[24] Daley, D. J. and Vere-Jones, D. (1988). An Introduction
to the Theory of Point Processes. Springer Verlag, New York.
MR0950166

[25] Diggle, P. J. (1985). A kernel method for smoothing point
process data. Journal of the Royal Statistical Society, Series C
(Applied Statistics) 34 138–147.

[26] Diggle, P. J. (1990). A point process modelling approach
to raised incidence of a rare phenomenon in the vicinity of a
prespecified point. Journal of the Royal Statistical Society, Series
A 153 349–362.

[27] Diggle, P. J. and Rowlingson, B. (1994). A conditional
approach to point process modelling of elevated risk. Journal of
the Royal Statistical Society, Series A (Statistics in Society) 157
433–440.

[28] Diggle, P. J., Rowlingson, B. and Su, T. L. (2005). Point pro-
cess methodology for on-line spatio-temporal disease surveillance.
Environmetrics 16 423–434. MR2147534

[29] Diggle, P., Morris, S., Elliott, P. and Shaddick, G. (1997).
Regression modelling of disease risk in relation to point sources.
Journal of the Royal Statistical Society, Series A 160 491–505.

[30] El Barmi, H. and Simonoff, J. S. (2000). Transformation
based density estimation for weighted distributions. Journal of
Nonparametric Statistics 12 861–878. MR1802580

[31] Federer, H. (1969). Geometric Measure Theory. Springer
Verlag, Heidelberg. MR0257325

[32] Groves, D. I., Goldfarb, R. J., Knox-Robinson, C. M.,
Ojala, J., Gardoll, S., Yun, G. Y. and Holyland, P. (2000).
Late-kinematic timing of orogenic gold deposits and significance
for computer-based exploration techniques with emphasis on the
Yilgarn Block, Western Australia. Ore Geology Reviews 17 1–38.

[33] Guan, Y. (2008). On consistent nonparametric intensity estima-
tion for inhomogeneous spatial point processes. Journal of the
American Statistical Association 103 1238–1247. MR2528839

[34] Guan, Y. and Wang, H. (2010). Sufficient dimension reduction
for spatial point processes directed by Gaussian random fields.
Journal of the Royal Statistical Society, Series B 72 367–387.
MR2758117

[35] Hall, P. (1992). The effect of bias estimation on coverage
accuracy of bootstrap confidence intervals for a probability
density. Annals of Statistics 20 675–694. MR1165587

[36] Hall, P. (2002). The bootstrap and Edgeworth expansion.
Springer.

[37] Handcock, M. S. and Morris, M. (1999). Relative Distribution
Methods in the Social Sciences. Springer-Verlag, New York.
MR2000e:91112 MR1705294

[38] Hazelton, M. L. and Davies, T. M. (2009). Inference based
on kernel estimates of the relative risk function in geographical
epidemiology. Biometrical Journal 51 98–109. MR2667514

[39] Hjort, N. L. and Jones, M. C. (1996). Locally parametric
density estimation. Ann. Statist. 24 1619–1649. MR1416653

[40] Horowitz, J. L. (2001). The bootstrap. In Handbook of Econo-
metrics, (J. J. Heckman and E. Leamer, eds.) 5 3159–3228.
North-Holland, Amsterdam.

[41] Hubbell, S. P. and Foster, R. B. (1983). Diversity of canopy
trees in a neotropical forest and implications for conservation. In
Tropical Rain Forest: Ecology and Management (S. L. Sutton,
T. C. Whitmore and A. C. Chadwick, eds.) 25–41. Blackwell
Scientific Publications, Oxford.

[42] Jones, M. C. (1991). Kernel density estimation for length-biased
data. Biometrika 78 511–519. MR1130919

[43] Kelsall, J. E. and Diggle, P. J. (1995a). Kernel estimation of
relative risk. Bernoulli 1 3–16. MR1354453

[44] Kelsall, J. E. and Diggle, P. J. (1995b). Non-parametric
estimation of spatial variation in relative risk. Statistics in
Medicine 14 2335–2342.

[45] Knox-Robinson, C. M. and Groves, D. I. (1997). Gold prospec-
tivity mapping using a geographic information system (GIS),
with examples from the Yilgarn Block of Western Australia.
Chronique de la Recherche Minière 529 127–138.

[46] Kutoyants, Y. A. (1998). Statistical Inference for Spatial
Poisson Processes. Lecture Notes in Statistics 134. Springer,
New York. MR1644620

[47] Kvamme, K. L. (2006). There and back again: revisiting arche-
ological locational modeling. In GIS and Archaeological Site
Modelling (M. W. Mehrer and K. L. Wescott, eds.) 3–40.
CRC Press.

[48] Lawson, A. B. (1993). On the analysis of mortality events
around a prespecified fixed point. Journal of the Royal Statistical
Society, Series A 156 363–377.

[49] Loader, C. (1996). Local likelihood and density estimation.
Ann. Statist. 24 1602–1618. MR1416652

[50] Loader, C. (1999). Local Regression and Likelihood. Springer,
New York. MR1704236

[51] Loader, C. (2010). locfit: Local Regression, Likelihood and
Density Estimation. R package version 1.5-6.

[52] Loh, J. M. (2008). A fast and valid spatial bootstrap for
correlation functions. Astrophysical Journal 681 726–734.

[53] Manly, B. J. F., McDonald, L. L. and Thomas, D. L. (1993).
Resource Selection by Animals: Statistical Design and Analysis
for Field Studies. Chapman and Hall, London.

[54] Møller, J. and Waagepetersen, R. P. (2004). Statistical
Inference and Simulation for Spatial Point Processes. Chapman
and Hall/CRC, Boca Raton. MR2004226

[55] Møller, J. and Waagepetersen, R. P. (2007). Modern spa-
tial point process modelling and inference (with discussion).
Scandinavian Journal of Statistics 34 643–711. MR2396935

[56] Morton-Jones, A. J., Diggle, P. J. and Elliott, P. (1999).
Investigation of excess environmental risk around putative
sources: Stone’s test with covariate adjustment. Statistics in
Medicine 18 189–197.

[57] Ogata, Y. (2001). Increased probability of large earthquakes
near aftershock regions with relative quiescence. Journal of
Geophysical Research 106 8729–8744. MR1915525

[58] R Development Core Team, (2009). R: A language and en-
vironment for statistical computing R Foundation for Statistical
Computing, Vienna, Austria ISBN 3-900051-07-0.

[59] Reiss, R. D. (1993). A Course on Point Processes. Springer.
MR1199815

[60] Ripley, B. D. (1981). Spatial Statistics. John Wiley and Sons,
New York. MR0624436

[61] Scott, D. W. (1992). Multivariate Density Estimation. Theory,
Practice and Visualization. Wiley, New York. MR1191168

[62] Serra, J. (1982). Image Analysis and Mathematical Morphology.
Academic Press, London. MR0753649

[63] Sheather, S. J. and Jones, M. C. (1991). A reliable data-based
method for kernel density estimation. Journal of the Royal
Statistical Society, Series B 53 683–690. MR1125725

Nonparametric estimation of the dependence of a spatial point process on spatial covariates 235

http://www.ams.org/mathscinet-getitem?mr=1439787
http://www.ams.org/mathscinet-getitem?mr=1146907
http://www.ams.org/mathscinet-getitem?mr=0556476
http://www.ams.org/mathscinet-getitem?mr=1195558
http://www.ams.org/mathscinet-getitem?mr=0713965
http://www.ams.org/mathscinet-getitem?mr=0375705
http://www.ams.org/mathscinet-getitem?mr=0950166
http://www.ams.org/mathscinet-getitem?mr=2147534
http://www.ams.org/mathscinet-getitem?mr=1802580
http://www.ams.org/mathscinet-getitem?mr=0257325
http://www.ams.org/mathscinet-getitem?mr=2528839
http://www.ams.org/mathscinet-getitem?mr=2758117
http://www.ams.org/mathscinet-getitem?mr=1165587
http://www.ams.org/mathscinet-getitem?mr=2000e:91112
http://www.ams.org/mathscinet-getitem?mr=1705294
http://www.ams.org/mathscinet-getitem?mr=2667514
http://www.ams.org/mathscinet-getitem?mr=1416653
http://www.ams.org/mathscinet-getitem?mr=1130919
http://www.ams.org/mathscinet-getitem?mr=1354453
http://www.ams.org/mathscinet-getitem?mr=1644620
http://www.ams.org/mathscinet-getitem?mr=1416652
http://www.ams.org/mathscinet-getitem?mr=1704236
http://www.ams.org/mathscinet-getitem?mr=2004226
http://www.ams.org/mathscinet-getitem?mr=2396935
http://www.ams.org/mathscinet-getitem?mr=1915525
http://www.ams.org/mathscinet-getitem?mr=1199815
http://www.ams.org/mathscinet-getitem?mr=0624436
http://www.ams.org/mathscinet-getitem?mr=1191168
http://www.ams.org/mathscinet-getitem?mr=0753649
http://www.ams.org/mathscinet-getitem?mr=1125725


[64] Silverman, B. W. (1986). Density Estimation for Statistics and
Data Analysis. Chapman and Hall, London. MR0848134

[65] Tufte, E. R. (1983). The Visual Display of Quantitative
Information, First ed. Graphics Press.

[66] Waller, L., Turnbull, B., Clark, L. C. and Nasca, P. (1992).
Chronic Disease Surveillance and testing of clustering of disease
and exposure: Application to leukaemia incidence and TCE-
contaminated dumpsites in upstate New York. Environmetrics 3
281–300.

[67] Warton, D. I. and Shepherd, L. C. (2010). Poisson point
process models solve the “pseudo-absence problem” for presence-
only data in ecology. Annals of Applied Statistics 4 1383–1402.
MR2758333

[68] Watkins, K. P. and Hickman, A. H. (1990). Geological evolution
and mineralization of the Murchison Province, Western Australia
Bulletin report No. 137, Geological Survey of Western Australia.
Published by Department of Mines, Western Australia, 1990.
Available online from Department of Industry and Resources,
State Government of Western Australia, www.doir.wa.gov.au.

Adrian Baddeley
CSIRO Mathematics
Informatics and Statistics
Floreat, Perth
Western Australia

School of Mathematics & Statistics
University of Western Australia
Australia
E-mail address: Adrian.Baddeley@csiro.au

Ya-Mei Chang
Department of Statistics
Tamkang University
Taiwan
E-mail address: yamei628@gmail.com

Yong Song
CSIRO Land and Water Highett
Melbourne
Australia
E-mail address: Yong.Song@csiro.au

Rolf Turner
Department of Statistics
University of Auckland
Auckland
New Zealand
E-mail address: r.turner@auckland.ac.nz

236 A. Baddeley et al.

http://www.ams.org/mathscinet-getitem?mr=0848134
http://www.ams.org/mathscinet-getitem?mr=2758333
mailto:Adrian.Baddeley@csiro.au
mailto:yamei628@gmail.com
mailto:Yong.Song@csiro.au
mailto:r.turner@auckland.ac.nz

	Introduction
	Assumptions and prerequisites
	Theory for a real covariate
	Kernel estimators of 
	Alternative nonparametric estimators
	Extensions
	Relative risk model
	Vector covariate

	Simulated examples
	Murchison data
	Beilschmiedia data
	Computation
	Miscellaneous proofs
	Differentiability of the spatial cdf
	Intensity of X values
	Bound on bias of 
	Probability integral transformation for 

	References
	Authors' addresses

