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Likelihood-based estimation of spatial intensity
and variation in disease risk from locations

observed with error

DALE L. ZIMMERMAN*, PENG SUN AND XIANGMING FANG

The accurate assignment of geocodes to the residences
of subjects in a study population is an important compo-
nent of the data acquisition/assimilation stage of many spa-
tial epidemiological investigations. Unfortunately, however,
when residential address geocoding is performed by the most
common method of street-segment matching to a georefer-
enced road file and subsequent interpolation, positional er-
rors of hundreds of meters are commonplace, especially in
rural locations. Ignoring these errors in a statistical analysis
may lead to biased estimators, a reduction in power, and
incorrect conclusions. This article develops modifications to
existing likelihood-based procedures for estimating the in-
tensity of a Poisson spatial point process and the relative
risk function relating two such processes, from locations as-
certained without error, so as to permit valid inferences to
be made from locations observed with error. The perfor-
mance of the modified methods relative to methods that
ignore positional errors is investigated by simulation. The
methodology is applied to respiratory disease data from an
Towa county. Our investigation indicates that the magnitude
of the positional error standard deviation relative to the rate
of change in intensity or relative risk across the study area
determines whether an analysis that accounts for positional
errors will improve upon an analysis that does not; errors
must be sufficiently large for an improvement to be realized.

KEYWORDS AND PHRASES: Case-control data, Geocode,
Location uncertainty, Poisson process, Positional accuracy,
Spatial epidemiology.

1. INTRODUCTION

Knowledge of the spatial coordinates, or geocodes, of sites
where people live and work may be very useful for develop-
ing hypotheses about the etiology of a disease and for test-
ing those hypotheses via spatial statistical analyses. Con-
sequently, the accurate assignment of a geocode to every
subject in a study population is an important component
of the data acquisition/assimilation stage of many spatial
epidemiological investigations. Unfortunately, however, it is
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frequently not a simple matter to obtain accurate geocodes.
Although time and resources may sometimes be sufficient for
geocoding to be performed using such highly accurate meth-
ods as global positioning system (GPS) receivers or aerial
imagery, it is much more common in public health and so-
cial science research to obtain geocodes using widely avail-
able geographic information systems (GIS) software that at-
tempts to match the address provided by each subject to a
street segment georeferenced within a streetline database,
e.g. a U.S. Census Bureau Topologically Integrated Geo-
graphic Encoding and Referencing (TIGER) file; and, if the
matching is successful, interpolates the position of the ad-
dress along that segment. This latter method, which hence-
forth we call street geocoding, is much cheaper but consider-
ably less accurate than GPS-based, image-based, and other
less automated methods. Several recent studies (e.g. Dear-
went, Jacobs, and Halbert, 2001; Bonner et al., 2003; Ward
et al., 2005; Zimmerman et al., 2007) have demonstrated
that street geocoding errors of several hundred meters occur
frequently. Zinszer et al. (2010) report on a study of the spa-
tial distribution of campylobacteriosis in Montreal for which
manual correction of incorrect case addresses changed their
locations by a median distance of 1.1 km. Large errors are
especially common in rural areas; for example, Cayo and
Talbot (2005) found that 10% of rural addresses in an up-
state New York study area geocoded with errors of more
than 1.5 km, and 5% geocoded with errors exceeding 2.8 km.

How do such errors arise? Zandbergen (2009) describes
four main components of positional errors associated with
street geocoding. First, the address may be assigned to the
wrong street segment, due to errors in the input address
fields or the street database. This often results in very large
positional errors. Second, the address may be assigned to
the correct street segment, but the geographic coordinates
of the entire segment in the street database are incorrect
(e.g. shifted 200 m to the west). Third, the interpolated
assignment of an address along the correct, and correctly
located, street segment may not coincide with the actual
location of the address, due either to usage of only a por-
tion of the segment’s nominal address range or to imperfect
correspondence between a linear house numbering scheme
and the actual numbering scheme on the segment, or both.
Finally, the default offset of the residence from the street


http://www.intlpress.com/SII/

(usually taken to be 10-15 m in length, perpendicular to
the street segment) may not accurately reflect the actual
distance of the residence from the street centerline.

The reality of locational uncertainty due to geocoding er-
rors notwithstanding, until very recently virtually all meth-
ods for the analysis of spatial point pattern data, including
address location data obtained via street geocoding, were
based on models for which the locations are assumed to
be ascertained without error; see, e.g. Lawson (2001), Dig-
gle (2003), and Waller and Gotway (2004) for reviews of
these methods and models. Analytic methods are generally
adversely affected by positional errors; specific effects in-
clude inflation of standard errors for parameter estimates
and a reduction in power to detect such spatial features
as clusters and trends. For example, Burra et al. (2002)
show that even relatively small errors can have a discernible
impact on the local Moran’s I statistic for clustering. Ad-
ditional studies of the impact of location uncertainty on
detecting clustering and/or clusters include Waller (1996),
Jacquez and Waller (2000), Ozonoff et al. (2007), and Zim-
merman (2008a); its effects on the power of logistic regres-
sion analyses relating environmental exposure to disease is
studied by Mazumdar et al. (2008); and its impacts on pa-
rameter estimation and spatial prediction in geostatistical
models, and methods for accounting for them, are consid-
ered by Gabrosek and Cressie (2002) and Cressie and Kor-
nak (2003). Relatively little attention has been given to how
one might modify existing inferential methods for spatial
point processes so as to properly account for location uncer-
tainty. Early works on this topic are those of Diggle (1993),
who briefly outlines a method for K-function estimation
from uncertain locations, and Jacquez (1994, 1996), who
considers methods for accounting for location uncertainty in
conjunction with the Cuzick-Edwards test and other cluster
statistics. More recently, Cucala (2008) and Chakraborty
and Gelfand (2010) have considered estimation of the in-
tensity function under location uncertainty. Cucala’s esti-
mation procedure is nonparametric and kernel-based, while
Chakraborty and Gelfand’s is Bayesian and tailored specifi-
cally to an intensity that is a constant multiple of a mixture
of bivariate Gaussian densities restricted to the study area.

Likelihood-based procedures for estimating the intensity
and variation in relative risk of Poisson spatial point pro-
cesses from locations ascertained without error are proposed
by Cox (1972), Diggle (1990), and Diggle and Rowling-
son (1994). In this article, we modify these procedures to
permit valid likelihood-based inferences for intensity and rel-
ative risk to be made from locations observed with error. We
also aim to determine how large the positional errors must
be, in practice, for inferential methods that account for them
to perform better than methods that merely ignore them.

It is assumed throughout that the geocoding is complete,
i.e. that all addresses geocode to a point location, regardless
of how large an error is incurred in doing so. In reality, com-
plete geocoding is as rare as error-free geocoding, it being
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common for perhaps 10% or even as many as 30% of sub-
jects’ addresses to fail to geocode using standard software
and street files, due to such things as misspelled or improp-
erly abbreviated addresses of subjects, and missing segments
or incorrect address ranges within the street files. For exam-
ple, Gregorio et al. (1999) and Oliver et al. (2005) present
public health studies in which 14% and 26%, respectively,
of the addresses in their datasets could not be assigned a
point location via automated geocoding. An analysis based
on only the observations that geocode is vulnerable to “ge-
ographic bias” (Oliver et al., 2005), a form of selection bias
in which the source of bias is the geography of the situa-
tion at hand. However, there is virtually always a reliable
coarse (areal-level) measurement, e.g. a zip code, associated
with each observation that fails to geocode. These coarser
locations may be combined with point-level and/or demo-
graphic data to make valid inferences for intensity or risk
in the presence of geographic bias via either (a) coarsened-
data maximum likelihood estimation procedures (Zimmer-
man, 2008b; Zimmerman and Fang, 2012), or (b) imputation
of a surrogate point location (such as that of a randomly se-
lected event within the same zip code) for the addresses that
do not geocode (Henry and Boscoe, 2008). Fully satisfactory
procedures for intensity and risk estimation from data whose
point locations are ascertained by automated geocoding may
require that one of these inference procedures for incom-
pletely geocoded data be combined with the modifications
developed herein that account for inaccurate geocoding.

The remainder of the article is organized as follows. In
the next section, we review two standard likelihood-based
procedures for estimating intensity and spatial variation in
risk in the absence of location errors, one based on the or-
dinary likelihood and the other on a conditional likelihood,
and we propose modified inference procedures that account
for the errors. Section 3 presents a simulation study of the
performance of the modified procedures, with a view toward
determining how large the errors need to be for the proce-
dures to be useful in practice. In Section 4, the modified con-
ditional procedure for estimating spatial variation in risk is
applied to respiratory disease data from an Iowa county to
illustrate how geocoding errors may be accounted for in the
investigation of possible elevated disease incidence in prox-
imity to concentrated animal feeding operations. Section 5
is a brief discussion.

2. INFERENCE USING UNCERTAIN
LOCATIONS

2.1 Maximum likelihood estimation
of intensity

Consider a two-dimensional Poisson process observed on
a region of interest D. Let N(B) represent the number of
events of this process that occur in an arbitrary region
B C D of area |B| and let s denote the bivariate vector



of spatial coordinates (e.g. latitude and longitude, or UTM
coordinates) of an arbitrary point in D. The intensity func-
tion, A(s), of the process is defined as

L (EINBG))
As) = dm ( b(s)] ) ’

where b(s) is a circular region centered at s. We assume here
that the intensity function belongs to a parametric family
{A(s;0) : 8 € O}. An important example is the family of
modulated Poisson processes introduced by Cox (1972), for
which A(s; 8) = exp{0'z(s)} where z(s) is a specified vector
of covariates observed at s.

Let sy,ss,...,s, represent the true locations of the n
events that occur in D. If these locations are observed with-
out error, then the associated likelihood function is propor-
tional to

(2.1)

L(6;s1,...,sn) —exp{/D)\(s;B)ds} {f[lA(si;e)}

(Cox, 1972). A maximum likelihood estimate of 0 is a value
6 € © that maximizes L. Now suppose that we don’t actu-
ally observe the true locations but instead observe perturbed
versions of them, denoted as uy,...,u,. Suppose further
that conditional on the true locations, the u; are indepen-
dent and each u; has bivariate density function g(uls;, 7),
where 7 is a vector of dispersion parameters. In practice
we may often choose this density such that the conditional
mean of u; is s;, but this is not necessary. Then the joint like-
lihood of the true and observed locations is proportional to
the product of L(0;s1,...,s,) and these bivariate densities;
furthermore, the unconditional joint likelihood of the ob-
served locations may be obtained by integrating over the dis-
tribution of the true locations, and hence is proportional to

(2.2)

Lg(0,1;u1,...u,)

= exp{/D)\(S;O)ds}f[l/D)\(si;H)g(ui|si,T)dsi.

A location-error-adjusted maximum likelihood estimate of
0 is the leading subvector, 8, of any vector (65, 7')" that
maximizes Lg. Note that each u;, unlike s;, need not be
confined to D.

It is worth noting that the measurement error model de-
scribed here is a spatial version of a “classical” measurement
error model, by which the observed locations are modeled
conditionally on the true locations. This is in contrast to
a “Berkson” model, by which the true locations are mod-
eled conditionally on the observed locations. For the present
setting, the classical approach is preferable; further discus-

sion comparing the two approaches can be found in Barber,
Gelfand, and Silander (2006).

2.2 Conditional maximum likelihood
estimation of spatial variation in risk

Now we turn our attention to applications in which there
are two spatial point processes of interest rather than one. In
such applications events may represent, for example, cases
of two diseases, cases of a single disease for males and fe-
males, or cases of a single disease and a random sample of
controls from the population at risk. We shall take the set-
ting to be the last of these three possibilities, but the same
methodological development also applies to the other two.
Our interest is in estimating spatial variation of the relative
risk, which is essentially the spatial variation of the ratio of
the intensity of cases to that of controls.

Diggle and Rowlingson (1994) propose the following con-
ditional likelihood approach for estimating spatial variation
in risk when locations are ascertained without error. Assume
that cases and controls occur in a study region D according
to independent Poisson processes with intensities A;(s;01)
and \g(s; 0p), respectively, in which case their superposition
is also Poisson with intensity Ag(s; 80)+ A1 (s; 01). In this su-
perposition, define a binary random variable Y; to take the
value 1 or 0 according to whether s;, the i¢th event in the
superposition, is a case or a control. Then, conditional on
the realized superposition sy, S, . . ., Sp,4+n, (in which events
are not distinguished by whether they are cases or controls),
the Y;’s are mutually independent Bernoulli variables and
p(si;0) = P(Yi = 1) = Ai(si501)/{Ao(si;60) + Ai(si;601)}
for i = 1,...,n1 + ng. Here 8 = (6;,07). Thus the like-
lihood function associated with the Y;, conditional on the
true superposition, is proportional to

(2.3) L*(0) = L"(0;Y1,...,Yn,4n0lS1, - - s Snyi4no)
ni ni+no
= HP(Si;e) H {1 —p(si:0)}
=1 i=ni1+1

where without loss of generality we have labeled the events
such that the first nq are cases. Maximization of L*(0) yields
the conditional MLE of 6.

Diggle and Rowlingson (1994) develop this approach fur-
ther for a “raised-incidence” model in which the intensities
are related multiplicatively, i.e.

A1(s;a, B, 00) = alo(s; 00)E(s; B)

(2.4) forall s € D,

where « is a nuisance parameter relating to the numbers
of cases and controls (the latter being under the control of
the investigator) and &(s;3) is a parametrically specified
relative risk function. Under (2.4), p(s;;0) = a&(si; 8)/{1+
aé(si;8)} where we redefine @ = («,3')’, and thus L* is
free of the control intensity A (s; o).

Now consider how to accommodate positional errors
within this approach. In this context, s; denotes the true
location of the ith event in the superposition; let u; de-
note its ascertained (but likely erroneous) location. Assume
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that u;, given the true superposition, has density g(uls;, 7).
As above, define a binary random variable Y; to take the
value 1 or 0 according to whether the event ascertained to
be at u; (but actually located at s;) is a case or a con-
trol; given the true superposition, Y; is again Bernoulli with
P(Y; = 1) = M(si)/{Mo(si) + Mi(s;)}. (For simplicity of
notation we will temporarily suppress dependence of the in-
tensities and other quantities on 6.) Finally, assume that
the u;’s and Y;’s are independent, conditional on the true
superposition (which implies, among other things, the same
location error model for cases and controls). Then the joint
density of u; and Y;, conditional on the true superposition, is
given by f(u,yls:) = g(uls;, 7){p(s:) }{1 — p(si)} ¥, and
the joint density of w;, Y;, and s; is given by h(u,y,s) =
g(uls, 7){p(s)}¥{1—p(s)}' ~Yk(s). Here, k(-) is the density of
an arbitrary event in the true superposition, which is given
by k(s) = {Ao(s) + Au(8) /[ Ao () + A (t)} dt]. Straight-
forward manipulations then yield

PV — 1l — JpM(s)g(uils, 7) ds
q(u;)) = P(Y; = 1w;) = fD{)\OI(DS) + Mi(s)tg(uls, ) ds’

Finally, we find that the likelihood function associated with

Y1,...,Yn, +n,, conditional on the observed superposition
Uj,...,Upn,+n,, 1S proportional to
(2.5) LE(0;Y1, .. Yo, nolU1s ooy Unygng)
ny ni+no
= [[as0) T {1-a(us;6)}
i=1 i=ni+1

where we have restored the explicit dependence on 6.
Under the multiplicative model (2.4), we have

(2.6)

. ~ [pag(s; B)a(s; 80)g(uyls, T) ds
q(ui;a, 8,600, 7) = fD{1D+ 0€(5: B) 1o (5: 00)g(wils, ) ds”

Note that, unfortunately, the intensity of controls generally
does not drop out of (2.6). This contrasts with the situation
in which locations are ascertained without error, and might
seem to render the conditional approach impractical for use
with uncertain locations. However, note also that if the in-
tensity of controls were constant, then it would indeed drop
out, yielding

Wea. B.7) = foaf(s;ﬁ)g(ui\s,ﬂds
q(u; o, B,7) = 1L+ aé(s: B)Jg(us, ) ds’

Moreover, if the intensity of controls is not constant but
is relatively slowly-varying (compared to either the relative
risk function or the scale of the study area), then perhaps
q(u;; o, B,7) could be successfully approximated by (2.7).
This possibility will be investigated by simulation in the
next section. Finally, in some cases we may have a very good
estimate of the control intensity, which can be substituted
for Ao(-) in (2.6). The example of Section 4 is a case in
point.

(2.7)
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3. SIMULATION STUDIES

This section presents two simulation studies of the per-
formance of the positional-error-adjusted MLEs of intensity
and relative risk parameters developed in the previous sec-
tion. Both studies address the question of how large the po-
sitional errors must be to have a discernible impact on the
performance of the MLEs. The second study also addresses
the utility of approximating (2.6) by (2.7). Admittedly, these
studies are more illustrative than comprehensive, as they
feature only one intensity or relative risk function and a
rather limited set of parameter values. Nevertheless, we be-
lieve they are sufficient to demonstrate the success of our
approach, and they provide some useful insights as well.

3.1 Unconditional intensity estimation

We first consider a single Poisson process observed on
the unit square D = [0, 1] x [0, 1] with point-source intensity
function

(3.1)
A(s;00,7,v) = 6o {1 +yexp{—v[(z — 0.5)% + (y — 0.5)2}}} ,

where v = 25, and (y,v) = (307.1617, 5), (221.6691, 10),
or (173.4051, 15). For each pair (6o, ), the expected num-
ber of events in D is 500. This intensity function, which
was first introduced by Diggle (1990), is chosen here for its
strong gradient (especially when v = 10 or 15) and relative
tractability, as the integrals in both (2.1) and (2.2) can be
evaluated explicitly for it. A typical realization of the pro-
cess when (6p,v) = (173.4051, 15) is displayed in the left
panel of Figure 1. Note the relatively high intensity near
(0.5,0.5) and the (exponential) decay away from this point.
Each process realization is subsequently perturbed as de-
scribed in Section 2.1. Specifically, we take the conditional
distribution of a perturbed location u;, given s;, to be cir-
cular bivariate normal with mean s; and standard deviation
o, where o = 0.025, 0.05, or 0.10. One thousand realiza-
tions of the process were simulated for each combination of
(6o,y) and o. The right panel of Figure 1 displays the point
pattern resulting from perturbing (with ¢ = 0.10) the real-
ization in the top panel. We shall denote the sets of points
of these two types respectively by S, = {s1,...,s,} and
Un = {ul,...,un}.

For a realization of the process without errors, we have,
upon inserting (3.1) into (2.1) and simplifying,

IOgL(eo,"}/, v; STL)
= nlogty

+ 2 log {1+ yexp{~v[(zi = 0.5)" +(yi — 0.5)"]}}
~ {1+ 2011 - 2m(- V7B

apart from terms that do not depend on the parameters.
Here, ®(-) is the cdf of the standard normal distribution.
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Figure 1. Typical realization of the process used in the first simulation study, with 6y = 173.4051 and ~ = 15. This particular
realization has 476 events. Left panel, original realization; right panel, perturbed realization (with o = 0.10).

For a realization of the process with errors (i.e. after pertur- nential covariance function of a stationary Gaussian random
bation), we have, upon inserting (3.1) into (2.2), completing field sampled on a bounded region are not all consistently

the square and simplifying, estimable (Zhang, 2004).
From the simulated data, we estimate the parameters in
log L (60,7, v,0% Uy) three distinct ways:
— nlog o + Xn:log{ {(I) <1 - Ui) _ (—w)] 1. Maximization of L(6o,v;S,,7), i.e., maximum likeli-
Pl o o hood estimation using the locations observed without
1— o o error. This method serves as a benchmark to which we
. {@ < 7’) - < 7” can compare the performance of the other methods,
g 7 which use the perturbed locations. Hence we refer to it
+ % exp{—v|(u; — 0.5)2 as the “benchmark” method. Obviously, this method is
1+2vo seldom available in practice.

+ (v = 0.5)%)/(1 + 2v0%)} 2. Maximization of L(y,v;U,,7), i.e., naively using the
[ 1— (u; +vo?)(1 4+ 2v0?)~! perturbed locations as though they were observed with-

® ( o(1+ 2v0?)-1/2 ) out error. We label this the “naive” method.

3. Maximization of Lg(fy,v,0?;U,,7), which is the ap-
—ui + vo? (1; 211//(; > propriate likelihood-based analysis of the perturbed lo-
o(l+2vo cations. Accordingly, we refer to this as the “proper”

Y
1—(v; +vos)(1+ 21/0 method.
(=5

-

oA

2)—1/2
o(L+ 2vo?)” / Numerical results of estimator performance are summa-
(v + va®)(1 4 2vo®)~ ) } rized in Table 1. As expected, neither the naive nor the

-
1+ 2002)-172

proper method perform as well as the benchmark method.
) With regard to relative bias, the performance of the naive

- 90{1 + 7[1 —20(—/v/2)] } method is inferior to that of the proper method, deteriorat-

ing markedly as o increases. This is not surprising either;

In what follows, we take « to be known and obtain max- indeed, it follows from a well-known result in the theory
imum likelihood estimators of the remaining parameters. of point processes (see, e.g. Cox and Isham, 1980, p. 106)
Originally we attempted to estimate - also, but doing so that the naively estimated intensity function for this pro-
led to convergence problems (arbitrarily large estimates) for cess will tend to a constant (and thus 2 will tend to 0) as
a substantial proportion of the simulations, even under the the variance of the location errors grows arbitrarily large.
model without location errors. We speculate that the com- The relative bias of the benchmark and proper methods do
plete parameter vector (6g,~,v) of model (3.1) may not be not differ substantially. However, the proper MLE is more
consistently estimable, much as the parameters of an expo- variable than the other two estimators, and becomes more
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Table 1. Empirical relative bias, standard deviations, and mean square errors of maximum likelihood estimators of parameters
for a case of the point-source intensity model given by (3.1), with v known. True parameter values are 6y = 307.1617,
221.6691, or 173.4051 (according to whether v = 5, 10, or 15) and v = 25, which yield an expected number of cases equal to
500. Results are based on 1,000 process realizations. Relative biases are expressed as a percentage of the parameter’s
magnitude, and those that exceed two standard errors are set in bold type. The mean square error of 52 is given in units

of 1077

Method of Relative bias Standard deviation Mean square error
estimation ¥ o éo 1% éo 1% 6?2 éo 1% &2
Benchmark 5 0.025 -0.3 0.9 — 23.9 4.07 — 572 16.6 —
Naive -0.9 -0.5 — 24.2 4.11 — 594 17.0 —
Proper -0.3 0.9 —-0.9 24.7 4.28 0.00021 612 18.4 0.5
Benchmark 5 0.05 —0.1 1.5 — 23.6 4.22 — 555 17.9 —
Naive —-2.0 -3.3 — 25.0 4.43 — 665 20.3 —
Proper —-0.4 1.4 -1.3 27.4 5.14 0.00060 752 26.5 3.6
Benchmark 5 0.10 -0.3 1.0 — 23.3 4.22 — 545 17.9 —
Naive —2.6 -2.9 — 31.9 6.67 — 1086 45.1 —
Proper -1.5 2.0 —-1.0 39.6 8.21 0.00167 1594 67.6 27.9
Benchmark 10 0.025 0.4 1.4 — 17.6 3.06 — 312 9.5 —
Naive -0.9 -0.9 — 17.6 3.02 — 315 9.2 —
Proper 0.4 1.4 —4.5 18.0 3.16 0.00024 325 10.1 0.6
Benchmark 10 0.05 0.1 0.2 — 17.3 3.01 — 299 9.1

Naive —-4.7 —8.0 — 17.7 3.05 — 424 13.3 —
Proper 0.1 0.5 0.2 19.7 3.71 0.00069 388 13.8 4.7
Benchmark 10 0.10 -0.3 0.3 — 18.0 3.06 — 324 9.4 —
Naive —-14.0 —21.8 — 23.0 3.82 — 1498 44.2 —
Proper -0.5 1.9 -3.0 30.6 6.36 0.00172 939 40.6 30.3
Benchmark 15 0.025 -0.1 0.5 — 13.3 2.48 — 178 6.2 —
Naive -1.9 —-2.3 — 13.3 2.46 — 188 6.4 —
Proper -0.2 0.4 —2.6 13.9 2.62 0.00029 192 6.9 0.8
Benchmark 15 0.05 0.2 0.5 — 13.9 2.62 — 192 6.9

Naive —6.2 -9.1 — 14.3 2.61 — 320 12.0 —
Proper 0.2 0.7 —4.6 16.7 3.35 0.00077 277 11.2 6.0
Benchmark 15 0.10 0.4 1.1 — 13.7 2.55 — 187 6.6

Naive —20.9 —28.7 — 15.6 2.71 — 1551 58.7 —
Proper 0.1 1.6 —-2.9 24.0 5.27 0.00183 577 27.9 34.2

so as o increases. With respect to mean square error, the re-
sults are mixed. When v = 5, the naive method outperforms
the proper method over all three values of o; when v = 10
and o < 0.05 or when (vy,0) = (15,0.025) the two methods
perform about equally well; and when (vy,0) = (10,0.10)
or v = 15 and ¢ > 0.05 the proper method outperforms
the naive method. We conclude that neither the naive nor
the proper method is uniformly superior to the other, but
that the relative performance of the proper method im-
proves as either v or ¢ increase (over the ranges consid-
ered).

3.2 Conditional relative risk estimation

For our second simulation study, we consider two Poisson
processes, one each for controls and cases. Initially, we take
the control intensity to be constant, i.e. Ao(s;6p) = 6y = 500,
and the case intensity to be given by (2.4), with relative risk
function

(32)  &(siB) =1 +7yexp{-v[(z —0.5)* + (y — 0.5)°]},
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v = 25, and (a,v) = (0.6143, 5), (0.4433, 10), or (0.3468,
15). Note that this relative risk function is essentially the
same as the intensity function used in the first simulation
study (they differ only by a multiplier of 500). The values
of («,7) are chosen so that the expected number of cases,
like the expected number of controls, is equal to 500. To
complete our model specification, we use the same circular
bivariate normal distribution for location errors that was
used in the first study, with the same three error standard
deviations, ¢ = 0.025, 0.05, and 0.10. One thousand real-
izations of each of the two processes are simulated for each
combination of (a, ) and o.

For the relative risk function (3.2) used here, we have
(3.3) p(sisa,v,v)
_a(l+yexp{—v[(z; —0.5)* + (y; — 0.5)*]}

1+ a1l + yexp{—v|(z; — 0.5)2 + (y; — 0.5)2]}

Furthermore, 6y drops out of (2.6) and the integrals in
(2.7) can be evaluated explicitly; tedious but straightfor-



ward computations yield

(3.4)
aky(u;, 0?) + yaks(u;, v, 0?)
a+ Dki(u;, 02) + yaks(u;, v, 02)

q(ui;av’%yv 02) = (

where
ki(u,o?)
() e () () (7))
and
ko(u, v, 0?)
. ﬁ exp{—v[(u— 0.5)% + (v — 0.5)2]/(1 + 2v02)}

[p(te)

)

1— (v+wvo?)(1+2v0?)~t
S|P
{ ( o(1+ 2va2)~—1/2 )
—(v+vo?)(1 + 2vo?)~ !
- .
( o(1 4+ 2ve?2)=—1/2 )] }
Insertion of (3.3) and (3.4) into (2.3) and (2.5), respec-
tively, yields the conditional likelihood functions L*(a,v;
Y1, Yo dnlSn,v) and Li(a,v,0% Y1, .o, Yo, 4o |Uny )
for this setting.

Analogous to the first study, we estimate the param-
eters of the relative risk function (except ) in three
ways, corresponding to the maximization of L*(a,v;
Yla RS Yn1+n0 |Sna ’Y)a L*(Oé, Vi Ylv RS Yn1+n0 |Un7 ’y)a and
Li(a,v, 0% Y1, oo, Yo, 400 |Unyv). We refer to these as the
benchmark, naive, and proper conditional methods, respec-
tively.

Results on estimation performance are given in Table 2.
The relative performance of the methods is broadly similar
to that observed in the first study, with some notable dif-
ferences. As in the first study, the naive MLEs tend to be
negatively biased, sometimes greatly so. Over all three val-
ues of o, the proper MLE of 500« has consistently smaller
MSE than the naive MLE. On the other hand, the proper
MLE of the risk function parameter v has smaller MSE than
its naive counterpart only when o = 0.10. Thus, it is clear,
as was the case for unconditional estimation, that the proper
conditional method is worthwhile in practice only when the
positional error standard deviation is sufficiently large, per-
haps larger than 5% the length of a side of the study area.
In contrast to unconditional estimation, however, here the
magnitude of v appears to have relatively little effect on the
magnitude of o required for the proper method to outper-
form the naive method.

Next, we investigate the utility of approximating (2.6)
with (2.7) in the likelihood function (2.5) when the control
intensity is not constant. To this end, we consider a smoothly
varying control intensity

Ao(s;¢,m) = Cexp{n(z +y)}

where n = %10g 10 and ¢ is chosen so that the expected
number of controls is 500, i.e., ¢ = 500n?/(e" —1)2. Observe
that this intensity function has minimum ¢ at the origin and
maximum 10¢ at the opposite corner (1,1). Again, we adopt
the multiplicative model (2.4) with relative risk function
(3.2), set v = 25, and choose « so that the expected number
of cases, like the expected number of controls, is equal to
500. The desired « is given by

¢y

2
a = 500 {500 + Sl exp [—0.5u + M]

2v

9y —
1 (2) -+ (%))
V2 V2v

Estimation performance results corresponding to v = 5
or 15, and o = 0.025 or 0.10, are listed in Table 3. Upon
comparing these results to their counterparts in Table 2,
we see that there is surprisingly little deterioration in the
performance of the proper estimator when (2.6) is approx-
imated by (2.7). It must be admitted, however, that the
intensity function used here is quite smooth; the deteriora-
tion in performance could be more severe if the intensity
was “patchy.”

Although not central to the main purposes of this study, it
is nonetheless of some interest to compare the performance
of the unconditional and conditional estimation methods,
for observations made both with and without error. Such
comparisons can be made by comparing each entry in Ta-
ble 1 with the corresponding entry in Table 2. (Note that
5004 in Table 2 corresponds to éo in Table 1.) Not surpris-
ingly, the conditional approach is inferior: compared to the
unconditional approach, it yields mean square errors about
2-3 times larger for estimating the case intensity param-
eter 500 (= 6p) and v, and about 6-20 times larger for
estimating 0. Thus, there is a substantial price to pay for
taking a conditional rather than unconditional approach to
maximum likelihood estimation in this context.

4. EXAMPLE

This section presents a conditional relative risk analy-
sis of respiratory disease data from a mostly rural 20 km
by 20 km region comprising approximately one-fourth of
Carroll County, Iowa. The data, which were obtained in
conjunction with a comprehensive study of rural health in
Iowa by the Iowa Department of Public Health, include
all case records of respiratory diseases among residents of
the region that were diagnosed in 2005 by a doctor at ei-
ther of the two clinics in the county. We selected one of
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Table 2. Empirical relative bias, standard deviations, and mean square errors of conditional maximum likelihood estimators of
parameters for a case of constant control intensity and point-source relative risk model given by (3.2), with v known. True
parameter values are 500 = 307.1617, 221.6691, or 173.4051 (according to whether v = 5, 10, or 15) and v = 25, which

yield 500 expected cases and 500 expected controls. Results are based on 1,000 process realizations. Relative biases are
expressed as a percentage of the parameter’s magnitude, and those that exceed two standard errors are set in bold type. The
mean square error of 62 is given in units of 10~

Method of Relative bias Standard deviation Mean square error

estimation ~ o 50064 7 50064 7 &2 5006 7 &2
Benchmark 5 0.025 —-1.2 0.7 — 36.7 6.54 — 1363 42.8 —
Naive -1.5 -0.5 38.7 6.71 — 1520 45.0 —
Proper -0.3 4.6 210 35.4 6.94 0.00294 1256 49.5 104
Benchmark 5 0.05 0.3 4.2 34.9 6.51 — 1221 43.5 —
Naive -1.5 —-2.1 41.3 7.14 — 1730 51.2 —
Proper 0.1 5.1 21.5 37.0 7.45 0.00354 1371 57.1 129
Benchmark 5 0.10 —0.7 2.2 35.3 6.60 — 1250 43.8 —
Naive -7.3 -11.9 66.1 14.28 — 4868 212.6 —
Proper -3.1 0.5 —-16.1 50.0 10.74 0.00588 2594 115.4 372
Benchmark 10 0.025 -0.2 0.5 27.9 4.70 — et 22.1 —
Naive -1.1 -1.8 29.0 4.83 — 849 23.5 —
Proper 0.9 4.3 165 27.7 5.31 0.00244 771 29.3 70
Benchmark 10 0.05 -0.3 0.8 27.1 4.44 — 736 19.7 —
Naive -3.1 —6.8 31.7 4.96 — 1053 27.6 —
Proper 0.1 2.7 12.2 29.9 5.68 0.00308 897 32.7 96
Benchmark 10 0.10 0.1 0.6 26.3 4.34 — 692 18.8 —
Naive —-12.7 —-25.9 52.5 8.00 — 3545 106.0 —
Proper -1.7 -0.7 —-15.4 41.8 8.22 0.00488 1759 67.6 262
Benchmark 15 0.025 —0.5 0.2 23.1 4.03 — 533 16.2 —
Naive -1.3 -1.9 23.6 4.11 — 562 17.1 —
Proper 1.1 4.6 145 23.4 4.91 0.00219 553 25.4 56
Benchmark 15 0.05 0.1 0.2 22.0 3.75 — 482 14.1 —
Naive -3.6 —-8.3 24.9 4.03 — 659 20.5 —
Proper 0.9 2.5 7.5 24.4 5.09 0.00281 600 26.3 79
Benchmark 15 0.10 -0.3 0.3 22.2 3.97 — 494 15.9 —
Naive -16.9 -30.4 39.8 6.09 — 2451 94.9 —
Proper —0.2 1.7 -13.1 35.0 7.84 0.00433 1222 61.7 205

the most common respiratory diagnoses, “Cough” (coded
as 786.2 within the International Statistical Classification
of Diseases and Related Health Problems, or ICD-9, coding
system), for analysis. Residential addresses of subjects with
this diagnosis (“cases”) and all remaining residents of the
study region (“controls”) were geocoded using a standard
street geocoding procedure. Specifically, locations were ob-
tained by matching addresses to the U.S. Census Bureau’s
Topically Integrated Geographic Encoding and Referenc-
ing (TIGER) street centerline file for Carroll County using
ArcGIS 9.1 (ArcGIS9, 2003), with minimum match-score
(a measure of the similarity of an address in the dataset
to an address in the TIGER file) set at 60%. For each ad-
dress whose match score equalled or exceeded this thresh-
old, the geocode was determined by linearly interpolating
the address number to a point on the matched street seg-
ment between the two points that defined the limits of that
segment’s address range. Overall, 97 cases and 687 controls
geocoded using this procedure. Figure 2 displays these ad-
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dress locations, but for the sake of privacy protection we
do not identify which are cases. The total number of ad-
dresses in the study region, including those that did not
geocode, was 1,084, yielding a geocoding success rate of
72%.

Concentrated animal feeding operations, or CAFOs, in
rural areas of the U.S. and elsewhere produce hydrogen sul-
fide, ammonia, and suspended particles, among other at-
mospheric pollutants (Radon et al., 2007). Persons living
in close proximity to CAFOs are thus naturally concerned
about possible effects of CAFO pollutants on their health,
especially on their respiratory health. The objective of this
particular investigation is to determine whether elevated lev-
els of hydrogen sulfide are associated with an increase in the
relative risk of a cough diagnosis. Accordingly, the locations
of CAFOs in the study region were ascertained, and the
U.S. Environmental Protection Agency’s AERMOD model,
a Gaussian plume dispersion model based on prevailing wind
direction and speed, modified by a multiplier based on the




Table 3. Empirical relative bias, standard deviations, and mean square errors of conditional maximum likelihood estimators of
parameters for a case of smoothly-varying control intensity and point-source relative risk model given by (3.2), with v known,
and with (6) approximated by (7). True parameter values are 500cc = 307.1617 or 173.4051 (according to whether v = 5 or
15) and v = 25, which yield 500 expected cases and 500 expected controls. Results are based on 1,000 process realizations.
Relative biases are expressed as a percentage of the parameter’s magnitude, and those that exceed two standard errors are set
in bold type. The mean square error of 52 is given in units of 10~7

Method of Relative bias Standard deviation Mean square error
estimation ~ o 50064 7 50064 7 &2 5004 7 &2
Benchmark 5 0.025 —-0.3 2.0 — 36.8 6.30 — 1352 39.9 —
Naive —0.7 0.6 — 38.3 6.66 — 1469 44.3 —
Proper 0.1 5.4 236 35.4 6.93 0.00317 1250 49.8 122
Benchmark 5 0.10 —0.5 2.2 — 37.1 6.42 — 1378 41.6 —
Naive —-4.7 —4.8 — 67.3 19.20 — 4754 368.9 —
Proper —2.0 4.5 —18.2 52.7 10.41 0.00564 2818 109.6 351
Benchmark 15 0.025 —0.5 —0.0 — 24.2 4.06 — 588 16.5 —
Naive —-1.1 —-1.9 — 24.9 4.09 — 625 16.9 —
Proper 1.2 4.9 166 24.7 5.03 0.00229 617 26.8 63
Benchmark 15 0.10 0.9 0.4 — 24.8 4.07 — 615 16.5 —
Naive —15.5 —28.1 — 42.5 6.65 — 2616 93.7 —
Proper —1.2 1.9 —14.4 35.2 7.65 0.00452 1240 58.7 225
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Figure 2. Locations of all addresses (cases and controls) that
geocoded in the study region, using the street geocoding
procedure described in the text.

number of animal units in the CAFO, was used to estimate
hydrogen sulfide levels at the nodes of a square grid with
25m spacing over the study region; for further details see
Bunton et al. (2007) and Mazumdar et al. (2008). Figure 3 is
a contour map of these estimates, which range from 0 ug/m3
to 1213 pg/m3.

We took the case and control intensities of cough diag-
noses to be related multiplicatively as specified by (2.4),

Table 4 (first two columns) lists the maximum likelihood
estimates of model parameters for both analyses. We ob-
serve that both estimates of 31, the effect of hydrogen sul-
fide on the relative risk of cough, are positive, although the
estimate from the positional-error-adjusted analysis is some-
what (43%) larger. The positional-error-adjusted estimates
of By and By imply that the hydrogen sulfide level must ex-
ceed 136 pg/m? for the relative risk to be exceed 1.0, while
the unadjusted estimates imply that the hydrogen sulfide
level must exceed 173 pg/m? to achieve the same result.
The square root of the estimated positional-error variance
parameter is o = 0.03212; thus, one standard deviation of
the estimated positional error distribution is roughly 3% the
length of the side of the study region.
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Table 4. Conditional maximum likelihood estimates of relative risk function parameters (and nuisance parameters) for the
Carroll County cough data. Method 1 uses incorrect locations without adjustment; Method 2 uses incorrect locations but
adjusts for positional errors; Method 3 uses correct locations. The estimator of o for Method 2 is based on a rescaling of the
study region to a unit square. Bootstrap estimates of standard errors are given in parentheses; estimates for Methods 1 and 3
are based on 1,000 bootstrap samples, while estimates for the more computationally demanding Method 2 are based on 250

bootstrap samples

Parameter estimate Method 1 Method 2 Method 3
Bo —0.0660 (0.0613) —0.0742 (0.0677) —0.0780 (0.0679)
Bl 0.00038 (0.00268) 0.00054 (0.00135) 0.00074 (0.00203)
& 0.1503 (0.0174) 0.1472 (0.0194) 0.1498 (0.0175)
&2 — 0.00103 (0.00073) —
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Figure 3. Contour map of estimated hydrogen sulfide (HxS)
levels (in jg/m?) in the study region.

To evaluate the uncertainty of the estimated parameters,
we calculated bootstrap estimates of their standard errors.
Bootstrap samples were taken from the observed hydrogen
sulfide level values at the 784 addresses while all the other
information remained the same as the observed data. Pa-
rameters were then estimated for each bootstrap sample,
and the bootstrap standard errors (given in parentheses in
Table 4) are the sample standard deviations of estimates
from all such samples. These indicate that only the esti-
mates of a are significantly different from zero. Neither the
naive nor the positional-error-adjusted analysis found the
effect of hydrogen sulfide on the relative risk of cough to be
significant.

Held back from the reader until this point in the narra-
tive is the fact that the addresses in the study region were
eventually “ground-truthed,” i.e. geocoded not by the auto-
mated, batch-mode method of street geocoding, but man-
ually and individually in such a way that the address lo-
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cations have essentially no positional errors. For rural ad-
dresses (those lying outside incorporated township bound-
aries), ground-truthing was performed by examination of
highly accurate (24 inch/pixel) aerial orthophotographs. For
non-rural addresses, the ground-truthed location of an ad-
dress was taken to be its associated “E-911 geocode,” ob-
tained from the Carroll County GIS Coordinator. (The E-
911 geocode of a Carroll County residence is the location
where emergency services personnel would leave the public
road and enter the private road leading to the residence
from which an E-911 call was made.) Knowledge of the
ground-truthed address locations presents us with an un-
usual opportunity here: we can observe the positional errors
associated with street geocoding and retrospectively per-
form a third analysis based on the ground-truthed data.
Figure 4 displays the positional errors for 97 randomly se-
lected addresses from the study region; once again, to pro-
tect privacy we cannot show positional errors for the actual
cases. Nevertheless, the error magnitudes seen in Figure 4
comport well with the estimated standard deviation of the
positional error distribution given previously. Observe also
that the error vectors tend to align with the north-south or
east-west axial directions; further comment on this is de-
ferred to the Discussion. The third analysis we perform con-
sists of maximizing (2.3) using hydrogen sulfide estimates
at ground-truthed locations. From such an analysis we can
obtain “benchmark” estimates of model parameters to com-
pare to estimates obtained by the previous two analyses.
Table 4 (third column) gives the benchmark parameter es-
timates. It can be seen that the benchmark estimate of S
is larger than its counterparts from Methods 1 and 2 (95%
and 36% larger, respectively). That the effect of increased
levels of hydrogen sulfide on the relative risk of cough is
estimated to be largest by the analysis using the true loca-
tions is consistent with previous work (e.g. Mazumdar et
al., 2008), which showed that estimated covariate effects
are biased toward the null hypothesis (of no covariate ef-
fects) in the presence of location errors. It is likewise not
surprising that the positional-error-adjusted analysis yields
an intermediate estimate. Likelihood ratio tests of the null
hypothesis that 51 = 0 against an unrestricted alternative
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Figure 4. Positional errors of a facsimile of the Carroll County
cough data. True locations are denoted by an x, and
locations measured with error (using street geocoding with a
TIGER street centerline file) are denoted by an open circle.

indicate, however, that in none of the analyses is the ef-
fect statistically significant. Thus, although adjustment for
positional errors moved the estimated relative risk function
closer to what it would be in the absence of location er-
rors, in this case the adjustment does not change the overall
conclusion.

5. DISCUSSION

In this article, we have developed methodology for ac-
counting for positional errors within unconditional and con-
ditional maximum likelihood estimation procedures for pa-
rameters of the intensity and relative risk functions of a
spatial point process. We demonstrated that these meth-
ods may or may not be superior to methods that simply
ignore the errors, depending on their magnitudes. In partic-
ular, for the point-source intensity and relative risk functions
we considered, the magnitude of the positional error stan-
dard deviation relative to the rate of change in intensity
or relative risk across the study area determines whether
the analysis that accounts for positional errors will improve
upon the analysis that does not. These findings are similar,
both qualitatively and quantitatively, to those of Gabrosek
and Cressie (2002) concerning the relative performance of
kriging methods that do and do not account for positional
errors. They are also consistent, to a point, with simula-
tion results of Cucala (2008) and Chakraborty and Gelfand
(2010) pertaining directly to intensity estimation of spatial

point processes. Those authors demonstrated improved per-
formance of methods for kernel-based and Bayesian intensity
estimation that account for positional errors. However, the
positional errors they simulated were relatively large, with
standard deviations ranging from at least 12%, to more than
20%, of the distance between the sites of minimum and max-
imum intensity. Had those authors used sufficiently small er-
ror standard deviations, we suspect that they, like us, would
have found that an analysis that accounts for positional er-
rors is not always superior to one that does not.

Our analysis is based on a model that assumes that all
points originate within the specified study region but al-
lows perturbed points to lie outside the study area — the
so-called “island model” (Chakraborty and Gelfand, 2010).
There are other possibilities, of course. One alternative that
we considered in our simulation study used a toroidal edge
correction of the perturbed locations so that they would re-
main in the unit square rather than be moved outside. How-
ever, results for this method were never discernibly better,
and usually considerably worse, than results for the naive
method, so we did not include them in our presentation.

In principle, the methodology proposed herein is applica-
ble for positional error distributions of any known form. In
practice, however, certain error distributions may be partic-
ularly convenient, as they may yield a closed-form expres-
sion for the likelihood function, while other distributions
may not. (This is analogous to the notion of conjugate pri-
ors yielding closed-form posterior distributions for Bayesian
estimation.) Due to the exponential form of the point-source
intensity and relative risk functions featured herein, a bivari-
ate normal error distribution is especially convenient. In-
deed, normal error distributions may be convenient in this
regard for any modulated Poisson process, due to its ex-
ponential form. Also reasonably convenient are mixtures of
normal distributions, which appear to fit several published
positional error datasets better than a single normal distri-
bution does (Cayo and Talbot, 2003; Whitsel et al., 2006).
In particular, in cases where the street network is strongly
rectilinear, as in our example from Iowa, a preponderance of
street-geocoding errors may lie in the north-south and east-
west axial directions due to the main source of error being
interpolation error; in such cases, mixtures of bivariate nor-
mal distributions with major and minor axes aligned in the
east-west or north-south directions have been observed to
fit reasonably well (Zimmerman et al., 2007).

If the data contain outliers, positional error distributions
more heavy-tailed than a bivariate normal may be more ap-
propriate. An effective alternative might be (mixtures of)
bivariate t distributions, which are especially heavy-tailed
if their degrees of freedom are small. Indeed, in a study of
a set of rural Carroll County geocoding errors larger than
the one used for our example, a three-component mixture of
bivariate t distributions, one component of which was esti-
mated to have only 1.6 degrees of freedom (Zimmerman et
al., 2007), fit better than any bivariate normal mixture. Un-
fortunately, however, bivariate t error distributions are not
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nearly as convenient to use with modulated Poisson pro-
cesses as normal distributions are. Further work is needed
to make their use more feasible.

Finally, it might be desirable to extend the methodol-
ogy presented here to accommodate heteroscedasticity in
the errors. Several investigations of geocoding accuracy have
found an increase in accuracy with increasing population
density (Bonner et al., 2003; Cayo and Talbot, 2003; Ward
et al., 2005; Kravets and Hadden, 2007; Hay et al., 2009),
and a careful examination of the positional errors displayed
in Figure 4 relative to the background population density
displayed in Figure 2 suggests the same thing. One possibil-
ity for incorporating this type of heteroscedasticity into our
approach would be to classify each address as belonging to a
dichotomous (rural or urban) or perhaps trichotomous (ru-
ral, suburban, or urban) zone, and allow each zone to have a
different variance parameter. Then the conditional density
of an observed location, given the true location, could be
modelled as a function of the bivariate or trivariate vector of
these variance parameters rather than a function of merely
one variance parameter. In the case-control setting, an al-
ternative, more continuous approach would be to model the
variance parametrically as a function of the control intensity.
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