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In order to study climate at scales where policy deci-
sions can be made, regional climate models (RCMs) have
been developed with much finer resolution (∼50 km) than
the ∼500 km resolution of atmosphere-ocean general cir-
culation models (AOGCMs). The North American Regional
Climate Change Assessment Program (NARCCAP) is an in-
ternational program that provides 50-km resolution climate
output for the United States, Canada, and northern Mex-
ico. In Phase I, there are six RCMs, from which we choose
one to illustrate our methodology. The RCMs are updated
every 3 hours and contain a number of variables, including
temperature, precipitation, wind speed, wind direction, and
air pressure; output is available from the years 1968–2000
and from the years 2038–2070. Precipitation is of particular
interest to climate scientists, but it can be difficult to study
because of its patchy nature: At hourly-up-to-monthly time
scales, there are generally many zeroes over the precipita-
tion field. In this research, we study sets of concentrated
precipitation (i.e., the union of RCM pixels whose precipi-
tation is above a given threshold), where we are interested
in the way these sets evolve from one 3-hour period to the
next. Assuming the sets are a realization of a time series of
random sets, we are able to build dynamical models for the
passage of rainfall fronts over 1–2 days. The dynamics are
characterized by a growth/recession model for a time series
of random sets, with several parameters that control how
the concentrated precipitation changes over time.

Keywords and phrases: Boolean model, Kernel den-
sity estimation, Laslett’s theorem, Method-of-moments es-
timation, NARCCAP, Regional climate model (RCM), Set-
valued autoregression (SVAR).

1. INTRODUCTION

Although temperature is a widely studied climate vari-
able, for both paleoclimate reconstruction and climate-
model projections, precipitation is equally, if not more, im-
portant. Eventually, water is expected to be a limiting factor
for communities around the globe; as such, the prospect of
a drier world is a cause of great concern. Water storage and
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conservation involve planning and decision-making that are
typically made by governments, but the implementation of
those plans involve local geography, farming practices, and
the distribution of population centers. For such decisions,
reliable predictions of precipitation occurrence and amount
are extremely important.

Recently, climate models have become a major tool for
understanding climate change and its potential impact,
especially due to their wide spatial and temporal cov-
erage. The atmosphere-ocean general circulation models
(AOGCMs) have been developed to simulate climate over
the entire globe. That is, an atmospheric and oceanic model
are linked to generate outputs, typically, on a course scale
of 200 to 500 km.

Unfortunately, climate-model projections from global cli-
mate models (GCMs) are not useful for describing local
climate effects, since they provide limited information at
local scales where natural-resource management and envi-
ronmental policy decisions are made. In contrast, regional
climate models (RCMs) with scales on the order of 20–
50 km have been developed that are able to account for
fine-scale spatial variability. In fact, over the past several
years, the RCM (e.g., [17]) has become a widely used tool
in downscaling results to a regional scale. While studies
of AOGCMs are mainly focused on the analysis of cli-
mate change [3, 47, 49, 50], RCMs are aimed at analyz-
ing uncertainties on smaller spatial and temporal scales
[39, 42, 44, 50, 54] or at using their outputs to model mete-
orological variables (e.g., [21, 42]).

One extremely useful set of RCMs for studying precip-
itation on fine spatial and temporal scales can be found
in the North American Regional Climate Change Assess-
ment Program (NARCCAP). This international program
provides fine-resolution (50 km) climate-output data using a
set of AOGCMs to provide the RCMs’ boundary conditions
over a domain covering the conterminous United States and
most of Canada. For a comprehensive discussion concerning
RCMs and NARCCAP, including statistical analyses, see
[5, 21, 22, 25, 42].

Many statistical models have been developed to describe
rainfall processes in continuous time and space and to esti-
mate the distribution of rainfall data (e.g., [8, 46, 55] provide
useful reviews). One interesting approach in continuous time
is to use stochastic point processes to analyze rain cells and
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storms at a single site (e.g., [7, 34, 35, 52]). While these
models have been shown to be effective, they do not address
the case of multiple sites; in the literature, extensions to the
spatio-temporal setting where data come from ground-based
networks, have been made (e.g., [6, 8, 31, 33, 53]). For ex-
ample, in [8], a relatively simple spatio-temporal model in
which storm centers arrive according to a Poisson process
was considered, while in [6] the arrival times of rain cells
were modeled according to a clustered point process. Other
approaches to spatio-temporal modeling of rainfall data are
described in [1, 40, 41, 56].

In this article, we use NARCCAP data to define a thresh-
old, above which the 50-km NARCCAP pixels in North
America have “concentrated precipitation” for a sequence
of 3-hourly time intervals. Thus, we focus on the major
rainfall fronts and track them over a period of days. In
particular, we build a dynamical set-valued autoregressive
(SVAR) model, and the richness of the NARCCAP data al-
lows us to incorporate variables such as wind speed and
direction in the model. While descriptive in nature, the
idea behind the model is to condition on the current state
and allow pixels at the next time to “light up” (i.e., they
are declared as having concentrated precipitation) accord-
ing to (i) the wind data, and (ii) a random process that
says pixels may lose or gain moisture according to a thin-
ning process (whose thinning probability is estimated from
the data). We also investigate the predictive nature of the
model by simulating realizations of the SVAR model at the
next time point and forecasting the pixelwise probability of
being a concentrated-precipitation pixel at that time point.
This model was adapted from [11], where the growth of
in vitro breast-cancer cells was modeled over a 72-hour pe-
riod. However, in the case of concentrated precipitation, the
rapid movement of precipitation fronts means that a differ-
ent model and different estimation techniques are needed.

The literature on growth models is extensive and includes
theory and applications in various fields (e.g., probability,
statistics, mathematical biology, meteorology, etc.), however
set-based models are much less common. Definitions of ran-
dom sets and Boolean models can be found in [2, 10, 29,
43, 48, 51]. Many authors use convex random sets, Boolean
models, and hitting functions for the analysis of tumor
growth and biological data; some important references are
[11, 14, 18, 30]. Recently, growth models have also been con-
sidered in the meteorological field for the analysis of storm
cells and rainfall, such as in [27] and [28], where a methodol-
ogy based on nonoverlapping random disk models is used in
a multistage hierarchical Bayesian context. Our model does
not impose random disks, nor the nonoverlapping restric-
tion, but it also does not have the generality or uncertainty
quantification typically associated with being hierarchical.
Also, in [56], a Boolean model of rainfall patches is defined
from a regional-scale stochastic spatio-temporal model that
describes storms. Parameters are estimated from a ground-
based network of eight weather stations. As such, their data,
model, and inferences are very different from ours.

In Section 2, we review the theory of random sets and
define some random-set models. In Section 3, we describe the
SVAR model used to model the concentrated precipitation
fields in a NARCCAP RCM; our emphasis is on a statistical
description of the process. Section 4 establishes method-of-
moments estimates of the model’s parameters; estimates are
obtained from the NARCCAP data, and their evolution over
time is illustrated. This section also includes a validation
of the model based on its forecasting capability. Section 5
contains discussion and conclusions.

2. RANDOM-SET MODELS

Broadly speaking, there are two different mathematical
views one could take of the world. One is the so-called
field view, such as a rainfall field expressed as precipita-
tion amount per unit area. During any short period of time
(e.g., 3 hours, 24 hours, 1 week, etc.), an amount of precip-
itation falls and is measured in cm of water equivalent. For
example, individual rain gauges measure this precipitation
at what are effectively points in space. But rainfall is noto-
riously patchy, so the “true” or “target” precipitation field
might be the average of point values over a small area; hence
units of the field are in cm.

The other mathematical view of the world is the so-called
object view. At one end of the precipitation scale, this might
involve interest in raindrop/snowflake characteristics; at the
other end, this might involve geographical regions (thought
of as objects) where precipitation is particularly heavy, say
above a pre-specified threshold. It is this latter view we shall
take; in this article, we use random-set models to charac-
terize the movement of concentrated precipitation regions
across North America during a 1–2 day period. The pur-
pose of this section is to review the theory of random sets,
since it is through this that we shall build statistical models
of objects.

Dynamical random-set modeling of concentrated precipi-
tation represents a way to analyze precipitation over a large
domain; see the literature review in Section 1. When data
are in the form of gauge readings and radar images, there
is a change-of-support problem to solve, namely combin-
ing data of different spatial supports that might be used
for thresholding at a third spatial support. Recall that the
thresholding defines the objects, which here are regions of
concentrated precipitation.

A rigorous definition of random sets was given by [23]
and [24]. That theory was summarized in [10, Ch. 9], and
a number of random-set models were reviewed. There is
one particular model that is central to statistical model-
ing and the object view of the world, namely the Boolean
model.

Consider the d-dimensional Euclidean space R
d (in the

application given in this article, d = 2; see Section 3). Let
Z denote a compact (hence closed and bounded) subset of
R

d that contains 0. Define

Z(s) ≡ Z ⊕ {s} ≡ {z+ s : z ∈ Z}; s ∈ R
d,(1)
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to be the translation of Z to location s. Since Z contains
the origin, Z(s) contains s. In that sense, we say that Z(s)
is located at s. Definition (1) is a specific case of the more
general definition of set addition,

A⊕B ≡ {a+ b : a ∈ A,b ∈ B},(2)

where A and B are any subsets of Rd.
A Poisson point process of events {si} in R

d is a stochas-
tic spatial process with some very attractive properties: The
numbers of events in nonoverlapping subsets are indepen-
dent; there is no more than one event in a small region ds
located at s; and the intensity of events is defined by

λ(s) ≡ lim
|ds|→0

E(N(ds))/|ds|; s ∈ R
d,

where N(A) ≡ # events in A ⊂ R
d; |B| denotes the d-

dimensional volume of B ⊂ R
d; and λ(·) is the intensity

function in units of 1/(d-dimensional volume).
Let Z1, Z2, . . . be independent and identically distributed

(iid) random compact sets. Independently, let {si} be a Pois-
son point process. Then the Boolean model X is defined to
be

X ≡ ∪
i
Zi(si),(3)

which is a random closed set made up of the union of com-
pact sets located at the Poisson events. The book [19] can be
consulted for a comprehensive account of the properties of
the Boolean model and its generalizations; [13, Figure 4.19a]
gives an illustration in R

2, where Z1, Z2, . . . are iid random
disks centered at 0 with random radii R1, R2, . . . , respec-
tively. It should be noted that the collection of compact sets
{Zi(si)} in (3) can overlap, or even a large disk can com-
pletely mask the presence of a smaller disk. Consequently,
inference on the Boolean model X is not straightforward,
since bigger Z-components have a greater chance of being
more visible.

Any random (closed) set X is characterized by its hitting
function:

TX(K) ≡ Pr(X ∩K 	= ∅),(4)

for all compact sets K.

This characterization is akin to the characterization of a
random variable by its cumulative distribution function. The
calculation of the hitting function for various models is not
always easy [12], but for the Boolean model X, [24] shows
that when λ(·) ≡ λ, (4) is given by,

TX(K) = 1− exp{−λE(|Ž ⊕K|)},(5)

where ⊕ is set addition given by (2), and Ǎ ≡ {−a : a ∈ A}
is the reflection of the set A, reflected through the origin.

Equation (5) can be used to obtain estimators of Boolean-
model parameters. For example, if Z is not only compact

but also convex, then in R
2, Steiner’s formula ([45, p. 111])

yields:

E(|Ž ⊕K|) = E(|Z|) + (2π)−1(6)

· E(Per(Z))Per(K) + |K|,

where Per(A) denotes the perimeter of the compact set A.
Estimation is typically based on a method-of-moments es-
timating equation, where different choices for the “test set”
K are randomly located throughout the spatial region of in-
terest, and an empirical version of the left-hand side of (5) is
matched to the theoretical expression on the right-hand side
of (5) and (6). This yields method-of-moments estimates,

λ̂MOM , Ê(|Z|)MOM , and Ê(Per(Z))MOM ; for example, see
[16] and [12]. Another important property of the Boolean
model is its covariance function (see [10, p. 755]), and it
too could be used to obtain method-of-moments estimating
equations.

A dynamical Boolean model was proposed by [9], where
Xt+1 is related to Xt by allowing the events of a Poisson
point process (intensity function λt+1) that are in Xt to
serve as locations for the iid random compact sets Zt+1,1,
Zt+1,2, . . . (identically distributed as Zt+1). That is,

Xt+1 = ∪{Zt+1,i(xt+1,i) : xt+1,i ∩Xt 	= ∅},(7)

where {xt+1,i} are the events of a Poisson spatial point pro-
cess in R

d with intensity λt+1. By restricting the events to
Xt, the spatial point process is equivalently Poisson with in-
tensity λt+1 in Xt. Equation (7) defines a SVAR model that
can exhibit both growth and recession; in [11], it was used
to characterize growth of breast cancer cells on a glass slide
photographed 72 hours apart, and its hitting function was
derived. On a transformed space, Zt+1 was assumed to be a
disk of random radius Rt+1 and, based on the hitting func-
tion, method-of-moments estimators (and standard errors)
were found for λt+1, E(Rt+1), and var(Rt+1); t = 1, 2, . . . .

The hitting function for (7) is given by [11] and [10,
p. 777]:

TXt+1(K) = 1− exp{−λt+1E[|(Žt+1 ⊕K) ∩Xt|]},(8)

where recall thatK is any compact set in R
d, λt+1 is the rate

of the Poisson process of events in Xt, and Zt+1 is a generic
random set located at a generic Poisson event. There are
a number of equivalent formulations of the hitting function
(8), owing to the relations,

|(Žt+1 ⊕K) ∩Xt| =
∣∣∣( ∪

z∈Zt+1

K ⊕ {−z}
)
∩Xt

∣∣∣(9)

=
∣∣∣ ∪
z∈Zt+1

[K ∩ (Xt ⊕ z)]
∣∣∣

=
∣∣∣K ∩

[
∪

z∈Zt+1

(Xt ⊕ z)
]∣∣∣

= |K ∩ (Xt ⊕ Zt+1)|.
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In the next section, we shall use a physically motivated
set autoregressive process to build a dynamical model for
the regions of concentrated precipitation at 3-hourly inter-
vals. The fact that the data come from an RCM, defined on
50× 50 km pixels, results in modifications to the dynamical
Boolean model given by (7). Further, the SVAR process can
take advantage of physical variables (e.g., wind speed and
direction) available from the RCM.

3. SVAR MODELS OF CONCENTRATED
PRECIPITATION

In what follows, we build a SVAR process that attempts
to capture the dynamics inherent in weather. To model the
concentrated precipitation field, we use a dynamical Boolean
model and the wind-vector field plays the role of a covariate.

Let Ds denote the spatial domain of interest, here de-
fined as all the 50 × 50 km pixels in the NARCCAP re-
gion from 25.2◦–47.3◦ lattitude and 263◦–288◦ longitude.
The precipitation field {Ft(s) : s ∈ Ds} can be thought of as
a time series of spatial processes, such as in [13, Ch. 6]. In
this article, we choose one of the RCMs known as CRCM-
CGCM3, which is a Canadian RCM with boundary con-
ditions supplied by a Canadian AOGCM. Then a 27-hour
time period during June 21–22, 1968, starting with NARC-
CAP time 1372, showed concentrated-precipitation activity.
Consequently, NARCCAP time 1373 is 3 hours later, and
NARCCAP time 1381 is 27 hours later. Sets of concentrated
precipitation were obtained by thresholding the precipition
field, Ft(·), as follows:

Xt ≡ {s ∈ Ds : Ft(s) > k(s)}; t = 1, 2, . . . ,(10)

where time point t is defined to be t = (NARCCAP time−
1371). For each s ∈ Ds, k(s) was calibrated so that

P̂r(Ft(s) < k(s)) � 99.95%,

where P̂r is a long-run frequency for the 3-hourly time
points between 1968 and 2000. Figure 1 shows a map of
{k(s) : s ∈ Ds}, where the units are in cm of precipitation.
Similar to (10), De Oliveira [15] considers “clipping” an un-
derlying Gaussian field as a model for Xt (for each t), and
he assumes k(s) ≡ k, for all s ∈ Ds. In our case, precipi-
tation is highly non-Gaussian, and we are interested in the
dynamical aspects of {Xt} as it evolves. Consequently, our
approach, which is based on random-set theory, is different
from his approach which is based on covariance functions of
an underlying spatial Gaussian field.

In what follows, we treat the sequence {Xt : t = 1, . . . , 10}
as a time series of random sets evolving according to the
SVAR process specified by (15) below. The goal of this ar-
ticle is to fit the parameters of the process to the data
{Xt : t = 1, 2, . . .}, using covariate information from the
NARCCAP RCM. The covariate we use here is the wind
field,

(11) {Wt(s) : s ∈ Ds},

Figure 1. Map of threshold values k(·) in (10), from which
concentrated precipitation sets {Xt} are obtained. Units are

in cm of precipitation.

where Wt(s) ≡ (Ut(s), Vt(s))
′ is the wind velocity vector in

units of km/hr. By convention, Ut(s) and Vt(s) are the E-
W and N-S components, respectively, of the wind velocity
vector at pixel s and at time t.

Since the wind moves parcels of air containing moisture
that becomes precipitation, we incorporate a dynamic mod-
ification to the set-valued autoregressive process (7). To al-
low the foci of growth to move from t to t + 1, we extend
each pixel x in Xt, along a line segment in the forward and
backward direction of Wt(x). The line segment originating
from x is defined as follows:

Lt(x) ≡ {3cWt(x)⊕ x : − 1 ≤ c ≤ 1},(12)

where 3Wt(x) is the displacement in km that a parcel of air
at location x ∈ Xt and at time t would travel in 3 hours.
Then Xt is “fattened” to yield

Mt ≡ ∪{Lt(x) : x ∈ Xt},(13)

which is then “convexified”:

Ct(Xt) ≡ co(Mt),(14)

where co(A) denotes the convex hull of the set A ⊂ R
d. It

is this set, which contains Xt, where centers of precipitation
may occur at the next time point, t + 1. Here, Ct(Xt) is
obtained by joining center points of boundary pixels to give
a convex set in R

2. This is then pixellated by a greedy algo-
rithm that puts a pixel in Ct(Xt) if any part of the boundary
lines intersected that pixel; finally, the pixels are filled in to
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yield a discretized convex set. More general algorithms for
computing convex hulls in R

d are available from the Qhull
project (www.qhull.org).

Recall the set autoregressive model (7), where Poisson
events are chosen in Xt. Our modification for modeling the
dynamics of concentrated precipitation is to replace Xt in
(7), with Ct(Xt). That is, for t = 1, 2, . . . , we propose the
SVAR model,

Xt+1 = ∪{Zt+1,i(xt+1,i) : xt+1,i ∩ Ct(Xt) 	= ∅},(15)

where Zt+1,i(xt+1,i) is a random convex compact set located
at an event xt+1,i of the spatial Poisson point process with
intensity λt+1. The purpose of convexification here is to rec-
ognize that precipitation has regional potential but local
patchiness. The convex hull models the regional potential,
and the Poisson events in (15) model the local patchiness.
Notice that the Poisson intensity’s role is to capture the
dynamics of nearby concentrated-precipitation pixels, and
those dynamics are assumed to be locally homogeneous.
Hence we assume that the intensity is not a function of pixel
location.

Consequently, the hitting function (8) is modified to be:

TXt+1(K) = 1− exp{−λt+1(16)

· E[|(Žt+1 ⊕K) ∩ Ct(Xt)|]},

where Ct(Xt) is defined by (10)–(14). A similar derivation
to the one that gave (9), results in

TXt+1(K) = 1− exp{−λt+1E[|K ∩ (Ct(Xt)⊕ Zt+1)|]},

where K is any compact set.
An important component of the model that we need to

specify is the random set Zt+1 (and its probability law).
Again, the physical movement of parcels of air motivates
the choice of Zt+1,1, Zt+1,2, . . . as iid line segments whose
distribution is determined by the direction and strength of
the local wind field in the vicinity of Xt. Let Zt+1(x) be a
random line (actually a sequence of pixels) drawn from x
to a random displacement, dt(x) ≡ (dt,1(x), dt,2(x))

′ in R
2,

where

dt(x) ≡ 3Wt(x) = (3Ut(x), 3Vt(x)),

forWt(·) given by (11). Then the random vector dt(x) has a
density that we denote as ft+1(d), where we use t+1 as the
subscript since it refers to the probability law of Zt+1. Then
estimation of ft+1(·) can be achieved by a kernel smoothing
of {3Wt(x) : x ∈ Mt}, the set of all displacements origi-
nating from the pixels in Mt given by (13). After carrying
out extensive exploratory data analysis where moving win-
dows, scatter diagrams, kernel density estimates, and fit-
ted bivariate normal distributions were compared, we con-
cluded that (robustly) fitted means μ̂t+1,1, μ̂t+1,2, standard
deviations σ̂t+1,1, σ̂t+1,2, and correlation ρ̂t+1, were excel-
lent descriptors of the dynamics that displace the parcels of
air.

The remaining parameter is λt+1, the intensity of events
in Ct(Xt) that are used as foci of growth for the set of con-
centrated precipitation, Xt+1. This is related to the “thin-
ning” probabilities:

pt+1 ≡ Pr(event is at a pixel of Ct(Xt))(17)

= λt+1 · (area of NARCCAP pixel).

Thus, it is equivalent to estimate pt+1, which we accomplish
through Laslett’s theorem [10, p. 766]; its estimate, p̂t+1, is
given by (18) below.

4. ESTIMATION OF THE DYNAMICS

The data we analyze consist of a 30-hour period of NAR-
CCAP concentrated-precipitation fields during June 21–22,
1968, which are defined by (10) and Figure 1; they are de-
noted as {Xt : t = 1, . . . , 10}. After initializing with set X1,
an evolution of the sets {Xt+1 : t = 1, . . . , 9} at 3-hourly
intervals is shown in Figure 6 below.

The parameters of the SVAR model (15) control the
dynamics. In Section 4.1, the evolution of the random
sets {Zt+1 : t = 1, . . . , 9} is characterized and estimated;
in Section 4.2, the evolution of the thinning probabilities
{pt+1 : t = 1, . . . , 9} is estimated; and in Section 4.3, the
model is validated through a one-step-ahead forecast.

4.1 Estimation of the displacement densities

Recall, from Section 3, the law of the random set Zt+1 is
characterized by the displacement density defined on R

2. Ex-
tensive exploratory data analysis led us to choose a bivariate
normal distribution with parameters changing dynamically

Figure 2. This plot shows pixels x ∈ M3, with their
associated displacement vectors {d3(x) : x ∈ M3}.
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Figure 3. The plot shows 95, 75, 50, and 25 percentiles of robustly fitted bivariate Gaussian distributions describing the wind
field dynamics for times 2 through 10. The top-left plot is for time 2, time 3 is the top-middle plot, . . . , and time 10 is the

bottom-right plot. Units on the horizontal and vertical axes are in km.

for t = 1, . . . , 9. The mean vector (μt+1,1, μt+1,2), the stan-
dard deviations σt+1,1 and σt+1,2, and the correlation coef-
ficient ρt+1 of this bivariate distribution are estimated ro-
bustly using the displacement vectors {dt+1(x) : x ∈ Mt+1}
and {dt(x) : x ∈ Mt} (i.e., the combined displacement vec-
tors at time t+ 1 and t).

As an illustration, Figure 2 shows the case of t = 3, and
the pixels inMt are shown as small circles. The displacement
vector dt(x) is attached as an arrow to each x ∈ Mt. Clearly,
the displacement vectors have a well behaved distribution,
with a well defined mean direction and size. Nevertheless,
there are several displacement vectors that do not follow
the overall direction, and these outliers most likely represent
local turbulence.

The presence of outliers is the reason why empirical
means, variances, and covariances are not immediately use-
ful when fitting a distribution to the displacement field. In-
stead, we use robust estimators that are based on the least

trimmed squares procedure first described in [36]. This pro-
cedure is based on selecting the “best” (in some sense) data
subset and using it to compute an empirical mean vector
and an empirical covariance matrix. In our case, we use the
minimum covariance determinant method of [37], which in-
volves selecting the data subset that produces the covari-
ance matrix with the smallest determinant. Recall that each
symmetric positive-definite matrix can be associated with
a multivariate normal distribution whose contour lines are
ellipses. Essentially then, the minimum covariance determi-
nant procedure finds the ellipse with minimum area among
all those covering at least h = (n+ 3)/2 of the data points.
(Here, n = |Mt|, the number of displacement vectors at
times t = 1, . . . , 9.) One can roughly describe this as using
the h “most central” points to calculate the covariance ma-
trix; a recent review of the minimum covariance determinant
method can be found in [20]. Finally, we use the R package
MASS [32] to implement this algorithm.
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Figure 4. Passage of concentrated-precipitation centers {(μ̂1,t+1, μ̂2,t+1) : t = 1, . . . , 9}. Units on the horizontal and vertical
axes are in km.

Figure 5. The “fattened” set Mt, given by (13), is superimposed on its convexification, Ct(Xt), given by (14), for times 2
through 10. The top-left plot is for time 2, time 3 is the top-middle plot, . . . , and time 10 is the bottom-right plot.

The results of this robust fitting of normal densities are
shown in Figure 3. To obtain these fits, we combine the
displacement data from times t+1 and t. The mean vector of
the resulting distribution is (μ̂t+1,1, μ̂t+1,2); the covariance-

matrix parameters are standard deviations σ̂t+1,1, σ̂t+1,2,
and the correlation coefficient ρ̂t+1.

In order to provide a graphical summary of the changing
wind field, we plot a sequence of nine robustly fitted Gaus-
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Figure 6. The set Xt+1 is superimposed on Ct(Xt), showing how Xt+1 relates to Xt in the SVAR model (15), for times 2
through 10. The top-left plot is for time 2, time 3 is the top-middle plot, . . . , and time 10 is the bottom-right plot.

sian densities, superimposed on the data used to fit them.
Figure 3 displays them as a 3 × 3 matrix of plots with t
increasing from left to right.

One can see rather easily changes in the ellipse center
location as t increases. Figure 4 shows the passage of the
center of concentrated precipitation as time increases from
2, . . . , 10. The change in ellipses is rather gradual for most of
the times except at the beginning. This pattern may be re-
lated to rather rapid changes in wind velocity and direction
when the storm has more energy. As confirmation of this,
the degree of spread (as measured by the focal length of the
95% ellipses) seems to subside by the end of the observation
period.

4.2 Estimation of the thinning probabilities

The parameters of the SVAR model (16) consist of the
distribution of successive random sets {Zt+1 : t = 1, 2, . . .}
(Section 4.1) and the Poisson rate {λt+1 : t = 1, 2, . . .}. As

was shown in (17), λt+1 is proportional to the thinning prob-
ability pt+1, which we estimate in this section.

According to (15), Xt+1 is a Boolean model whose foci of
growth are constrained to belong to Ct(Xt) = co(Mt), given
by (10)–(14). The construction of Mt and its “convexifica-
tion” Ct(Xt), for t = 1, . . . , 9, is shown in Figure 5. It is the
interaction of Ct(Xt) with Xt+1 that determines the evo-
lutionary parameters; Figure 6 shows the two sets superim-
posed, for t = 1 . . . , 9. Notice that, mostly,Xt+1 is contained
in Ct(Xt), which is an indication that (15) is successfully de-
scribing the temporal evolution of {Xt+1 : t = 1, . . . , 9}.

We now estimate the thinning probabilities {pt+1 : t =
1, . . . , 9}. Each convex compact set Zt+1,i in (15) has a so-
called marker point (in discrete space, we call this a marker
pixel). This is a unique way of identifying the set’s loca-
tion; for example, we use the extreme south-west corner. If
we simply counted the exposed marker points (pixels) in the
Boolean model, the count would be biased low, since a small
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Figure 7. The set of exposed marker points, Xo
t+1, is superimposed on the transformed set Co

t (Xt). The ratio of the number
of pixels in Xo

t+1 to the number of pixels in Co
t (Xt), is an estimate, p̂t+1, of the thinning probability, for times 2 through 10;

see (18). The top-left plot is for time 2, time 3 is the top-middle plot, . . ., and time 10 is the bottom-right plot.

set could be masked partially or completely by a larger one.
Laslett’s theorem [10, p. 766], gives a way to compensate
for this bias. One simply removes all pixels of Xt+1 that are
not exposed marker pixels – they are removed both from
Xt+1 and from Ct(Xt). The result is a transformed Ct(Xt),
call it Co

t (Xt), that contains just the exposed marker pixels,
Xo

t+1, of Xt+1. These are shown for t = 1, . . . , 9 in Fig-
ure 7.

From Laslett’s theorem, an unbiased estimate of pt+1 is:

p̂t+1 =
# pixels in Xo

t+1

# pixels in Co
t (Xt)

.(18)

A time series plot of {p̂t+1 : t = 1, . . . , 9}, given by (18), is
shown in Figure 8. The variability of these estimates over
times 2, . . . , 10 is not large and, based on this figure, there is
no indication of nonstationarity of the thinning probabilities
during the passage of the concentrated precipitation across
the upper Midwest.

Finally, all the estimated parameters of the SVAR model
are combined into Table 1, showing the evolution of displace-
ment means, standard deviations, and correlations, along
with the evolution of the thinning probabilities. Clearly, the
former parameters describe the general movement of the
concentrated-precipitation field, and the latter parameter
describes its shape, or “patchiness.”

While the methodology itself is rather involved, being
based on the theory of random sets, the actual computa-
tions are fast. All computations were carried out in R [32]
on a Windows laptop with a dual core 2.1 GHz processor
and 3 GB RAM. The computations related to SVAR took
7.02 seconds per time period to fit the model and estimate
the parameters. Running the 1000 simulations and com-
puting the probability forecast (see Section 4.3) took 5.66
seconds. Clearly, our approach is computationally efficient,
which makes it potentially useful for forecasting purposes;
see Section 4.3.
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Table 1. Parameter estimates of SVAR model for {Xt+1 : t = 1, . . . , 9}. The displacement means (μ1, μ2) and standard
deviations (σ1, σ2) are in units of km; the displacement correlations (ρ) and thinning probabilities (p) are unitless

Parameter Estimates

t+ 1 (μ̂t+1,1, μ̂t+1,2) (σ̂t+1,1, σ̂t+1,2) ρ̂t+1 p̂t+1

2 (40.978, 46.649) (45.172, 15.091) 0.597 0.039
3 (69.294, 36.862) (38.768, 34.136) 0.800 0.023
4 (55.926, 14.973) (40.263, 43.471) 0.799 0.031
5 (48.611, 6.191) (40.138, 47.724) 0.832 0.027
6 (37.918, −8.838) (40.411, 41.711) 0.839 0.014
7 (35.520, −12.470) (39.951, 34.358) 0.854 0.022
8 (36.010, −10.158) (38.335, 27.256) 0.797 0.041
9 (46.772, −4.340) (37.128, 33.924) 0.776 0.031
10 (48.824, −0.472) (27.709, 34.546) 0.629 0.021

Figure 8. Time series of the estimates of the thinning
probabilities, {p̂t+1 : t = 1, . . . , 9}, given by (18).

4.3 Model validation and forecasting

To validate the model, we looked at its ability to fore-
cast the concentrated precipitation Xt+1, where t = 10.
Based on the SVAR model (15), wind field W10(t) obtained
from the NARCCAP data, and p̂11 equal to the median
of p̂2, . . . , p̂10, we produced 1000 simulations of the ran-

dom set, X11. Call those simulations X
(1)
11 , . . . , X

(1000)
11 , from

which we computed the proportion of times any pixel s ∈ D
was contained in the simulations:

Y11(s) ≡ (1/1000)

1000∑
�=1

I(X
(�)
11 (s) = 1); s ∈ D,(19)

where we use the obvious notation that a set A has an as-
sociated binary field, A(s) = I(s ∈ A), for s ∈ D.

In fact, {Y11(s) : s ∈ D} could be thought of as a proba-
bility forecast of the concentrated precipitation at the next
time point t = 11, based on the SVAR model and its fitted

Figure 9. Map of the probability forecast of concentrated
precipitation, Y11(·), given by (19). Also shown is the actual

concentrated-precipitation set (denoted by gray crosses
superimposed on the NARRCAP pixels) at time 11,

namely X11.

parameters at t = 10. Figure 9 shows the probability field
given by (19), and the actual output from the NARCCAP
model at t = 11 is superimposed. Notice that, apart from
an irrelevant concentrated-precipitation pixel over Florida,
X11 is completely contained in the non-zero pixels of Y11(·).
We conclude that the SVAR model (15) is successfully cap-
turing the dynamics of the concentrated-precipitation fields
at 3-hourly intervals.

5. DISCUSSION AND CONCLUSIONS

Comparing the results in Table 1 and Figure 3 reveals
that the concentrated precipitation sets change in a smooth
way, and no abrupt transitions are observed. Then, as ex-
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pected, the parameters governing the dynamics vary but not
greatly, from one time interval to the next. This points to
the predictive potential of our SVAR model.

Except for a few outliers, the wind movement is well char-
acterized by a general direction that changes little as time
increases. It is apparent from the fitted parameters that the
center of the random set Xt+1 moves most noticeably from
west to east, with much smaller displacements in the north-
south direction. This is in line with typical weather patterns
in the upper Midwest of the USA.

While the concentrated precipitation moves steadily from
west to east, there is less apparent change in the displace-
ments’ covariances. The fact that dt+1(x) has coordinates
that are mostly highly positively correlated, stresses the
prevalence of this general wind direction. Similarly, the thin-
ning probabilities given in (17) do not change greatly over
time and provide no evidence of nonstationary behavior.

This research is meant to characterize precipitation fronts
defined by RCMs, in order to say what mechanisms might
control real fronts. Our estimates have relied on knowing the
wind field (11). Suppose the SVAR model for concentrated
precipitation is assumed; in the absence of well resolved wind
fields, we would probably have to use method-of-moments
parameter estimates defined by matching the theoretical hit-
ting function given by (16) with its empirical version.

In an object view of the world, the SVAR process offers a
flexible way to model dynamics. We have also demonstrated
its potential to produce a probability forecast of concen-
trated precipitation (at the resolution of the NARCCAP
model). Similar to [26], it remains to put the SVAR process
into a hierarchical statistical model where it would play the
role of a dynamical process model, and where quantifica-
tion of uncertainty would be naturally facilitated. From this
point of view, our contribution in this article has been to
assess the feasibility of the SVAR process in this role. The
data model would capture all the imperfections of the real
world (in contrast to an RCM), where data (precipitation)
and covariate (wind field) are observed incompletely, with
measurement error, and at different spatial supports.
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