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Additive hazards regression and partial likelihood
estimation for ecological monitoring data across
space

Feng-Chang Lin and Jun Zhu
∗

We develop continuous-time models for the analysis of
environmental or ecological monitoring data such that sub-
jects are observed at multiple monitoring time points across
space. Of particular interest are additive hazards regression
models where the baseline hazard function can take on flexi-
ble forms. We consider time-varying covariates and take into
account spatial dependence via autoregression in space and
time. We develop statistical inference for the regression co-
efficients via partial likelihood. Asymptotic properties, in-
cluding consistency and asymptotic normality, are estab-
lished for parameter estimates under suitable regularity con-
ditions. Feasible algorithms utilizing existing statistical soft-
ware packages are developed for computation. We also con-
sider a simpler additive hazards model with homogeneous
baseline hazard and develop hypothesis testing for homo-
geneity. A simulation study demonstrates that the statisti-
cal inference using partial likelihood has sound finite-sample
properties and offers a viable alternative to maximum like-
lihood estimation. For illustration, we analyze data from an
ecological study that monitors bark beetle colonization of
red pines in a plantation of Wisconsin.

AMS 2000 subject classifications: Primary 62N02;
secondary 62M10.
Keywords and phrases: Current status data, Grouped
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1. INTRODUCTION

In many environmental and ecological monitoring pro-
grams, subjects are observed across space and repeatedly
over time. The motivating example here is a study of
insect-tree interactions in a red pine plantation of Wiscon-
sin [18, 23]. The trees were planted on a regular grid of sites.
Each site where a tree was present was visited by researchers
on an annual basis from 1986 to 1992. Two types of bark
beetles were of interest, namely, Ips species (predominantly
Ips pini (Say) and to a lesser extent Ips grandicollis (Eich-
hoff)), a bark beetle that colonizes the main stem of a tree,
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and Dendroctonus valens (LeConte), a bark beetle known
as turpentine beetle that colonizes the lower stem of a tree.
[23] analyzed the data for the purpose of evaluating the rela-
tion between the two types of bark beetles and the survival
of trees. [18] focused on a subset of the data and analyzed
Ips species in relation to turpentine beetle.

While [23] proposed autologistic-type models, which as-
sume that time is discrete and coincides with the monitoring
times, [18] proposed an alternative, continuous-time model
with additive hazards regression that accounts for multiple
monitoring times. The continuous-time model was shown to
have several advantages over the discrete-time model. Pa-
rameters of different continuous-time models, particularly
regression coefficients, are comparable even with different
sampling frequencies, but those of different discrete-time
models are not always comparable. In addition, even though
observations are made at discrete points in time, most
environmental or ecological processes of interest are over
continuous time. An underlying continuous-time process is
not guaranteed to exist in the specification of a discrete-
time model, while a continuous-time model does not have
this issue. However, the modeling approach in [18] is fully
parametric and requires that the baseline hazard be esti-
mated using external data. Here we consider this continuous-
time modeling framework, but develop an alternative, semi-
parametric model, such that the baseline hazard has a flexi-
ble form and thus does not require estimation using external
data as in [18].

While nonparametric maximum likelihood estimation of
a distribution function can be used to analyze such moni-
toring data [22, 8], semiparametric regression models offer
a viable alternative [7, 5, 21, 12, 13]. Among the existing
models and estimation methods, an additive hazards regres-
sion developed by [12] and [13] is particularly appealing, as
time-varying covariates can be readily included in the model,
which broadens its applicability in a wide variety of disci-
plines. In addition, the model can be transformed to a pro-
portional hazards model and hence statistical inference can
be carried out by most standard statistical software pack-
ages. However, the methods by [12] and [13] are limited to
current status data, in that a subject is monitored only once
at a random point in time.

Here we aim to extend the additive hazards regression for
current status data to multiple monitoring times, in that

http://www.intlpress.com/SII/


a subject is followed more than once at pre-determined
points in time. This type of data occur often in ecological
monitoring programs, but it is not obvious how the method-
ology developed in [12] or [13] can be generalized to analyze
such data. Thus we take a different approach. In particular,
since each subject is monitored regularly and no lost-to-
follow-up occurs during the study, the data can be viewed
as a type of grouped failure time [15]. However, regression
models for grouped failure time are mostly confined to multi-
plicative forms, while additive forms are largely unexplored.
An exception is recent work by [19] who considered maxi-
mum likelihood estimation for additive hazards regression in
an ecological monitoring study, although their data were not
spatially referenced and thus there was no need to account
for spatial dependence.

Our main contribution is to develop valid and feasible
statistical inference for grouped failure time that has addi-
tive forms. More specifically, we propose to transform the
additive hazard to proportional hazard at discrete monitor-
ing times and apply partial likelihood estimation. We also
compare partial likelihood with maximum likelihood estima-
tion. Furthermore, since our method may be implemented
in a standard statistical software package, it has compu-
tational advantage over, for example, [18] where statistical
inference is via Bayesian hierarchical modeling and can be
computationally intensive.

The remainder of the paper is organized as follows. In
Section 2, we describe an additive hazards model of inter-
est, along with notation to be used throughout the paper.
For statistical inference, we propose partial likelihood esti-
mation in Section 3 and consider maximum likelihood esti-
mation in Section 4. Computational issues are addressed in
Section 5. In Section 6, a related, more parsimonious addi-
tive hazards model is proposed. Simulation experiments and
a red pine data example are reported in Section 7 to demon-
strate the applicability of the partial likelihood and compare
with maximum likelihood estimation. Conclusions and dis-
cussion are given in Section 8. Technical details including
proofs of theorems are provided in the Appendix A–C.

2. ADDITIVE HAZARDS REGRESSION
MODEL

For subject i (i = 1, . . . , n) at time t > 0 in the kth
follow-up period (k = 1, 2, . . . ,K), consider a continuous-
time additive hazards model,

λk,i(t) = Yk,i{λ0(t) + ψ′Zk,i(t)},(1)

where ψ is a q-dimensional vector of unknown regression
coefficients and Zk,i(·) is a q-dimensional vector of covari-
ates which are possibly time-varying and assumed to be
known up to time t. The non-negative baseline hazard func-
tion λ0(t) is left unspecified to provide more flexibility than
a fully parametric approach. Further, Yk,i = 1 if subject i is
event free at the (k − 1)th monitoring time and thus is at

risk during the follow-up period k, and Yk,i = 0 otherwise.
Without loss of generality, we assume all subjects are event
free at the start of the study and thus at risk in the first
follow-up period (k = 1).

Moreover, we let c0 = 0 < c1 < c2 < · · · < cK < ∞ de-
note the monitoring times. We let Ti denote the exact time
of event occurrence, which can be observed to either sur-
pass the last monitoring time cK or to lie in [ck−1, ck) for
some k ∈ {1, . . . ,K}. Hence, the observations comprise of
{ck, Zk,i(·), δk,i}, where δk,i = I(Ti ≥ ck) denotes the event
status, i = 1, . . . , nk, nk =

∑n
i=1 Yk,i is the total number

of subjects at risk during the kth follow-up period, and
k = 1, . . . ,K.

3. PARTIAL LIKELIHOOD ESTIMATION

3.1 K = 1: Current status data

We begin by considering current status data (K = 1) with
one monitoring time. As is common in environmental and
ecological studies, the monitoring time is assumed to be pre-
determined (i.e. fixed) here. This is in contrast to the setup
in [12] where the one monitoring time is assumed to be a ran-
dom point in time.

The probability of no event between c0 and c1 is

p1,i(θ) = exp(−α1 − ψ′Z̃1,i),(2)

where

α1 =

∫ c1

c0

λ0(t)dt and Z̃1,i =

∫ c1

c0

Z1,i(t)dt,

with θ = [α1, ψ
′]′. The probability p1,i(θ) has a multiplica-

tive form with exp(−α1) serving as the baseline hazard [12].
For the unspecified λ0(·), we apply a partial likelihood,

pl1(ψ) =

n∏
i=1

{
p1,i(θ)∑n
j=1 p1,j(θ)

}δ1,i

(3)

=

n∏
i=1

{
exp(−ψ′Z̃1,i)∑n
j=1 exp(−ψ′Z̃1,j)

}δ1,i

,

to obtain an estimate of ψ under the assumption that the
outcomes are independent conditional on the history of all
the covariates in the follow-up period [c0, c1) [3, 4].

In particular, consider the log-partial likelihood function,

�1(ψ) =

n∑
i=1

δ1,i

[
−ψ′Z̃1,i − log

{
n∑

j=1

exp(−ψ′Z̃1,j)

}]
,

and obtain a maximum partial likelihood estimate ψ̂pl =
argmaxψ�1(ψ). With

S
(l)
1 (ψ) = n−1

n∑
j=1

(−1)lZ̃
⊗l

1,j exp{−ψ′Z̃1,j},
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l = 0, 1, 2, and for a vector a, a⊗0 = 1, a⊗1 = a, and a⊗2 =
aa′, we formally establish the large-sample properties of ψ̂pl

as follows.

Theorem 3.1. Under conditions (a)–(e) in Appendix A,

ψ̂pl, maximizing �1(ψ), is consistent, and n1/2(ψ̂pl−ψ) con-
verges in distribution to a normal variable with mean zero
and a covariance matrix that can be consistently estimated
by

Σ̂1(D) = Î1(ψ̂pl)
−1D̂1(ψ̂pl)Î1(ψ̂pl)

−1,

where

Î1(ψ) = n−1
n∑

i=1

δ1,i

{
S
(2)
1 (ψ)

S
(0)
1 (ψ)

− S
(1)
1 (ψ)⊗2

S
(0)
1 (ψ)2

}
,

D̂1(ψ) = n−1
n∑

i=1

[{
−Z̃1,i −

S
(1)
1 (ψ)

S
(0)
1 (ψ)

}

× {δ1,i − η̂1 exp(−ψ′Z̃1,i)}
]⊗2

,

and η̂1 =
∑n

i=1 δ1,i�
∑n

i=1 exp(−ψ′Z̃1,i) is a consistent es-
timate of exp(−α1).

Note that, for variance estimation, one may consider the
inverse of the observed information matrix Î1(ψ̂pl)

−1. How-
ever, this is only appropriate when the monitoring time is
randomly assigned as in [12], independent of the time of
event Ti, since the variance of the score function var{∂�1(ψ)/
∂ψ} is the same as the information matrix E{−∂2�1(ψ)/
∂ψ∂ψ′}. When the monitoring times are predetermined as
is common in environmental and ecological monitoring pro-
grams, this argument may not hold since the second term
of

var{∂�1(ψ)/∂ψ}

=
n∑

i=1

E

[{
−Z̃1,i −

S
(1)
1 (ψ)

S
(0)
1 (ψ)

}⊗2

p1,i(θ){1− p1,i(θ)}
]

= E

{
−∂2�1(ψ)

∂ψ∂ψ

′}

−
n∑

i=1

E

[{
−Z̃1,i −

S
(1)
1 (ψ)

S
(0)
1 (ψ)

}⊗2

p21,i(θ)

]

is generally not negligible. Thus we need to develop an alter-
native, more precise variance estimation for n1/2(ψ̂pl − ψ).

One possibility is

Σ1(C) = Î1(ψ̂pl)
−1Ĉ1(ψ̂pl)Î1(ψ̂pl)

−1,

where

Ĉ1(ψ) = Î1(ψ)− n−1
n∑

i=1

{
−Z̃1,i −

S
(1)
1 (ψ)

S
(0)
1 (ψ)

}⊗2

(4)

× η21 exp(−2ψ′Z̃1,i),

is a corrected variance estimation of the score function [16].
Computation of Ĉ1(·) can be challenging, as estimation of η1
may not be straightforward.

Remarkably, when subjects are monitored only once at
a fixed monitoring time, one can treat p1,i(θ) as the intensity
of a discrete-time counting process τi(ck) indexed by ck ∈
{c0, c1} with τi(c0) = 0 and τi(c1) = δ1,i. The partial likeli-
hood (3) is thus equivalent to the approximate partial likeli-
hood by [2] for handling tied survival time at c1 under a pro-
portional hazards model [9, 16]. Hence the score function,

∂�1(ψ)/∂ψ =

n∑
i=1

{
−Z̃1,i −

S
(1)
1 (ψ)

S
(0)
1 (ψ)

}
δ1,i

=

n∑
i=1

{
−Z̃1,i −

S
(1)
1 (ψ)

S
(0)
1 (ψ)

}
{δ1,i − p1,i(θ)},

is an unbiased estimating function for ψ since E{δ1,i −
p1,i(θ)} = 0. Therefore, instead of (4), an empirical estimate

D̂1(ψ̂pl) can be used to estimate var{n−1/2∂�1(ψ)/∂ψ}. The
variance estimation of n1/2(ψ̂pl−ψ) thus becomes Σ̂1(D) =

Î1(ψ̂pl)
−1D̂1(ψ̂pl)Î1(ψ̂pl)

−1. The robust estimate Σ̂1(D) is
more practical, since it can be attained from most statistical
software packages that have the capability to implement
Breslow’s approximate partial likelihood with robust varian-
ce estimation. For this reason, we will focus on Σ̂1(D) here.

3.2 K > 1: Multiple monitoring times

We now extend the methodology for current status data
with one fixed monitoring time (K = 1) to multiple monitor-
ing times (K > 1). Let Hck = σ{Z̃l, Yl, δl−1 : l = 1, . . . , k}
denote history up to ck, which is a σ-algebra generated by

the covariate processes Z̃l = [Z̃
′
l,1, . . . , Z̃

′
l,n]

′, the at-risk pro-
cesses Yl = [Yl,1, . . . , Yl,n]

′, and the event history δl−1 =
[δl−1,1, . . . , δl−1,n]

′, for l = 1, . . . , k. Consider a discrete-time

counting process τi(ck) ≡
∑k

l=1 Yl,iδl,i, k = 1, . . . ,K, and
τi(c0) = 0. We assume that τi(ck) is adapted to Hck for each
i and has a jump size +1 if no event occurred in [ck−1, ck).
That is, τi(ck) can have multiple jumps. Conditional on the
history Hck , we assume that τi can independently have an
increment at ck with intensity,

Yk,ipk,i(θ) = Pr{τi(ck)− τi(ck−) = 1|Hck},(5)

for k = 1, . . . ,K and thus acts as a counting process with
recurrent events.

Suppose that subject i is at risk in the kth follow-up
period, the probability of no event between ck−1 and ck
under model (1) is exp(−αk − ψ′Z̃k,i), where

αk =

∫ ck

ck−1

λ0(t)dt, and Z̃k,i =

∫ ck

ck−1

Zk,i(t)dt.(6)

Equation (6) leads to a proportional hazards model,

pk,i(θ) = exp(−αk − ψ′Z̃k,i),(7)
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where θ = [α1, . . . , αK , ψ′]′. Unlike p1,i(θ) in (2), pk,i(θ) has
a different baseline hazard exp(−αk) for different k. Thus,
we propose a stratified analysis on the discrete-time count-
ing process τi [17]. That is, conditional on Hck , we assume
independent increment as (5) and that the event status δk,i
are independent for i = 1, . . . , nk. A stratified partial likeli-
hood can be written as a product of partial likelihood within
a stratum,

plK(ψ) =

K∏
k=1

n∏
i=1

{
pk,i(θ)∑n

j=1 Yk,jpk,j(θ)

}Yk,iδk,i

(8)

=

K∏
k=1

n∏
i=1

{
exp(−ψ′Z̃k,i)∑n

j=1 Yk,j exp(−ψ′Z̃k,j)

}Yk,iδk,i

,

where the follow-up periods are considered as the strata.

It follows that the log-partial likelihood function is

�K(ψ) =

K∑
k=1

n∑
i=1

Yk,iδk,i

[
−ψ′Z̃k,i

− log

{
n∑

j=1

Yk,j exp(−ψ′Z̃k,j)

}]

and can be maximized to obtain a maximum partial like-
lihood estimate ψ̂pl for ψ. In particular, when K is fixed,

one can show that ψ̂pl is a consistent estimate of ψ and
asymptotically normal. Variance estimation has a sandwich
form, as it needs to be corrected due to the discreteness of

τi. Define S
(l)
k (ψ) = n−1

∑n
j=1(−1)lYk,jZ̃

⊗l

k,j exp{−ψ′Z̃k,j},
l = 0, 1, 2. We formally establish the large-sample properties
of ψ̂pl as follows.

Theorem 3.2. Under conditions (a)–(e) in Appendix A,

ψ̂pl, maximizing �K(ψ), is consistent, and n1/2(ψ̂pl−ψ) con-
verges in distribution to a normal variable with mean zero
and a covariance matrix that can be consistently estimated
by

Σ̂K(D) = ÎK(ψ̂pl)
−1D̂K(ψ̂pl)ÎK(ψ̂pl)

−1,

where ÎK(ψ) =
∑K

k=1 Îk(ψ) and D̂K(ψ) =
∑K

k=1 D̂k(ψ)
with

Îk(ψ) = n−1
n∑

i=1

Yk,iδk,i

{
S
(2)
k (ψ)

S
(0)
k (ψ)

− S
(1)
k (ψ)⊗2

S
(0)
k (ψ)2

}
,

D̂k(ψ) = n−1
n∑

i=1

Yk,i

[{
−Z̃k,i −

S
(1)
k (ψ)

S
(0)
k (ψ)

}

× {δk,i − η̂k exp(−ψ′Z̃k,i)}
]⊗2

,

and η̂k =
∑n

i=1 Yk,iδk,i�
∑n

i=1 Yk,i exp(−ψ′Z̃k,i) is a con-
sistent estimate of exp(−αk), k = 1, . . . ,K.

Theorem 3.2 is an extension of Theorem 3.1 for K = 1 to
the case K > 1. We will show, in the following section, that
η̂k (k = 1, . . . ,K) is a profile estimator for exp(−αk) under
a profile likelihood. Consistency and asymptotic normality
of η̂k will be established in Section 6.

4. MAXIMUM LIKELIHOOD ESTIMATION

A maximum likelihood approach is also possible here,
as the data are grouped survival with Ti either greater
than cK or between ck−1 and ck, for k = 1, . . . ,K. Let
F̄i(cx; θ) =

∏x
k=1 pk,i(θ) denote the probability of no event

up to the monitoring time cx for subject i if x ∈ {1, . . . ,K}
and F̄i(cx) = 0 if cx > cK , under the independent increment
assumption in (5). A full likelihood function, therefore, is
given by

L(θ) =

n∏
i=1

{
F̄i(cx−1; θ)− F̄i(cx; θ)

}

=

K∏
k=1

n∏
i=1

[
pk,i(θ)

δk,i{1− pk,i(θ)}1−δk,i
]Yk,i

.

The score functions are

∂ logL(θ)

∂αk
=

n∑
i=1

Yk,i{1− pk,i(θ)}−1{pk,i(θ)− δk,i},(9)

for k = 1, . . . ,K, and

∂ logL(θ)

∂ψ
=

K∑
k=1

n∑
i=1

Yk,iZ̃k,i{1− pk,i(θ)}−1(10)

× {pk,i(θ)− δk,i},

where θ = [α1, . . . , αK , ψ′]′ as in (7).

We denote the maximum likelihood estimate (MLE) as

θ̂m = [α̂1, . . . , α̂K , ψ̂
′
m]′. By conventional maximum likeli-

hood arguments, θ̂m is consistent, asymptotically normal,
and efficient. Furthermore Îm(θ̂m)−1 consistently estimates

the variance of n1/2(θ̂m − θ), where Îm(θ) = −∂2 logL(θ)�
∂θ∂θ′ is the observed information matrix. In particular,

Îm(θ) =
K∑

k=1

n∑
i=1

Yk,iZ̃
∗⊗2

k,i {1− pk,i(θ)}−2pk,i(θ)(1− δk,i),

(11)

where Z̃
∗
k,i = [1′k, Z̃

′
k,i]

′ and 1k is a K-dimensional vector
with 1 in the kth element and 0 otherwise.

Maximizing L(θ), or equivalently, solving the estimating
equations (9) and (10) simultaneously, is in principle feasi-
ble. However, in practice, it is feasible only when the num-
ber of monitoring times K is relatively small. When K is
large, a profile estimate of ψ that treats [α1, . . . , αK ]′ as
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nuisance would be more manageable computationally. Drop-
ping the term {1−pk,i(θ)}−1 in (9) leads to an estimator for
exp(−αk) as

exp(−α̂k) =

n∑
i=1

Yk,iδk,i�

n∑
i=1

Yk,i exp(−ψ′Z̃k,i),(12)

when fixing ψ [12]. Replacing exp(−αk) in (10) with
exp(−α̂k) and again dropping the term {1− pk,i(θ)}−1, the
score function becomes

K∑
k=1

n∑
i=1

Yk,iδk,i

{
−Z̃k,i −

∑n
j=1 Yk,j(−Z̃k,j) exp(−ψ′Z̃k,j)∑n

j=1 Yk,j exp(−ψ′Z̃k,j)

}
,

(13)

which is exactly the same as the stratified partial likelihood
score function of (8).

The argument above brings out an interesting link be-
tween the partial likelihood and the maximum likelihood
estimation. Intuitively, since the monitoring times here are
fixed and the same for each subject, the partial likelihood
estimate ψ̂pl is expected to be close to the maximum like-
lihood estimate and thus should have relatively high effi-
ciency. However, we also observe that the partial likelihood
estimation is equivalent to the one when dropping the term
{1 − pk,i(θ)}−1 in both (9) and (10). Hence, it does not
achieve the semiparametric information bound [13].

5. COMPUTATIONAL ASPECT

Maximum likelihood estimation can be computed by
a Newton-Raphson algorithm. Starting from an initial value

θ̂
(0)

m , we update

θ̂
(s+1)

m = θ̂
(s)

m + Îm
(
θ̂
(s)

m

)−1
Um

(
θ̂
(s)

m

)
,

where Um is the score function defined in (9) and (10), and
Îm is the observed information matrix defined in (11). We
iterate until convergence. However, the observed informa-
tion matrix Îm may be difficult to invert when the number
of follow-up periods K is large. One way to deal with this is
to use a symmetric 2× 2 partition matrix

Î
−1

m =

[
I11 I12
I21 I22

]−1

=

[
I−1
11 +AB−1A′ −AB−1

−B−1A′ B−1

]
,

where A = I−1
11 I12 and B = I22−I21A [15]. More specifically,

let dk,i = (1−pk,i)
−2pk,i(1−δk,i), where pk,i = pk,i(θ). Then

I11 = diag{
∑n

i=1 Yk,idk,i} is a K ×K diagonal matrix, and
I−1
11 = diag{(

∑n
i=1 Yk,idk,i)

−1}. Also,

I21 =

[
n∑

i=1

Y1,id1,iZ̃1,i, . . . ,

n∑
i=1

YK,idK,iZ̃K,i

]

is a p × K matrix with I12 = I ′21 and I22 =∑K
k=1

∑n
i=1 Yk,idk,iZ̃

⊗2

k,i is a p × p positive definite matrix.
Thus, it suffices to invert the smaller matrix B.

As mentioned before, an advantage of partial likelihood
estimation is that an estimate from (8) can be attained by
standard statistical software packages. The following pre-
processing is needed, however.

• Step 1: Compute Z̃k,i =
∫ ck
ck−1

Zk,i(t)dt as a time-inde-

pendent covariate.
• Step 2: Assign (ck−ck−1) as the “survival” time for tho-

se subjects who are at risk in the kth follow-up period
(i.e. Yk,i = 1).

• Step 3: Assign those subjects who are event free at the
kth monitoring time to the “failure” category (i.e. sur-
vival time observed) and those subjects who have had
an event at the kth monitoring time to the “censored”
category (i.e. survival time censored).

• Step 4: Select the option for stratified analysis and in-
clude a variable for strata in the data set.

• Step 5: Select the option for Breslow’s estimation for
tied survival time with robust variance estimation.

Step 1 can be easily implemented when Zk,i is time inva-

riant, since Z̃k,i = (ck − ck−1)Zk,i. Step 3 needs to be im-
plemented with care. Keep in mind that for those subjects
who are at risk in the kth follow-up period and event free
at the end, the event indicator δk,i is 1 so their “survival
time” (ck − ck−1) is exactly observed. Therefore, we need
to assign an event indicator to those who actually have no
event occurrence. As for Step 5, since our partial likelihood
is equivalent to the Breslow’s approximate partial likelihood
when dealing with tied survival time, selecting the option of
Breslow’s method is needed, as well as a robust variance
estimation. However, some packages, such as coxph() in R,
set Efron’s estimating equation [6] for tied survival time as
the default, which needs to be changed as Efron’s estima-
tion does not give the same score function as (13). Finally,
the total number of observations in the data set summed
over each stratum is

∑K
k=1

∑n
i=1 Yk,i, which could be smaller

than Kn.
Taking R for example, let zz be assigned to a one-dimen-

sional covariate Z̃k,i in the data set, d_k to (ck−ck−1), delta
to δk,i, and monitoring to indicators for strata, the follow-
ing code suffices to provide the desired results.

coxph(Surv(d_k,delta)~zz+strata(monitoring),

method="breslow",robust=T)

Note that, the coefficient estimates from the statistical
packages is negative of our proposed partial likelihood esti-
mates ψ̂pl, as −ψ in (8) is the reparameterized coefficient for

the time-independent covariate Z̃k,i. However, the variance
(or standard deviation) estimates from packages can be di-
rectly applied since the negative sign does not affect the va-
riance estimation.
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6. INFERENCE FOR BASELINE
HOMOGENEITY

6.1 Periodic model

Thus far we have assumed that the baseline hazard λ0(·)
varies by time t, which is defined as the time elapsed from
the start c0. A common scenario is that the baseline haz-
ard is either constant over time or is periodically renewed
at certain points of time [18]. This gives rise to a different
model specification, which nonetheless is a special case of
our previous model. Suppose the duration of each follow-up
period is the same and the baseline hazard function is pe-
riodic and renewed at the time of monitoring, an additive
hazards model, similar to (1), is of interest,

λk,i(t) = Yk,i{λ0(t− ck−1) + ψ′Zk,i(t)}.(14)

When the duration of each period is equal with ck −
ck−1 ≡ c (k = 1, . . . ,K), integration of the baseline ha-
zard in each stratum, α1, . . . , αK , is the same across strata,
as

αk =

∫ ck

ck−1

λ0(t− ck−1)dt =

∫ c

0

λ0(u)du,

which is free of k. We call the resulting model a homogeneous
model, as versus a heterogeneous model where at least one
of the αk’s is different.

Let αk = α, for k = 1, . . . ,K. The model parameter θ
only consists of α and ψ. The score functions hence become

∂ logL(θ)

∂α
=

K∑
k=1

n∑
i=1

Yk,i{1− pk,i(θ)}−1{pk,i(θ)− δk,i},

(15)

and

∂ logL(θ)

∂ψ
=

K∑
k=1

n∑
i=1

Yk,iZ̃k,i{1− pk,i(θ)}−1(16)

× {pk,i(θ)− δk,i}.

Dropping the term {1 − pk,i(θ)}−1 in both (15) and (16),
a profile estimate of exp(−α) can be attained as

exp(−α̂) =

K∑
k=1

n∑
i=1

Yk,iδk,i�

K∑
k=1

n∑
i=1

Yk,i exp(−ψ′Z̃k,i).

The estimating function for ψ is

K∑
k=1

n∑
i=1

Yk,iδk,i

×
{
−Z̃k,i −

∑K
l=1

∑n
j=1 Yl,j(−Z̃l,j) exp(−ψ′Z̃l,j)∑K

l=1

∑n
j=1 Yl,j exp(−ψ′Z̃l,j)

}
,

which is in fact a partial likelihood function when treating
all subjects and outcomes as independent. In other words,
when the baseline hazard function is periodic, the model
is more parsimonious, and either the partial likelihood or
the full likelihood can be simplified. The results above are
applicable to the model with constant baseline hazard as it
is a special case of (14).

6.2 Test for homogeneity

When a homogeneous model is true, a heterogeneous mo-
del obviously over-stratifies and hence is less efficient. We de-
rive a formal test in order to select between these two com-
peting models with the null hypothesis H0 : α1 = · · · = αK .
Two quadratic tests are possible, namely likelihood ratio
test when a maximum likelihood approach is performed, and
a direct comparison among exp(−α̂k) for k = 1, . . . ,K un-
der a partial likelihood approach.

In the maximum likelihood approach, the homogeneous
model is nested within the heterogeneous one. Thus it is na-
tural to use a likelihood ratio test with predetermined size,
where the likelihood ratio is

Q(1)
n = L(α̂1, . . . , α̂K , ψ̂mK

)�L(α̂, ψ̂m1
),

where [α̂1, . . . , α̂K , ψ̂
′
mK

]′ are the solutions to (9) and (10),

while [α̂, ψ̂
′
m1

]′ are the solutions to (15) and (16). Under H0,

it is well known that −2 logQ
(1)
n converges in distribution to

a χ2-variate with K − 1 degrees of freedom as n → ∞ [20].
Thus, we reject H0 at the level of a (0 < a < 1) when

−2 logQ
(1)
n > χ2

K−1,a, where χ
2
K−1,a is the (1−a)-percentile

of a χ2-distribution with K − 1 degrees of freedom.

With the partial likelihood approach, a counterpart like-
lihood ratio test is not obvious, since the αk’s are treated as
nuisance. However, a direct comparison among exp(−α̂k),
k = 1, . . . ,K, from profile estimates (12) is possible. Let
ηk = exp(−αk), η = [η1, . . . , ηK ]′, and η� = [η1 − η2, . . . ,
ηK−1 − ηK ]′. Denote η̂k(y) = exp(−α̂k)|ψ=y in (12), η̂(y) =

[η̂1(y), . . . , η̂K(y)]′, and η̂∗ = η̂(ψ̂pl). We establish the large-
sample properties of η̂∗ in the following theorem.

Theorem 6.1. Under conditions (a), (b), and (d) in Ap-
pendix A, η̂∗ is a consistent estimate of η, and n1/2(η̂∗ − η)
converges in distribution to a normal variable with mean
zero and a covariance matrix Ω. The matrix Ω can be
consistently estimated by a symmetric matrix Ω̂, where
the (u, v)th entry (u, v ∈ {1, . . . ,K} and u ≤ v) of Ω̂

is B′
uΣ̂K(D)Bv + σ̂2

uv{S
(0)
u (ψ̂pl)S

(0)
v (ψ̂pl)}−1, where Bu =

δ̄uS
(1)(ψ̂pl)/S

(0)(ψ̂pl)
2 with δ̄u = n−1

∑n
i=1 Yu,iδu,i and

σ̂2
uv = n−1

n∑
i=1

Yu,iYv,i{δu,i − η̂u(ψ̂pl) exp(−ψ̂
′
plZ̃u,i)}

× {δv,i − η̂v(ψ̂pl) exp(−ψ̂
′
plZ̃v,i)}.
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Table 1. Simulation results of stratified partial likelihood and maximum likelihood when the true model has a homogeneous
baseline. †: multiplied by 104

Partial Likelihood with Stratified Analysis Test for homogeneity

ψ1 ψ2 Size(%) Q
(2)
n

K m Bias† EV† AVE† CP Bias† EV† AVE† CP

1 10 14.24 43.92 44.79 0.931 −11.99 14.29 12.78 0.937 –
20 6.57 11.89 12.04 0.949 −2.66 1.87 2.00 0.948 –
30 3.48 5.30 5.58 0.945 4.90 0.87 0.82 0.952 –

3 10 16.34 24.82 24.31 0.946 −12.27 3.16 3.17 0.952 3.7
20 3.03 7.13 7.16 0.957 −3.02 0.56 0.55 0.957 4.6
30 2.10 3.57 3.43 0.950 −1.66 0.25 0.25 0.948 3.7

6 10 16.86 17.08 16.28 0.947 −10.88 2.72 2.48 0.930 10.1
20 −3.69 4.91 5.16 0.953 −2.07 0.48 0.45 0.943 5.8
30 2.08 2.51 2.49 0.946 −3.04 0.20 0.20 0.953 4.9

Maximum Likelihood with Stratified Analysis Test for homogeneity

ψ1 ψ2 Size(%) Q
(1)
n

K m Bias† EV† AVE† CP Bias† EV† AVE† CP

1 10 122.21 24.79 55.59 0.990 −5.24 6.07 16.38 0.998 –
20 20.44 8.02 11.84 0.983 9.78 1.68 1.93 0.970 –
30 8.23 4.44 5.32 0.980 1.23 0.75 0.75 0.951 –

3 10 47.67 14.34 25.43 0.989 −31.48 1.78 3.40 0.993 3.0
20 10.15 5.22 6.69 0.978 −6.89 0.40 0.51 0.974 3.4
30 2.55 2.95 3.15 0.971 −2.66 0.20 0.22 0.963 4.8

6 10 40.88 11.24 18.19 0.984 −49.47 1.54 2.70 1.000 3.5
20 12.16 4.22 4.79 0.974 −8.86 0.35 0.42 0.967 5.8
30 −5.52 2.14 2.25 0.956 −2.86 0.17 0.18 0.964 5.7

Thus, under H0, the test statistic

Q(2)
n = n(e′η̂∗)′V̂

−1
e′η̂∗

is a χ2-variate with K − 1 degrees of freedom as n → ∞,
where e is a (K − 1) × K matrix satisfying η� = e′η, and

V̂ = e′Ω̂e. Similarly, we reject H0 at the level of a when

Q
(2)
n > χ2

K−1,a.

7. NUMERICAL EXAMPLES

7.1 Simulation study

We conduct simulation to assess the performance of par-
tial likelihood estimation and compare with maximum like-
lihood estimation. Data sets are generated according to the
setup of the red pine data example described in Section 1.
Suppose an m × m spatial lattice. To mimic the situation
that some trees had already been colonized in the beginning
of the study, we randomly generate a 0–1 indicator with
probability 0.1 of Ips colonization by year k = 0. Therefore,
the sample size n varies in each simulation but on average is
0.9m2. In year k = 1, . . . ,K, the number of turpentine beetle
colonization is independently generated by a Poisson distri-
bution at a rate of 0.8. The outcome of no event in year k

(δk,i = 1) is generated according to model (1) with proba-
bility pk,i(θ) in (7) when the tree at site i (i = 1, . . . , nk) is
at risk.

To account for spatial dependence, we define the kth-
order neighbor of a given site as those sites that are the
kth nearest neighbors. For example, the first-order neigh-
borhood on a square lattice has the four nearest neighbors
in the north, south, west, and east, and the second-order
neighborhood has the four second-nearest neighbors in the
northwest, southwest, northeast, and southeast, etc. We let
the number of Ips colonization in the neighborhood in year
(k−1) be a covariate for year k, which is summed up to the
fifth-order neighbors. That is, we model spatial dependence
via autoregression in space from a previous time point.

We set the total number of strata to K = 1, 3, 6 and the
grid size to m = 10, 20, 30. The cumulative baseline hazard
is set to αk = 0.1k under heterogeneity, and a constant
αk = 0.1 under homogeneity. The coefficients are set to ψ =
[ψ1, ψ2]

′ = [0.03, 0.03]′. A total of 1,000 repeated samples
are simulated for each combination of K and m.

Table 1 compares the simulation results using partial and
maximum likelihood analysis under a homogeneous model.
We report the bias of estimation (Bias) defined as the av-
erage of the replicated estimates minus the true value, the
empirical variance (EV) defined as the sample variance of
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Table 2. Simulation results of stratified and non-stratified partial likelihood when the true model has a heterogeneous baseline.
†: multiplied by 104

Partial Likelihood with Stratified Analysis

ψ1 ψ2

K m Bias† EV† AVE† CP Bias† EV† AVE† CP

1 10 7.44 46.49 44.72 0.920 11.41 13.64 12.67 0.943
20 17.42 12.54 12.19 0.941 4.89 1.86 1.97 0.949
30 −17.02 5.00 5.51 0.957 2.03 0.89 0.82 0.939

3 10 11.66 32.15 31.03 0.944 −11.51 4.22 4.36 0.959
20 9.43 8.79 8.79 0.949 −8.41 0.71 0.73 0.950
30 10.00 4.20 4.12 0.937 −1.95 0.33 0.33 0.946

6 10 21.34 31.00 28.25 0.934 −5.03 4.48 3.99 0.928
20 −2.90 8.20 8.21 0.943 −4.85 0.70 0.68 0.946
30 1.05 3.90 3.85 0.943 −2.33 0.31 0.31 0.944

Partial Likelihood with Non-Stratified Analysis

ψ1 ψ2

K m Bias† EV† AVE† CP Bias† EV† AVE† CP

3 10 10.63 32.40 31.29 0.945 122.31 2.59 2.34 0.885
20 8.77 8.83 8.85 0.947 106.67 0.36 0.38 0.600
30 10.42 4.25 4.14 0.938 105.53 0.16 0.15 0.238

6 10 27.50 30.95 29.35 0.944 80.38 2.81 2.02 0.868
20 −4.52 8.51 8.42 0.948 66.37 0.43 0.35 0.780
30 1.37 3.96 3.94 0.943 69.06 0.17 0.14 0.546

the replicated estimates, the average of the replicated vari-
ance estimates (AVE), and empirical coverage probability
(CP) at a 95% nominal level. The size of the test for ho-
mogeneity is also reported. For maximum likelihood estima-

tion, Q
(1)
n is applied, while for partial likelihood estimation,

Q
(2)
n is applied. The significance level a = 5% is assigned

for both tests. Table 2 summarizes the simulation results
by stratified and non-stratified partial likelihood estimation
under a heterogenous model to assess the effect of model
misspecification.

For partial likelihood in Table 1, the estimation appears
to be consistent and the variance estimation is close to the
empirical variance when n is large, even when K = 1. How-
ever, when K = 1 and n is small, the partial likelihood es-
timation has a slightly lower empirical coverage probability
than the nominal level. On the other hand, the maximum
likelihood estimation appears to be consistent, but appar-
ently over-estimates the variance of ψ̂1 by the information
matrix when either K or n is small. The variance estimation
is close to the empirical variance only when K = 6 and n is
large. Compared with the partial likelihood that performs
well for a small n, the maximum likelihood estimation needs
a relatively larger sample size to achieve less bias, which sug-
gests that the partial likelihood is more robust for a smaller
sample size. The empirical size of both tests for homogeneity
is close to 5% when n becomes larger, indicating that both

Q
(1)
n and Q

(2)
n are applicable. However, when n is under 100

(m = 10) and K = 6, the empirical size of Q
(2)
n in the

partial likelihood estimation is about twice that of the true

significance level. This suggests preference for Q
(1)
n in cases

where the sample size is small and subjects are followed up
at a large number of monitoring times.

Furthermore, our experience is such that maximum like-
lihood via a Newton-Raphson algorithm can be numerically
rather unstable, due to near-singularity of the information
matrix Îm during the iterations toward convergence. Be-

sides, the probability pk,i, as a function of θ̂
(s)
m , should be

bounded above by 1 in each iteration, but this can fail when
the true pk,i is close to 1. Such failures in computing the
maximum likelihood estimates occur more often when the
sample size is relatively small, which explains why the em-
pirical coverage probability is higher than the nominal level
in Table 1. In contrast, the partial likelihood estimation is
more stable numerically, since the restriction on the param-
eter space is rather minimal. In addition, the information
matrix can be inverted with more ease, as its dimension is
determined by the number of covariates and, unlike maxi-
mum likelihood estimation, is not affected by the number of
monitoring times K.

In Table 2, when the true model is heterogeneous, pa-
rameter estimation is biased and has low empirical coverage
probability for ψ2 by a non-stratified analysis. However, the
estimation of parameter ψ1 that represents the effect of a co-
variate seems unaffected. This gives empirical evidence that
the partial likelihood approach is robust against model mis-
specification for the baseline hazards. Finally, partial like-
lihood with stratification has consistent estimation of both
the model parameter and the variance, which induces em-
pirical coverage rates that are close to the nominal level.
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Table 3. Analysis results of the red pine data. †: standard error; ‡: compared to a χ2 distribution with degree of freedom 4;
*: significantly different from 0 at the level of 5%

Partial Likelihood

Turpentine(SE†) Ips(SE) ηk(SE) Q
(2)‡
n

Stratified 0.067(0.0153)* 0.042(0.0035)* 0.984(0.0032)* 107.5
0.995(0.0039)*
1.015(0.0025)*
0.984(0.0031)*
1.003(0.0029)*

Non-Stratified 0.068(0.0153)* 0.041(0.0035)* 0.996(0.0018)*

Maximum Likelihood

Turpentine(SE†) Ips(SE) ηk(SE) Q
(1)‡
n

Stratified 0.068(0.0142)* 0.038(0.0028)* 0.992(0.0019)* 25.8
0.994(0.0016)*
1.000(0.0004)*
0.991(0.0020)*
0.996(0.0014)*

Non-Stratified 0.069(0.0142)* 0.038(0.0028)* 0.995(0.0007)*

7.2 Red pine data example

For the red pine data analysis, we set the first year of
insect survey as the initial period k = 0 when n1 = 2, 683
trees had not been colonized by Ips. In the following 5 years,
there were n2 = 2, 599, n3 = 2, 508, n4 = 2, 484, and n5 =
2, 418 trees at risk of Ips colonization. As described in the
previous section, we let Zk,i(t) = [Xk−,i, Nk−1,i]

′, where for
tree i, Xk−,i is the number of turpentine beetles colonized
at the end of year k, and Nk−1,i is the cumulative number
of Ips colonization in the neighborhood up to the fifth order
in year (k − 1). The additive hazards model of interest is

λk,i(t) = Yk,i{λ0(t) + ψ1Xk−,i + ψ2Nk−1,i}.

Table 3 presents the analysis result by both partial like-
lihood and maximum likelihood estimation. We report both
parameter and baseline hazard estimates with their stan-
dard errors. We also report the χ2-test result for the null
hypothesis that the model is homogeneous. The two different
methods give very similar results on the parameter estima-
tion of ψ1. Partial likelihood has a slightly larger standard
error than maximum likelihood. Regardless of the approach,
colonization of the turpentine beetle is shown to have had
a significant positive effect on the risk of Ips colonization.
Ips colonization in the previous year in the neighbors also
played a significant role in increasing the risk of Ips col-
onization in the current year. Estimates of the cumulative
baseline hazards, ηk, are similar using both partial and max-
imum likelihood estimation. However, a departure from the
homogeneous model is statistically significant due to small
standard errors, even though the parameter estimates ap-
pear to be similar across the follow-up periods.

8. CONCLUSIONS AND DISCUSSION

We have considered additive hazards regression for the
analysis of environmental or ecological monitoring data such
that subjects are observed at multiple monitoring time
points and the baseline hazard function can take on flex-
ible forms. The covariates can be time-varying and we have
used autoregression to take into account spatial dependence.
We have developed partial likelihood estimation for statis-
tical inference of the regression coefficients and the baseline
hazard. Asymptotic properties, including consistency and
asymptotic normality, have been established for the maxi-
mum partial likelihood estimates under suitable regularity
conditions. We have proposed feasible algorithms utilizing
existing statistical software packages for computation and
thus our method has distinct computational advantage com-
pared with some existing methods. We have also developed
hypothesis testing for homogeneity of the baseline hazard.
Using numerical examples from both simulation and an eco-
logical monitoring study, we have demonstrated that the
partial likelihood inference is feasible and has sound finite-
sample properties.

Our results are comparable to the findings in [18], al-
though [18] required that external data be available to es-
timate the baseline hazard function. In contrast, our ap-
proach does not require external data which may not always
be available or suitable for estimating the baseline hazard
in practice. Furthermore, these results are comparable to
the spatial-temporal autologistic approach in [23] where spa-
tial dependence is modeled by autoregressive terms within
a given year but the computation is far more intensive due
to an unknown normalizing constant in the loglikelihood
function. Our approach here is also autoregression but on
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a previous year, which has led to much faster computation.
For the red pine data example, the scientific conclusions
drawn from both approaches are remarkably similar. In gen-
eral, however, the results may differ; we plan to explore and
compare alternative approaches to modeling spatial depen-
dence.

We contend that partial likelihood estimation offers a vi-
able alternative to maximum likelihood estimation for at
least two reasons. One, maximum likelihood is feasible only
for small number of monitoring times K. When K is large,
the computing cost is substantially increased due to a large
number of parameters, with one extra intercept for each ad-
ditional monitoring time. One exception is when the baseline
intensity is constant with only one intercept for the baseline,
but this case is overly restrictive. In contrast, the number of
parameters in the partial likelihood (8) is not affected by the
number of monitoring times, as the baseline parameters are
treated as nuisance. Two, our simulation experiments indi-
cate that partial likelihood estimation is numerically more
stable to compute in general. It also provides more robust re-
sults than maximum likelihood estimation particularly with
a small number of monitoring times and/or a small num-
ber of subjects. Taken together, these results suggest that,
even though maximum likelihood estimation is more efficient
than the partial likelihood counterpart in theory, there are
compelling reasons to consider partial likelihood estimation
developed here in practice for both a small and large number
of monitoring times.

Although the monitoring times are regular in our data ex-
ample, they can be irregular in other studies such that the
monitoring times may not be regularly-spaced or have differ-
ent schemes for each subject. [14], also applied in [19], pro-
posed an idea of mapping the irregular monitoring times to
a regular grid, which can be applied to extend our method.
Let ck0 < ck1 < · · · < ckmi

denote the mapped set of or-
dered monitoring times of the subject at the ith site with
k0 = 0 and kj ∈ {1, 2, . . . ,K} for j = 1, . . . ,mi. A slight
modification of (7), defined by

pkj ,i = exp{−αkj − ψ′Z̃kj ,i},

can again be utilized to estimate ψ with the log-likelihood
function

n∑
i=1

mi∑
j=1

Ykj ,i{δkj ,i log pkj ,i + (1− δkj ,i) log(1− pkj ,i)},

where αkj =
∑kj

k=kj−1+1 αk, and Z̃kj ,i, Ykj ,i, and δkj ,i are

defined in a similar manner to Z̃k,i, Yk,i, and δk,i, re-
spectively. We conjecture that partial likelihood estimation
can be devised by appropriate stratification. In addition,
it would be interesting to extend our method to deal with
monitoring times that are randomly assigned. We leave such
extensions for future research.

APPENDIX A. NOTATION AND
REGULARITY CONDITIONS

Let K = {1, . . . ,K} and ḟ(ψ) ≡ ∂f�∂ψ. Let θ0 = [η01 ,
. . . , η0K , ψ0]

′ denote the true values of θ = [η1, . . . , ηK , ψ]′

and Ψ denote a compact closure surrounding the true pa-
rameter ψ0. Consider the following regularity conditions.

(a) K < ∞ and 0 < mink∈K ηk ≤ maxk∈K ηk < ∞.

(b) For ψ ∈ Ψ, there exists continuous functions s
(l)
k (ψ),

l = 0, 1, 2, such that

sup
ψ∈Ψ

max
k∈K

‖S(l)
k (ψ)− s

(l)
k (ψ)‖ →p 0.

(c) Define R
(0)
k (ψ) = n−1

∑n
i=1 Yk,i exp(−2ψ′Z̃k,i). There

exists continuous function r
(0)
k (ψ) such that ‖R(0)

k (ψ0)−
r
(0)
k (ψ0)‖ →p 0 for each k ∈ K.

(d) For all ψ ∈ Ψ and k ∈ K, s
(1)
k (ψ) = ṡ

(0)
k (ψ), s

(2)
k (ψ) =

ṡ
(1)
k (ψ), s

(l)
k (ψ) are bounded for l = 0, 1, 2, and s

(0)
k (ψ)

is bounded away from 0. Define

Ik(ψ0) = η0ks
(0)
k (ψ0)

{
s
(2)
k (ψ0)

s
(0)
k (ψ0)

− s
(1)
k (ψ0)

⊗2

s
(0)
k (ψ0)2

}
,

and

D(ψ0) = lim
n→∞

n−1
K∑

k=1

n∑
i=1

{
−Z̃k,i −

s
(1)
k (ψ0)

s
(0)
k (ψ0)

}⊗2

× pk,i(θ0){1− pk,i(θ0)}.

Assume I(ψ0) =
∑K

k=1 Ik(ψ0) is positive definite.
(e) Lindeberg condition. For any ε > 0,

n−1
K∑

k=1

n∑
i=1

Yk,i|Z̃k,ij |2I(n−1/2|Z̃k,ij | > ε)

× pk,i(θ0){1− pk,i(θ0)} →p 0

for j ∈ {1, . . . , q}, where the subscript j denotes the jth
element of the vector.

APPENDIX B. PROOF OF THEOREMS 3.1
AND 3.2

Our proof is constructed for a general K and thus covers
both Theorems 3.1 and 3.2.

Proof. The log partial likelihood function in (8) can be re-
written as

�K(ψ) =

K∑
k=1

n∑
i=1

Yk,iδk,i
[
−ψ′Z̃k,i − log{nS(0)

k (ψ)}
]
,

where ψ ∈ Ψ. It is not hard to show that the function
n−1{�K(ψ) − �K(ψ0)} has the same probability limit as
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n−1{ΛK(ψ)− ΛK(ψ0)}, where

ΛK(ψ) = −ψ′
K∑

k=1

n∑
i=1

Yk,ipk,i(θ0)Z̃k,i

−
K∑

k=1

n∑
i=1

Yk,ipk,i(θ0) log{nS(0)
k (ψ)}.

The n−1{ΛK(ψ) − ΛK(ψ0)} converges in probability to
a continuous function

−(ψ − ψ0)
′

K∑
k=1

η0ks
(1)
k (ψ0)−

K∑
k=1

log

{
s
(0)
k (ψ)

s
(0)
k (ψ0)

}
η0ks

(0)
k (ψ0),

by conditions (a), (b), and (d), which has first-order
derivative zero at ψ = ψ0 and second-order derivative
−

∑K
k=1 Ik(ψ0) as the negative of a positive definite matrix.

The consistency of ψ̂pl thus is guaranteed by a classic convex
theorem [1].

The asymptotic normality of n1/2(ψ̂pl − ψ0) is shown by

first proving the asymptotic normality of n−1/2UK(ψ0),
where UK(ψ0) = �̇K(ψ) |ψ=ψ0 . Let

Ek(ψ) = S
(1)
k (ψ)�S

(0)
k (ψ).

By definition,

n−1/2UK(ψ0) = n−1/2
K∑

k=1

n∑
i=1

Yk,i{−Z̃k,i − Ek(ψ0)}

× {δk,i − pk,i(θ0)},

which has a zero mean. When n → ∞, for Lindeberg condi-
tion to hold, it suffices to show that

n−1
K∑

k=1

n∑
i=1

Yk,i|Ekj(ψ0)|2I{n−1/2|Ekj(ψ0)| > ε}

pk,i(θ0){1− pk,i(θ0)} →p 0,

which can be easily checked under conditions (a)–(c). Thus,
n−1/2UK(ψ0) converges in distribution to a random vari-
able with mean 0 and limiting variance D(ψ0) as defined in

condition (d). By Taylor’s expansion of UK(ψ̂pl) around ψ0,

n1/2(ψ̂pl − ψ0) = −ÎK(ψ†)−1n−1/2UK(ψ0)

has the same limiting distribution as −I(ψ0)
−1n−1/2

× UK(ψ0), where ÎK is the observed information accumu-
lated over all strata and ψ† is on the line segment between
ψ̂pl and ψ0. The asymptotic normality of n1/2(ψ̂pl − ψ0)

thus follows the asymptotic normality of n−1/2UK(ψ0) with
mean 0 and variance Σ = I(ψ0)

−1D(ψ0)I(ψ0)
−1.

APPENDIX C. PROOF OF THEOREM 6.1

Proof. For the kth element in η̂∗, it is straightforward to
show that η̂k(ψ̂pl) is a consistent estimator of η0k for each k,

since η̂k(ψ̂pl) − η̂k(ψ0) →p 0 and η̂k(ψ0) − η0k →p 0 in the

decomposition η̂k(ψ̂pl) − η0k = η̂k(ψ̂pl) − η̂k(ψ0) + η̂k(ψ0) −
η0k. Convergence of the first component in probability to
zero follows from a Taylor’s expansion, condition (a), and

the consistency of ψ̂pl for ψ0. Convergence of the second
component follows from the unbiasedness of η̂k(ψ0) as

E

{
n∑

i=1

Yk,iδk,i�
n∑

i=1

Yk,i exp(−ψ′
0Z̃k,i)

}

= EE

{
n∑

i=1

Yk,iδk,i�

n∑
i=1

Yk,i exp(−ψ′
0Z̃k,i) Hck

}
= η0k

and var{η̂k(ψ0)} → 0 as n → ∞.
The proof of asymptotic normality of η̂∗ is somewhat

more complicated. Let b = η0ks
(1)(ψ0)�s(0)(ψ0). We can

see that, for each k = 1, . . . ,K, n1/2{η̂k(ψ̂pl) − η0k} −
n1/2b′k(ψ̂pl − ψ0) has the same limiting distribution as

n1/2
∑n

i=1 mk,i(θ0)�s
(0)
k (ψ0), where mk,i(θ0) = Yk,i{δk,i −

pk,i(θ0)} is a centralized discrete-time counting process in
period k that is adapted to Hck . The asymptotic normal-
ity of n1/2

∑n
i=1 mk,i(θ0) holds, since δk,i is simply a bi-

nary random variable with conditional mean pk,i(θ). How-
ever, derivation of the limiting variance is challenging, as
the dependence between outcomes at different times may
be difficult to handle. To resolve this, we utilize a the-
ory developed in [11] for a single counting process with
multiple jumps which satisfies the conditional independent
increment assumption (5). That is, we naively treat δu,i
and δv,i (u 	= v) as independent outcomes even though
marginally those two terms may be correlated when the
subject is at risk during both follow-up periods. The
(u, v)th entry of the limiting variance Ω thus is ωuv =

b′uΣbv + σ2
uv�s

(0)
u (ψ0)s

(0)
v (ψ0), where Σ is the limiting vari-

ance of n1/2(ψ̂pl − ψ0) and σ2
uv is the limiting covariance

of n−1/2
∑n

i=1 Yk,imk,i(θ0) at k = u, v. That is, σ2
uv =

limn→∞ n−1E
∑n

i=1 Yu,iYv,imu,i(θ0)mv,i(θ0), assuming that
σ2
uv exists. To prove this, note that for u, v ∈ K,

Ω = lim
n→∞

cov
[
n1/2{η̂u(ψ̂pl)− ηu}, n1/2{η̂v(ψ̂pl)− ηv}

]
= A+B + C +D,

where

A = lim
n→∞

nE
[
{η̂u(ψ̂pl)− η̂u(ψ0)}{η̂v(ψ̂pl)− η̂v(ψ0)}′

]
= b′uΣbv,

B = lim
n→∞

nE
[
{η̂u(ψ̂pl)− η̂u(ψ0)}{η̂v(ψ0)− η0v}′

]
= 0,

C = lim
n→∞

nE
[
{η̂u(ψ0)− η0u}{η̂v(ψ̂pl)− η̂v(ψ0)}′

]
= 0,
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and

D = lim
n→∞

nE
[
{η̂u(ψ0)− η0u}{η̂v(ψ0)− η0v}′

]
= σ2

uv�s(0)u (ψ0)s
(0)
v (ψ0).

Thus the result holds.
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