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Variogram estimation in the presence of trend

NIKOLAY BLIZNYUK, RAYMOND J. CARROLL,
MarCc G. GENTON*, AND YUEDONG WANG

Estimation of covariance function parameters of the error
process in the presence of an unknown smooth trend is an
important problem because solving it allows one to estimate
the trend nonparametrically using a smoother corrected for
dependence in the errors. Our work is motivated by spa-
tial statistics but is applicable to other contexts where the
dimension of the index set can exceed one. We obtain an es-
timator of the covariance function parameters by regressing
squared differences of the response on their expectations,
which equal the variogram plus an offset term induced by
the trend. Existing estimators that ignore the trend pro-
duce bias in the estimates of the variogram parameters,
which our procedure corrects for. Our estimator can be justi-
fied asymptotically under the increasing domain framework.
Simulation studies suggest that our estimator compares fa-
vorably with those in the current literature while making
less restrictive assumptions. We use our method to estimate
the variogram parameters of the short-range spatial process
in a U.S. precipitation data set.

KEYWORDS AND PHRASES: Bias, Covariance function, Non-
linear regression, Nonparametric regression, Spatio-tempo-
ral dependence, Time series.

1. INTRODUCTION

This paper is devoted to estimation of covariance function
parameters from data containing an unknown smooth trend.
This important problem arises in nonparametric regression
models

(1)

where g(-) is the unknown smooth regression function, €(-)
is the error process with a covariance function C(-,; ¢) pa-
rameterized by a vector ¢ and y(z;) is the observation at
the design point x; for i« = 1,...,n. We are interested in
the models where the indices z; belong to a subset of the d-
dimensional Euclidean space. Estimation of ¢ subsequently
allows one to select an appropriate amount of smoothing
in order to estimate g(-) using a local smoother corrected
for dependence in € [4, 11]. Failure to correct the smoother
for dependence in € results in undersmoothed estimates [11]
when the errors are positively correlated.

y(xi) = g(xi) + e(i),

*Corresponding author.

In the current literature surveyed in [11], two classes of
estimators can be identified: (i) those based on the differ-
ences of observations y(z;), e.g., [7], and (ii) those based
on variogram fitting using residuals from a preliminary non-
parametric model fit with the amount of smoothing chosen
as in the case with independent errors, e.g., [4]. In the first
class, the decision to use a particular difference between the
responses y(z;) and y(x;) is based on the distance between
x; and x;. However, we are not aware of any difference-based
estimators when the dimension of z; exceeds 1. As for the
second class, the use of residuals from a preliminary fit that
assumes independent errors may be improper: following [11],
the residuals may not have the same mean and dependence
structure as the errors e(x;) when the errors are positively
correlated because the local smoother not corrected for de-
pendence in errors is prone to undersmoothing.

In this paper, we develop an estimator of ¢ based on
fitting a regression model to the squared differences of ob-
servations, s;; = {y(z;) —y(x;)}*. To obtain a model for s;;,
represent

(2)  E(siy) = E[{e(:) — e(x;)}] + {g(zi) — g(z;)}>.

The term E[{e(z;) — e(z;)}?] is known as the variogram
of the process e. When ¢(-) is constant, an estimator of ¢
obtained by regressing the squared differences s;; on the
corresponding theoretical values of the variogram is known
as a variogram cloud estimator [10]. Whenever ¢(-) is non-
constant, the second term in the sum (2) creates a bias,
which our estimator will correct for. In contrast with the
existing difference-based estimators, we do not assume that
the indices wx; are one-dimensional. Unlike in the work of
Tong and Wang [15], we do not assume independence of
the errors €(x;), but when the errors are independent and
homoscedastic, Tong and Wang’s variance estimator arises
as a special case of ours. Our work is motivated by — but
is not limited to — spatial statistics, where g(-) represents
an unknown long-range smooth spatial trend and e captures
the short-range variability of the process y. Beyond smooth-
ness of g(-), we make standard assumptions of the expanding
domain asymptotic framework [9], which allow one to consis-
tently estimate the variogram in the simpler models where
the signal is observed without the trend.

This paper is organized as follows. In Section 2, we de-
velop our bias-corrected variogram cloud estimator, show its
connections with a classical binned estimator, and provide
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justifications. In Section 3, we report results of simulation
experiments to evaluate the finite-sample performance of our
estimator and, whenever possible, to compare it with exist-
ing estimators. Subsequently, we use our procedure to es-
timate the variogram parameters of the short-range spatial
dependence process in a U.S. precipitation data set. Techni-
cal and supplementary details are provided in the Appendix.

2. BIAS-CORRECTED VARIOGRAM
ESTIMATOR

2.1 Variogram cloud estimator in one
dimension

In this section, we develop a bias-corrected estimator of
the variogram parameters that is based on fitting a least
squares model to the squared differences of pairs of obser-
vations y(z;) in (1).

Consider a nonparametric regression model (1) with the
design points {z1,...,2,} in [0, 1]. We require that the first
four moments of e(x;) are finite and that g(-) is continuously
differentiable. Since our goal is estimation of the variogram
and its parameters, we operate under the expanding domain
asymptotic framework [3]. For simplicity, one can assume,
as in [7], a stationary variogram model

El{y(z:) — y(x;)}°] = yn (@i, 355 0) = v{n(z; — z;); ¢}

This representation is obtained upon rescaling the one-
dimensional (expanding) domain from [0, n] to [0, 1]. For ex-
ample, vy, (i, zj; ¢) = 20%{1—exp(—An|z; —z;|)} for the ex-
ponential variogram model, where ¢ = (%, \). In the case of
an equally-spaced design with ; = i/n, this is the variogram
of an AR(1) process on [0, n], v, (7, x;; ¢) = 202{1—pli=il},
where p = exp(—2A) is the lag-one correlation.

Replacing the second term in (2) with a Taylor series
expansion of g(z;) about x;, we obtain

(3)  E(sij) = vn(wi, z550) + g(x;) + o' (2;) (2i — ;)

+ O{(zs — x5)*} — g(x;))
= Yn(@i, 7550) + {9’ (2;) Y (:
+ O{(l‘l — l‘j)s}.

— ;)

Because of the stationarity, we can redefine v, (z;, z;; @) =
Yn(aij; @), where a;; = |x; — x;]|.

In the case of a general space-filling design in [0,1] (see
[13]), we propose to estimate ¢ by nonlinear least squares in
the model

(4)

under the assumption that E(e;;) = 0. The estimator is
obtained as a global minimizer of the ordinary nonlinear
least squares criterion ho(-) with respect to (8, ¢), where

(5)  ho(¢.B8)= > {sij — mlai;; ) — BaZ;}?

(i,5)€Z

Sij = Yn(aij; @) + 5%2]' + €45
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for (4,7) in the adjacency list Z = {i < j : a;; < (m/n)}
for some “radius” m that does not depend on n. Practical
selection of bandwidth in one- and multidimensional index
settings is discussed in the Appendix A.2.

In the following subsections we show that, even though
the coefficients of afj in the Taylor series expansion in (3) de-
pend on the z;’s and are unknown, the regression model (4)
indeed effectively corrects for the variogram cloud bias
{g'(z;)}*(zi — x;)* due to not knowing g(-). Subsequently,
we generalize the procedure from one-dimensional to general
d-dimensional indexed random fields.

2.2 Binning to aggregate the variogram
cloud biases

To make the exposition more transparent, we now restrict
attention to the setting of equally spaced design in one di-
mension, where z; = i/n.

Fork=1,...,m, let Sy = (n — k)" 32" Fs; ;11 be the
classical binned variogram estimator. A development similar
to that used to obtain (3) yields

n—=k
(6) Sk=(n—k) Z{e(:mk) — e(x:)}?

n—~k
+ad(n— k) S (g @)l

n—k

+2ak(n — k)Y g (wirk){e(Tipn) — (zi)}

i=1
+ Op(ai),

where ay = a; itx = k/n.
Define J = fol{g’(x)}de. Since

E(Sk) = Ynlar; ¢) + az{J + O(n~")} + O(a})
= yul(ag; @) + Jai + O(a3),

(7)

the dominant term of bias in the binned variogram depends
on the variogram cloud biases only through .J.

2.3 Justification of bias-corrected binned
variogram estimator

Estimation of the variogram parameters by minimizing
Sore {Sk — yn(ak; ¢) — Bai}? is equivalent to the following
two-step procedure:

1. Holding ¢ fixed, regress Zy(¢) = Sk — vn(ax; ¢) on ai
to estimate B\(qb)
2. Minimize in ¢ the sum of squared “residuals”
v {Zi(¢) — B(¢)ai}?. Equivalently, minimize the
criterion |(I,, — H)Z(¢)||3, where I,, is the identity
matrix of size m, H = bbT/bTh is the “hat” matrix,
b= (1,2%,...,m*)7T, Z(¢) = {Z1(¢),..., Zm(¢)}* and
| - ||2 is the Euclidean vector norm.



Consistency of ¢ = arg ming ||(I,, — H)Z(¢)||3 follows by
Proposition 1. Assume

A1: V= (Vi,..., V)T converges in probability to v(¢*) =
{v(1;0%),...,7(m; ¢*)}T, where ¢* is the true ¢ and

Vi = (n— k)7L 00 e(wign) — e(i)}? (9]
A2: (I — H){v(¢0) —v(d1)}I5 = 0 if and only if ¢o = ¢1,
for all valid ¢g, 1.

Then qAS converges to ¢* in probability.
The proof is outlined in the Appendix A.1.

2.4 Equivalence of variogram cloud and
binned variogram estimation

Consider two nonlinear regression models,

Sk = n(ar; ¢) + Bai + e,

Sijitk = Tnlak; @) + Bay + €4 itks

(®)
9)

along with the two corresponding objective functions

w (6, 8) =Y wi{Sk — Yn(ar; ¢) — Bai}?,

(10)
k=1
m n—k

A1) ho(6,8) =Y {siitr — mlar; ¢) — Bai}?,
k=1 i=1

where wy,, = n — k. It can be seen that the estimating equa-
tions obtained by differentiating either hy, or ho with re-
spect to (B,¢) are the same, hence the estimation meth-
ods that minimize the weighted binned variogram crite-
rion (10) or the unweighted variogram cloud criterion (11)
are equivalent. If m does not depend on n as assumed
in this work, wy = n 4+ O(1) and estimation by mini-
mizing hy is asymptotically equivalent to minimization of
(I — H)Z(9)]3.

2.5 Extension to multidimensional index
settings
We now extend the above one-dimensional procedure to
random fields on the d-dimensional hypercube [0, 1]¢. In or-
der to simplify exposition, assume the process is observed
on the lattice X = {0.5,1.5,...,nY/4 —0.5}¢/nt/?,
Repeating the decomposition in (3),

(12) E(sij) = (@i — 253 0) + {g(2;) + (x;i — ;)" Vg(z;)
+O(||lz; — a4l3) — g(25)}?
=l —2550) + |2 — 2513 [{Vo(e;)} Tuiy)”
+O([lzi — z413),
where u;; = (x; —x;)/||x; —x;||2, V is the gradient operator.

Notice that the bias depends not only on the gradient, but
also on the direction u,;.

To account for the dependence of the bias on direction, we
propose the following generalization of the one-dimensional
binned estimator:

1. Choose a set of directions H, for example, if d = 2,

{(07 1); (170); (15 1); (17 _1)}/\/5
2. For each h € H:

(a) For k = 1,...,m, compute the classical (direc-
tional) variogram estimators

Sk(h) = |Z(hk)|~* Z {y(z; + hk) — y(z:)}?,

x; €T(hk)

where Z(hk) = {z; € X : x; + hk € X}

(b) Define a directional analogue of the column
vector Z(¢) of Section 2.3 as Z(¢p; h) = {Z1(¢; h),
Zo(sh), ...y Zp(;R)YT,  where  Zi(¢;h) =
Sk(h) — vn(kh; @) for k=1,2,...,m.

3. Minimize Y, 4 [|(In, — H)Z(¢;h)||3, where H =
bbT /bTh and b = (1,22,...,m2)T.

Notice that, because the same number of equally-spaced
“steps” were taken in each direction h, the projection ma-
trix H is the same for every direction. More generally, the
criterion for minimization is obtained by projecting Z(¢; h)
onto the null space of the squared lags. As in Sections 2.1
and 2.4, one could consider a procedure based on the vari-
ogram cloud points that lie along a given direction (at least,
approximately), rather than the binned variogram.

Asymptotic justification of the procedure in the mul-
tidimensional index case is similar to that in the one-
dimensional case of Section 2.3, and is omitted here.

3. NUMERICAL EXPERIMENTS

3.1 Experiments with one-dimensional
designs

It can be seen that the estimator of Tong and Wang in
[15] is a special case of our variogram estimator. The model
of [15], which appears in (4) with a constant variogram (as
a function of lag), would be misspecified when there is de-
pendence in the errors e(z;). The primary goal of this sec-
tion is to examine the impact of this model misspecifica-
tion. It is also of interest to compare our estimator with
that in Section 2.2 of [7], where Hall and Van Keilegom [7]
assume that € is an order-p autoregressive error process in
one dimension. Their procedure, which does not account for
the trend explicitly, is based upon estimation of (i) o2 as
an average of classical semivariogram estimators of (m; ¢)
for “large” lags m = my,..., mo, where my/log(n) — oo
and mo = O(n'/?), and of (ii) v(k;¢) for small values of
k =1,...,p. The parameters of an AR(p) process are sub-
sequently recovered via Yule-Walker equations, which, more
generally, can be achieved by least squares. Of course, in the
spatial context of most interest to us, the estimator of [7] is
not applicable.
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Figure 1. Experiment of Section 3.1: plots of the 5th, 50th and 95th sample percentiles of estimators of o: our variogram
estimator (-o-), the Hall and Van Keilegom estimator of [7] (--x--) and the Tong and Wang estimator of [15] (¥—-*--* ).
The true 0% is 1 (---). The trend is g(x) = 10 + 12.523(1 — 0.5x)3.

We conducted simulations under the model of Section 3
of [7]. We used g(x) = 10 + 12.523(1 — 0.5x)3. The er-
rors €(x;) follow a Gaussian AR(1) process with the vari-
ogram model v, (z;,z;;¢) = 202{1 — exp(—An|z; — z;])},
where ¢ = (02, \). We simulated data for x; = (i — 0.5)/n,
1 =1,2,...,n for n = 200,400,800, 1,600, p = exp(—A) =
0.1,0.2,...,0.9 and var{e(z;)|e(z;—1)} = 1/16. For each ex-
perimental setting, 500 data sets were generated. The band-
width parameters are m = /n for the estimators of Tong
and Wang in [15] and of ours, and m; = n%* and my = /n
for the estimator of Hall and Van Keilegom as in the simula-
tions in [7]. We used 3 random starting points in optimiza-
tion; the solution with the lowest value of hp was retained.

In Figure 1, we plot the 5th, 50th and 95th normal-
ized sample percentiles of o2 for the three estimators; the
estimates of var{e(x;)} were divided by the true variance
(1/16)/(1 — p?). Tt is seen that for data with strong depen-
dence, the estimated o2 is heavily underestimated by the
Tong and Wang estimator in [15]. When dependence is high,
our estimator appears more variable but less biased than
that of [7]. In Figure 2, we plot the corresponding sample
percentiles of estimators of p. The plots for the two estima-
tors are very similar to each other, with our estimator being
slightly more variable.

The estimator of Hall and Van Keilegom from [7] effec-
tively ignores the trend, which does not impact the large-
sample performance of their procedure under the assump-
tions they make. Although in the above experiment their
estimator is well-behaved and the trend is indeed negligible,
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it is of great practical interest whether ignoring the trend
compromises the estimation procedure when the variabil-
ity in the trend is substantial. We fixed n = 2,000 and
increased the amount of signal from the trend by using
g(z) = {104+ 12.523(1 - 0.5x)3}, where ¢ = 2, 4,8, 16, while
keeping the remaining experimental conditions as above. In
Figures 34, we plot the percentiles of the estimators of o2
and p for the procedure of [7] and for ours. The behavior
of our estimator barely changes as ¢ increases, while that
of the estimator of [7] deteriorates beyond what is accept-
able.

3.2 Experiments with two-dimensional
designs

The goal of this section is to assess the performance of our
estimator and the impact of ignoring the trend when esti-
mating the variogram using a two-dimensional test problem
from [4].

The set of design points is X = {0.5,1.5,...,y/n —
0.5}2/y/n and the number of design points, n, is a square
of an integer. We use the exponential variogram model
(5,55 6) = 2021 — exp(~Ay/nllz; — a;2)}, where ¢ =
(62, )). To account for potentially different magnitudes of
g(z) and €(z), the variance of the noise, o2, is equal to
the second central moment of g(-) times a multiplicative
constant 7. In the experiments of this section, the values
of 7 are 0.5,1.0,2.0 and the values of p = exp(—A\) are
0.25,0.50,0.75. For each experimental setting, 500 data sets
were generated.
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To estimate the variogram parameters, we use the proce-
dure of Section 2.5 with m = 5 and H = {(0, 1); (1, 0); (1, 1);
(—=1,1)}/+/n, although a greater number of directions and
lags could be considered. Since a stationary variogram is
symmetric, i.e., y(h;®) = ~v(—h;¢), the use of directions
from the first two quadrants is sufficient.

In Tables 1-2, we summarize the results of the experi-
ment with the function g(-) that was used by [4], g(z1, 22) =
sin(27z1)+4(22—0.5)2. The focus of their work is local poly-
nomial regression adjusted for dependence in the error pro-
cess, not estimation of the variogram parameters by itself.
Given that estimates of the variogram parameters based on
the residuals from a preliminary nonparametric fit to g(-) —
under the independence assumption of errors — can be mis-
leading [11], estimation of the variogram parameters that
bypasses estimation of g(-), such as our present work, is of
particular importance.

We estimateed the variogram parameters by minimizing
the criterion Y,y [|(In — H)Z(¢; h)||5 from Section 2.5
and compared them to the estimates from minimization of
the criterion Y, ., [|Z(¢; h)||3 that ignores the trend. Ta-
bles 1 and 2 juxtapose the respective estimates of 7 and p
by the two procedures. The fact that our procedure uni-
formly outperforms the one that does not correct for the
trend strongly suggests the importance of bias correction in
variogram estimation and provides further support for our
methodology.
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4. CASE STUDY: U.S. PRECIPITATION
DATA

In this section, we apply our procedure to estimate pa-
rameters of the short-range spatial variability in a large spa-
tial data set of U.S. precipitation in April 1948. The data
set is available as part of the spam package for R and has
been used in numerous papers; see Section 4 of [5] for dis-
cussion and references. The data consist of monthly averages
of anomaly, defined as standardized square root of precipita-
tion readings, recorded by n = 5,909 weather stations that
are scattered irregularly over the continental U.S. We con-
verted the geographical coordinates (latitude and longitude)
into rectangular coordinates (in miles along the horizontal
and vertical axes) through a map projection [2], after which
we rounded the rectangular coordinates of stations to the
nearest mile.

Furrer et al. [5] state that the anomaly field is close
to being second-order stationary. They represent the field
stochastically as a sum of two independent processes, one
with a rapidly decaying exponential covariance function and
another with a slowly decaying one. For a data set of this size
or larger, estimation of covariance function parameters in
the presence of long-range dependence, e.g., by a likelihood-
based method, can become computationally prohibitive due
to evaluation and factorization of an nxn covariance matrix.
On the other hand, if the long-range dependence is modeled



Table 1. Sample percentiles of estimates of T in the experiment of Section 3.2 with g(z1, ) = sin(2mz1) + 4(xa — 0.5%)
when directional correction for the variogram bias is used. The bias-corrected estimator (left) is the minimizer of

2onen Um — H)Z(¢; h)|

3. the uncorrected estimator (right) is the minimizer of %, .4, || Z(¢; h)||3. For each set of values of

7, p and n, 500 data sets were generated

percentile of

percentile of

true estimate of 7 (corrected) estimate of 7 (uncorrected)

T p n 50th 5th 95th 50th 5th 95th
0.5 0.25 400 0.595 0.502 0.735 1.547 1.111 2.546
0.5 0.25 900 0.533 0.477 0.598 0.851 0.752 1.008
0.5 0.25 1,600 0.511 0.471 0.552 0.678 0.620 0.740
0.5 0.5 400 0.720 0.498 1.924 2.689 1.182 30.566
0.5 0.5 900 0.567 0.461 0.735 1.094 0.839 1.762
0.5 0.5 1,600 0.526 0.448 0.605 0.790 0.652 0.980
0.5 0.75 400 3.956 0.479 25.751 67.544 2.182 210.201
0.5 0.75 900 0.907 0.443 10.156 5.154 1.146 129.679
0.5 0.75 1,600 0.596 0.374 1.429 1.496 0.802 7.349

1 0.25 400 1.090 0.912 1.311 1.627 1.308 2.130

1 0.25 900 1.036 0.926 1.164 1.270 1.148 1.447

1 0.25 1,600 1.012 0.931 1.092 1.152 1.062 1.248

1 0.5 400 1.166 0.861 2.143 2.017 1.300 3.959

1 0.5 900 1.077 0.873 1.354 1.428 1.181 1.901

1 0.5 1,600 1.027 0.878 1.179 1.233 1.050 1.451

1 0.75 400 2.531 0.717 35.367 7.260 1.407 296.729

1 0.75 900 1.311 0.740 11.082 2.246 1.225 11.575

1 0.75 1,600 1.077 0.699 2.271 1.598 1.042 3.168

2 0.25 400 2.084 1.741 2.473 2.489 2.154 3.046

2 0.25 900 2.047 1.826 2.295 2.249 2.036 2.506

2 0.25 1,600 2.009 1.848 2.171 2.140 1.974 2.321

2 0.5 400 2.134 1.607 3.274 2.746 2.037 4.344

2 0.5 900 2.096 1.706 2.590 2.374 1.992 3.007

2 0.5 1,600 2.027 1.742 2.328 2.204 1.925 2.540

2 0.75 400 2.766 1.219 63.219 4.005 1.744 71.464

2 0.75 900 2.271 1.395 16.040 2.865 1.860 6.321

2 0.75 1,600 2.054 1.371 3.989 2.492 1.746 4.164

as being due to an unknown long-range smooth trend, our
method of Section 2 will estimate the parameters of the
short-range process at a much lower cost. Consequently, one
can obtain predictions of the overall anomaly process upon
estimating g(-) by a smoothing method that corrects for de-
pendence in errors [4, 11].

It is notable that our method does not assume that the
whole process is stationary in the mean, which allows one to
fit a wider range of models under less stringent assumptions.

To estimate parameters of the exponential covariance
function, parameterized as

cov{e(z;), e(w;)} = o exp(=Allz; — z]2),

we rescaled the distance (in miles) so that a unit dis-
tance equals 100 miles. The smallest rectangle that con-
tains the spatial domain has side lengths (28.78,17.96) af-
ter the transformation. In our parameterization, the pa-
rameter values obtained by Furrer et al. in [5] for o2 and
A in the short-range process are 0.28 and 2.46, respec-
tively.

To estimate the variogram parameters, it is important to
use a set of directions and lags that “cover” the effective
range of the short-range process. For the choice of direc-
tions # = {(0,1),(1,0),(1,1),(-1,1),(2,1),(—2,1)}/100
and lags £k = 1,2,...,70, the estimates for o2 and A
are around 0.25 and 2.09, respectively. Using a different
set of directions and lags to cover the same spatial range
produced similar estimates, which is consistent with the
representation in [5]. Considerably increasing the num-
ber of lags results in misleading parameter estimates be-
cause the long-range effect (in the representation of [5])
is getting partially captured by our short-range variogram
model.

5. DISCUSSION AND EXTENSIONS

We have presented a nonlinear least squares estimator
of the variogram parameters in nonparametric regression
models with dependent errors. While making fewer assump-
tions, our procedure combines merits of the methods devel-
oped in [15] and [7], but does not suffer from their draw-
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Table 2. Sample percentiles of estimates of p in the experiment of Section 3.2 with g(x1,72) = sin(27x1) + 4(z2 — 0.52)
when directional correction for the variogram bias is used. The bias-corrected estimator (left) is the minimizer of

Zhe?—[ H(Im - H)Z(¢§ h)l

3. the uncorrected estimator (right) is the minimizer of %, .5, || Z(¢; h)||3. For each set of values of

7, p and n, 500 data sets were generated

percentile of

percentile of

true estimate of 7 (corrected) estimate of 7 (uncorrected)

T p n 50th 5th 95th 50th 5th 95th
0.5 0.25 400 0.371 0.249 0.507 0.815 0.718 0.901
0.5 0.25 900 0.298 0.232 0.369 0.639 0.566 0.730
0.5 0.25 1,600 0.268 0.219 0.315 0.520 0.455 0.567
0.5 0.5 400 0.644 0.476 0.858 0.914 0.798 0.993
0.5 0.5 900 0.556 0.461 0.658 0.797 0.719 0.879
0.5 0.5 1,600 0.525 0.445 0.584 0.717 0.641 0.771
0.5 0.75 400 0.963 0.727 0.993 0.997 0.937 0.999
0.5 0.75 900 0.852 0.716 0.985 0.976 0.890 0.999
0.5 0.75 1,600 0.787 0.670 0.905 0.918 0.843 0.982

1 0.25 400 0.316 0.200 0.427 0.609 0.479 0.723

1 0.25 900 0.277 0.213 0.345 0.462 0.391 0.554

1 0.25 1,600 0.259 0.210 0.306 0.387 0.330 0.436

1 0.5 400 0.576 0.423 0.759 0.777 0.630 0.896

1 0.5 900 0.535 0.433 0.631 0.675 0.586 0.772

1 0.5 1,600 0.516 0.435 0.573 0.620 0.545 0.678

1 0.75 400 0.893 0.640 0.991 0.962 0.804 0.999

1 0.75 900 0.803 0.665 0.976 0.890 0.790 0.980

1 0.75 1,600 0.768 0.653 0.880 0.845 0.768 0.921

2 0.25 400 0.285 0.175 0.391 0.447 0.321 0.573

2 0.25 900 0.265 0.198 0.333 0.358 0.293 0.440

2 0.25 1,600 0.254 0.206 0.302 0.318 0.267 0.368

2 0.5 400 0.533 0.396 0.702 0.660 0.515 0.797

2 0.5 900 0.522 0.420 0.618 0.594 0.511 0.698

2 0.5 1,600 0.509 0.429 0.569 0.564 0.486 0.624

2 0.75 400 0.825 0.604 0.991 0.879 0.705 0.993

2 0.75 900 0.774 0.647 0.964 0.826 0.724 0.927

2 0.75 1,600 0.760 0.647 0.867 0.801 0.718 0.880

backs. In particular, tractable random fields include tempo-
ral, spatial, spatio-temporal, as well as general random fields
with d-dimensional indices, including multivariate random
fields [1]. Under standard regularity conditions of increasing
domain asymptotics, the proposed estimator is consistent,
and possesses attractive finite sample properties, which was
studied through simulations. Proof of asymptotic normality
along the lines of [9] is possible, but was not pursued since
such results are not indicative of finite-sample operational
characteristics of estimators.

Although we justified our estimator under lattice designs,
the methodology extends easily to scattered data. In par-
ticular, it is applicable to spatio-temporal data when site
locations are scattered and, possibly, sparse, but each site
produces long readings over time — a scenario common in
environmental statistics. In fact, this happens in the full
precipitation data set, a subset of which we considered in
Section 4: monthly averages are computed for readings from
a network of stations operating, roughly, over the past 100
years [8]. Other famous spatio-temporal datasets that are
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spatially sparse but temporally dense include the Irish wind
data [6] and Canadian weather data [12]. In these settings,
one would form spatio-temporal sample variograms for all
spatio-temporal lags of interest, but for each choice of a spa-
tial lag, the binned variograms would be projected onto the
null space of the vector of corresponding squared temporal
lags. That is, there is a separate nuisance (i.e., variogram
bias) parameter for each spatial lag.

To improve its efficiency, our estimator based on un-
weighted nonlinear least squares can be extended to
weighted or to generalized nonlinear least squares. Since
the projection matrix (I, — H) = QQT, where @ is an
m x (m — 1) matrix whose columns form an orthonormal
basis for the null space of bT, one can rewrite the criterion
of Section 2.5 as

oMU = H)Z($3 0I5 = D I1QTZ(¢: )5
heH heH

Replacing the standard Euclidean vector norm || - |2 with
a generalized Euclidean norm defined for a vector v as



[v]la = VvTAv for some positive definite matrix A, one
obtains Y, 4, |QTZ(¢; h>”%{/—1(¢;h)’ where W (¢; h) is the
large-sample covariance matrix of QT Z(¢; h) in the case of
generalized least squares, or a diagonal matrix of variances
of QT Z(¢;h) in the case of weighted least squares. In either
case, the analytical expression for W(¢; h) can be obtained
using the results in [9]. Use of weighted or generalized least
squares in the variogram cloud criterion in (5) is not rec-
ommended even in the mean-stationary models, as the es-
timation is inconsistent without correct specification of the
second moment (or the covariances) of s;; [10].

When the goal is estimation of the parameters of the
short-range spatial process, our procedure is a computation-
ally more efficient alternative to a likelihood-based method
that represents the response as a sum of long- and short-
range processes, which can be computationally intractable
due to the cost of matrix factorizations when the sample
sizes measure in tens of thousands as in the case of mod-
ern spatial data sets. For a recent review on geostatistics for
large data sets, see [14].

APPENDIX A

A.1 Outline of the proof of Proposition 1
Using (6) and (7), rewrite

(13) Sk = Vi +aiJ + Wi+ O0,(a}),
where Wy, = 2ap(n—k)~! Z?Z_lk 9 (@i {e(xirr) —e(zy)} =
op(ay). Define S = (S1,...,Sy)T and W = (Wy,...,W,,)T,
so that S =V +bJ + W + O,{(m/n)?}.

Examine

(Im — H){S —v(¢)}
= (I, — H)[V +bJ —v(¢) + W + O, {(m/n)*}]
= (Im — H{V = v(¢)} + (I, — H)[W + O,{(m/n)*}].

The second term converges in probability (i.p.) to 0, while
the first converges i.p. to (I,,,—H){v(¢*)—v(¢)}, by assump-
tion (A1). Therefore, ||(I, — H){S — v(¢*)}||3 converges
i.p. to 0. Since

0 < [|(n = H){S = 0(@)}3 = min | (I — H){S = v(@)}5
— H){5 = v(@")}3,

~

(L — H){S — v(@)}13 converges i.p. to || (I, — H){v(¢") -

-~

v(¢)}]|3 = 0. By assumption (A2), ¢ converges i.p. to ¢*.

S ||(I’77L

A.2 Selection of bandwidth parameters

Selection of the number of lags m and the set of direc-
tions ‘H for variogram estimation, which we jointly refer to
as bandwidth parameters, is a question of great practical
importance. However, even in the simpler case when € is

a white noise process, the choice is far from obvious. In
[15], the authors were able to derive an expression for the
dominant terms of the mean squared error of their estima-
tor, which was used to argue that an optimal bandwidth is
m = O(n'/?). However, their numerical experiments sug-
gest that a choice m = n'/3 is more appropriate in practice,
particularly when ¢ is “wiggly”. The choice becomes even
more difficult in our context because of the potential weak
indentifiability between g and € when g is highly variable
but € has slowly-decaying dependence.

Our procedure requires that ¢ is identifiable under our
criterion, namely that, for all valid ¢g, ¢1, m and H be cho-
sen so that

S 1T — H){u(d0) — v(@1)} 3 =0

heH

if and only if ¢9 = ¢1, where v(¢;) is the vector of theo-
retical variogram values used in Y, .4, [|(In, — H) Z(¢; h)||3.
This requirement can be easily checked once a parametric
variogram family is selected.

In practice, we recommend that the choice of m and H be
tailored to each individual application based on a two-step
pilot study as follows:

Step 1: Given a set of design points {z1,...,2,} and a vari-
ogram family, simulate a stochastic process € for a set of
plausible values of ¢ and estimate ¢ using a set of plau-
sible choices of H and m. This is an analogue of least
squares estimation of ¢ from the empirical variogram,
which is widely used in spatial statistics. Additionally,
this step helps one to determine if the variogram pa-
rameters can be estimated well (if at all) for a given
design and a choice of the variogram family.

Step 2: For promising choices of H and m, repeat the simu-
lation exercise incorporating a trend g suggested by an
area of application, in order to narrow down the set of
‘H and m. Since estimation of ¢ is typically very fast for
given values of m and H unless m is large, one need not
find “the best” pair, but rather a range, of bandwidth
parameters giving answers consistent with each other.

In case the estimates of ¢ from a real data set are dra-
matically different from the values considered in the pilot
study, the pilot study should be repeated.

In our simulation experiments, a choice of m of 5 or 10
worked well in all scenarios, although we used m = n'/? to
give fair comparison with the procedure of [15]. This might
explain why our estimator was slightly more variable than
that of [7] in the first one-dimensional index experiment.
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