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Bayesian areal wombling using false

discovery rates”

PEI L1, SUDIPTO BANERJEE,

ALEXANDER M. McBEAN AND BRADLEY P. CARLIN

Spatial data arising in public health services are often re-
ported as case counts or rates aggregated over areal regions
(e.g. counties, census-tracts or ZIP codes), rather than be-
ing referenced with respect to the geographical coordinates
of individual residences. For such areal data, subsequent in-
ferential interest often resides in the formal identification of
“barriers”, or “difference boundaries”, on the map, where
“boundary” refers to a border with sharp changes in out-
come on either side. This boundary detection problem is
often referred to as “wombling” or, more specifically, “areal
wombling” for aggregated areal data, after a foundational
article by Womble (1951). Existing statistical frameworks
for areal wombling usually follow a two stage procedure:
(i) estimate the spatial effects from an appropriate spatial
model, and (ii) detect boundaries from those estimates us-
ing appropriate discrepancy metrics on those estimates. Lu
and Carlin (2005), and several subsequent articles, explored
areal wombling within this framework.

This article treats wombling as a hypothesis-testing prob-
lem, where we are testing a substantial number of hypothe-
ses — one for each geographical boundary — and seek to pro-
vide policy-makers and analysts with a final set of difference
boundaries. Here we must reckon with a lurking multiplicity
problem arising from the large number of individual hypoth-
esis we are testing. We proffer a computationally feasible
framework to estimate hierarchical spatial models that ac-
count for dependence between adjacent regions and test for
equality of spatial effects, while adjusting for multiplicities
using false discovery rates (FDR); see, e.g., Benjamini and
Hochberg (1995). A simulation study is conducted to first
illustrate and assess the new approach, which is then ap-
plied to detect boundaries on a county map of Minnesota
that records pneumonia and influenza hospitalization rates
from the SEER-Medicare program.
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1. INTRODUCTION

Geographical Information Systems (GIS) software has
revolutionized the analysis of spatially referenced health
data with its depiction of counts and rates over study areas.
In public health services, to protect patient privacy, spa-
tial data are usually available as case counts or rates aggre-
gated over areal regions (e.g. counties, census-tracts or ZIP
codes), rather than as geographical locations of individual
residences. When spatial dependence in the data renders the
ordinary least squares regression model unsuitable, alterna-
tive models that incorporate spatial dependence should be
considered. For areally-referenced, or simply areal, data, the
association structures are built upon adjacencies or neigh-
borhood structures for the regions. Here we regard obser-
vations from a region to be more similar to those from its
neighboring regions than those arising from regions farther
away.

Statistical models for areal data have been widely em-
ployed for smoothing maps and evincing spatial trends and
clusters in econometrics (e.g. Anselin, 1988; Le Sage and
Pace, 2009) and public health (e.g., Banerjee et al., 2004;
Waller and Gotway, 2004). Subsequent inferential interest
often resides in the formal identification of “barriers” or
“boundaries” on the spatial surface or map, where ‘bound-
ary’ refers to a border with sharp changes in outcome on
either side. A ripe area of research is the statistical detec-
tion of spatial or geographical barriers (also known as dif-
ference boundaries) that can represent major differences in
outcomes between neighboring areal units. Statistical mod-
els can help analysts separate significant boundaries from
those arising due to random noise in the data. This bound-
ary detection problem is often referred to as “wombling”, af-
ter a foundational article by Womble (1951). Here we focus
exclusively upon finding boundaries on maps for areal data;
for other types of spatial data see, e.g., Banerjee (2010).

Algorithmic approaches to areal wombling, also known as
polygonal wombling, have been addressed by Jacquez and
Greiling (2003a, 2003b). While attractive in their simplicity
and ease of use, the algorithmic approaches fail to reckon
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with all sources of uncertainty and can produce spurious
statistical inference. For instance, public health data often
reveal extremeness in counts and rates for thinly populated
regions that are attributable to random variation in the ob-
served data, rather than any systemic differences. The algo-
rithmic approaches are unable to adjust for such variability
across regions.

A more detailed review of the existing algorithmic ap-
proaches and their deficiencies can be found in Lu and Car-
lin (2005), who were among the first to propose a fully
model-based framework for areal wombling using hierarchi-
cal conditionally autoregressive models (also see Wheeler
and Waller, 2008). Lu and Carlin (2005) explored different
metrics for measuring the differences in the estimates (pos-
terior means) of the spatial effects. In the same vein, Lu
et al. (2007) and Ma, Carlin and Banerjee (2010) investi-
gated estimating the adjacency matrix within a hierarchi-
cal framework using priors on the edges. Li, Banerjee, Han-
son and McBean (2010) proffered a class of non-parametric
Bayesian hierarchical models for areally aggregated health
outcome data that provide stochastic assessments regard-
ing the presence of geographical barriers. These models cir-
cumvent the identifiability issues arising from the aforemen-
tioned “edge effects” by modeling the spatial effects as al-
most surely discrete realizations of areally dependent stick-
breaking processes (including the Dirichlet process). Subse-
quent inference is based upon the posterior probability that
two spatial effects in neighboring regions are equal.

These methods, however, do not reckon with the mul-
tiplicity issues afflicting inference from marginal posterior
estimates. This article pursues a simpler formulation that
attempts to resolve the multiplicities using false discovery
rates (FDR). We formulate the problem of areal wombling as
one of testing different boundary hypotheses. A boundary
hypothesis posits whether a pair of neighbors have equal
spatial random effects or not. We want to test, for each
pair of adjacent geographical regions (i.e. neighbors) in a
map, a null model that posits equal spatial effects for the
two regions against an alternative model that allows uncon-
strained, but spatially correlated, regional effects. As such,
we will have as many hypothesis as there are geographical
boundary segments on our map. For example, there are 211
such segments in the county map for the state of Minnesota.
Each hypothesis corresponds to a two-component mixture
distribution that assigns a point mass to the null hypothesis
and distributes the remaining mass to the alternative.

When multiple hypotheses are tested simultaneously,
classical inference is usually concerned about controlling the
overall Type I error rate. Benjamini and Hochberg (1995)
introduced the FDR as an error criterion in multiple testing
and described procedures to control it. The FDR is the ex-
pected proportion of falsely rejected null hypotheses among
all rejected null hypotheses. Bayesian versions of FDR have
been proposed and discussed by several authors including
Storey (2002; 2003), Genovese and Waserman (2002), New-
ton et al. (2004) and Broet et al. (2004). Mueller et al.
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(2008) used a decision theoretic perspective and set up de-
cision problems that lead to the use of FDR-based rules
and generalizations. We adapt this framework to our “areal
wombling” problem. We depart from the more traditional
conditionally autoregressive (CAR) and simultaneous au-
toregressive (SAR) models used for areal data analysis as
they create problems (see Section 2) in implementing the
mixture models in our hypothesis framework.

The remainder of the manuscript proceeds as follows.
The next section outlines the spatial moving average (SMA)
models we employ and gives some of their core proper-
ties. Section 3 discusses our framework for developing de-
cision rules accounting for multiple comparisons. Section 4
presents a synthetic data example as well as a real data ap-
plication, while Section 5 concludes the paper with some
discussion.

2. AREAL WOMBLING USING THE
SPATIAL MOVING AVERAGE MODEL

Spatial autoregressive models (see, e.g., Banerjee et al.,
2004) have been widely employed to account for spatial de-
pendence in areal data sets. These can be broadly classi-
fied into two classes: simultaneous autoregressive (SAR) and
conditional autoregressive (CAR) models. These have been
applied extensively in econometrics (see, e.g., Anselin, 1988,
1990; Le Sage, 1997; Le Sage and Pace, 2009) and public
health (see, e.g., Banerjee et al., 2004; Waller and Gotway,
2004). Both of these model classes assign probability dis-
tributions to spatial random effects and, with the help of a
geographical proximity matrix (e.g. the underlying regional
adjacency matrix), capture spatial associations by assum-
ing that neighboring regions exhibit stronger associations
than those that are less proximate. They smooth the out-
comes across neighboring regions to produce maps that bet-
ter reveal where the outcome variable tends to cluster. The
SAR models achieve this using joint probability distribu-
tions with spatially correlated dispersion structures, while
the CAR models build spatial dependencies through spa-
tially correlated neighborhood level random effects.

Focusing upon boundary analysis, we feel that both the
SAR and CAR models are less conducive to a computa-
tionally simple approach that will account for multiplici-
ties when testing for significant differences across regions.
The areal wombling problem seeks to learn about difference
boundaries from the data by considering the influence of
each edge on these models. The model corresponding to the
null hypothesis, therefore, will be constrained by making two
spatial effects equal and, whatever areal model one consid-
ers, the model needs to be estimated once for each boundary.
In this context, the SAR model proves computationally ex-
orbitant because its estimation involves matrix inversions,
while the standard CAR runs into technical difficulties that
arise from it being an “improper” distribution. A “proper”
CAR model that yields integrable joint distributions (e.g.



Banerjee et al., 2004) is an option, but the so called propri-
ety parameter here is often difficult to estimate in practice
due to lack of identifiability from the data.

Instead, we employ a class of discrete spatial moving aver-
age models (SMA) that incorporate dependencies through a
weighted average of uncorrelated latent risk factors. As with
the SAR and CAR models, we form a geographical prox-
imity matrix W, whose (4, j)-th entry, w;;, connects areal
units ¢ and j spatially in some fashion. Customarily w;; is
set to 0. Possibilities include binary choices, i.e. w;; = 1 if
i and j share some common boundary or perhaps a vertex
(as in a regular grid), and w;; = 0 otherwise. Alternatively,
wy; could reflect “distance” between units, e.g., a decreas-
ing function of inter-centroidal distances between the units.
The entries in W can be viewed as weights; more weight will
be associated with j’s closer (in some sense) to ¢ than those
farther away from ¢. Henceforth, unless otherwise stated, we
use a binary adjacency matrix.

Let Y; be the outcome variable (e.g. count or rate) and
x; be a vector of explanatory variables for areal unit i. The
hierarchical smoothed moving average (SMA) model is

(1)
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Here the v;’s can be thought of as latent unobserved risk
factors associated with regions indexed by ¢, and ¢; is the
spatial random effect associated with region ¢ which repre-
sents the cumulative effect of these unmeasured risk factors
in each area. The ¢;’s are spatial effects that borrow strength
by averaging the latent risk factors over their neighbors.

The SMA is a very natural and flexible type of spatial
process that involves integrals or sums of independent and
identically distributed random variables. Note that (1) may
be looked upon as a discretized version of SMA’s often used
to describe continuous spatial processes, particularly in geo-
statistical applications. Such models are constructed by inte-
grating a simple two-dimensional random noise process with
a smoothing kernel that is a function of distance. Cressie and
Pavlicova (2002) defined a Gaussian SMA by the stochas-
tic integral Z(s) = [k(s,u)V(du);s € D, where D is the
spatial domain where s resides, V(-) is a spatial process
of independent increments defined on ¢, and k(-,-) is a
kernel function that mitigates the random noise process in
two-dimensional space to yield smoother surfaces. In the dis-
crete version, instead of using kernel functions based upon
distance, we employ a weight matrix which is based upon
the adjacency structure of the map. See also Haining (1978),
who employed similar ideas to study spatial interactions on
a rectangular lattice.

The joint distribution of the spatial effects in (1) arises
from the linear transformation ¢ = (I +(1—a)W)ap, where

¢ = (¢1,¢2,...,0n) and P = (¢1,¢2,...,¢p)". Writing
B = (oI +(1—a)W), where W is the row-normalized weight
matrix with w;;/w;; as its (¢, j)-th element, the spatial ef-
fects ¢ follow a multivariate normal distribution with zero
mean and variance-covariance matrix o2 BB’. This will ad-
mit a proper density if and only if B is nonsingular. Let
D be a diagonal matrix whose ¢-th diagonal element is the
number of neighbors of region 7. Then B, though itself not
symmetric, can be written as

B=D1? (aI +(1- a)D*1/2WD*1/2) D'/2,

which implies that D'/2BD~'/2 is symmetric. Assum-
ing the diagonal elements of D are strictly posi-
tive (i.e., the map is connected), B is nonsingular if
and only if DY2BD='/2 is. Let A(D~Y2WD~1/?) =
{)\(1),)\(2), .. .,)\(n)} be the set of eigenvalues of the adja-
cency matrix D~Y2W D~/ arranged in ascending order.
The eigenvalues of (oI + (1 —a)D~Y2WD~1/2) are then
given by the set {a + (1 — @)Xy, a+ (1 — @)Ag), ..., +
(1 — @)X} Since tr(D~Y2WD=1/2) =370 Ay =0, we
have A1) < 0 < Ag,). The nonsingularity of B is now as-
sured when each a + (1 — a))\;) is nonzero. Therefore, we
obtain

—Xii
o4 20

T fori=1,2,...,n

as a sufficient condition for the nonsingularity of B. It can
also be shown that A(,) =1, but this is not of much use to
us here.

A simpler sufficient condition for the nonsingularity of B
is to let 1/2 < a < 1, which ensures diagonal dominance,
and hence nonsingularity, of B irrespective of the rank of
W. In other words, any prior for @ with support on (1/2,1)
will yield proper distributions for the spatial effects on any
connected map. If the map has islands, then we simply use
this prior for each connected component (island) of the map.
To be precise, the spatial effects for regions within an island
are assigned their own SMA prior (i.e. there is a different «
and W for each island), while spatial effects across different
islands are assumed independent. We note that in our cur-
rent application (using a Minnesota map), we do not have
islands so we have not pursued this in detail.

It is worth pointing out the related work in Ickstadt
and Wolpert (1998) and Best et al. (2000). They proposed
Poisson-gamma spatial moving average models for use in
identity-link Poisson regression models. Identical and inde-
pendent gamma priors are assumed for the underlying risk
factors, as this enables the MCMC sampler to exploit conju-
gacy with the Poisson likelihood. The Poisson-gamma SMA
model may be implemented in WinBUGS using the readily
available pois.conv distribution (Lunn et al., 2000). How-
ever, in our multiple hypothesis testing framework, compu-
tations involving the adjacency matrix W makes it more
computationally intensive to execute pois.conv, while the
model in (1) is fairly effective.
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3. FDR BASED DECISION RULES

Our current objective is to test whether the geographi-
cal boundary given by the ordered pair (i, 7) is a difference
boundary. Let £ = {(4,7) : ws; # 0;4,5 = 1,2,...,n} be
the set of all geographical boundaries on a map with ada-
jacency matrix W. For each (i,5) € &, our null hypothesis
posits that (¢,7) is not a difference boundary, i.e. ¢; = ¢;,
while the alternative is ¢; # ¢;. In other words, we want to
look at each ordered pair (7,7) such that w;; = 1 and test
whether the spatial effects ¢; and ¢; are “equal”. At the out-
set, note that the prior densities for the spatial effects in (1)
are continuous, so P(¢; = ¢;) = 0 both a priori and a pos-
teriori. For the prior on the spatial effects we will, therefore,
adopt a two-component mixture density that places some
positive mass on the null hypothesis. To be more precise,
we impose an equality constraint upon the spatial effects
for regions ¢ and j, which yields, for every (i,j) that repre-
sents a geographical neighbor, the following two-component
mixture prior for the spatial random effects:

(2)
fi,)(@)=Ho (i 5y fo,(i.5)(®) + (1 — Ho @i ) f1(@), (i,7) € E.

Here, Hy (; ;) is an indicator variable that equals one if (7, 5)
is not a difference boundary (i.e. ¢; = ¢;) and equals zero if
(i,7) is a difference boundary; fi(¢) is the prior density for
¢ as specified in (1), which is precisely N(0,02BB’), and
Jfo,i.5)(@) is the density obtained from fi(¢) subject to the
constraint ¢; = ¢;. Note that this is a linear constraint on
¢, which yields a constrained (singular) normal density (e.g.
Rao, 1973, Sec 8a.4) for fy (; j)(¢) in (2). This density exists
on an n— 1 dimensional subspace and will yield a valid joint
posterior density for the spatial effects as long as Hy (; ;) is
not a degenerate random variable. For each (7, ) such that
w;,; = 1, we estimate the hierarchical model

(3)  Yi|B,¢; ~ Poisson (e‘”%ﬁﬂﬁk) :

¢ = {¢k}Z:1 ~ f(i,j)(¢)
= Ho,(i,5)f0,(.5)(®) + (1 = Ho,(i,5)) [1(#);
HO,(i,j) ~ Ber(ﬂ); ™~ Beta(a, b)

k=1,....n

using a Gibbs sampler with Metropolis steps. This yields
posterior samples for B, {¢r}, Ho,(; ;) and 7.

From a practical implementation standpoint, we will
avoid working with the singular density fy ; ;)(¢) in (3).
Recall from (1) that the ¢;’s are linear transformations of
the 1;’s, the latter being independently and identically dis-
tributed normal random variables. This means that poste-
rior samples of the v;’s will immediately deliver samples of
the ¢;’s. It can be shown, after some algebra, that ¢; = ¢;
is equivalent to
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This constraint, though somewhat daunting in appearance,
is straightforward to program in the BUGS language (Lunn
et al., 2000) allowing us to easily sample the ¢;’s in (1) using
a Gibbs sampler. Equation (4) imposes a linear constraint
on the ;’s, which means that there are only n — 1 free pa-
rameters among the v;’s. Replacing one of them, say v;, in
Model (1) with the constraint in (4), enables us to express
(1) as a function of the remaining n — 1 free parameters.
This is easily specified in the BUGS language — we simply
assign independent and identically distributed normal dis-
tributions (as in (1)) to each of the v;’s except 1), which is
set to the expression in (4).

Simpler, albeit somewhat restrictive, formulations of the
null are also possible. The following, for instance, sets ¢; =
®; to be equal to their average,

()

.

where ¥; "% N(0,02). This would correspond to a model
where the entries in the i-th and j-th rows of the adjacency
matrix have been replaced by their simple averages.

From a Bayesian decision-making perspective, the spa-
tial analyst will want to identify a boundary (i,7) as a dif-
ference boundary if the posterior probability that Hy ; ;)
equals zero exceeds a certain threshold ¢. In more formal
parlance, we define a critical region or rejection region for
the null hypothesis to be the set

S(hi + 1) + 152 YL (L + 23y,

Wi4 Wy

a + (L= ) Yy g, ik #4,5,

if k=1,

A py(Yit) ={Y 1w ) = P(Hou,5) =0]Y) > t},

where Y = {Y7,Ys,...,Y,}. The choice of ¢ will be based
upon controlling the false discovery rate (FDR) below a level
0 = 0.05. Specifically, the FDR is defined to be

(6)

FDR — (i yee Howpllvay > 1)

5 &= {(27]) Wi = 1}'
i jyee Loy > 1) !

Estimation of the above quantity simplifies considerably in
a Bayesian setting. The v(; ;)’s are functions purely of the



data, which, for computing posterior expectations, is con-
stant. Therefore the only unknown in the above definition
are the Hy (; ;’s in the numerator. The posterior estimate
of the FDR is now given by

2 yeed —van)1(va ) > t)
> igyee W) >1)

(7) FDR = E[FDR|Y] =

where an estimate of the posterior probability v ;) =
P(Hy,;,5y = 0]Y) is computed as a Monte Carlo mean of
the posterior samples for Hy ; jy, i.e., the number of times
when Hy (; ;) = 0 divided by the length of the simulation
run. Rejection rules can be then constructed to bound the
FDR at target level d: reject if v; ; > t, where

< 5} |

The above bound depends upon the estimated FDR and its
accuracy and can be sensitive to the choice of the priors. We
discuss this further in the simulation example.

2igyee Ly > w)(1 —vg,5)
t=supu:
> ee (i g > u)

4. ILLUSTRATIONS

We implemented our approach in Section 3 using the con-
straint in (4) and the slightly more specific constraint in
(5). These models were run within the R statistical frame-
work using the BRugs package (http://www.stats.ox.ac.uk/
pub/RWin/) that can execute embedded WinBUGS scripts
from within R. Both these approaches yielded essentially in-
distinguishable inference with regard to boundary detection,
but the latter is easier to program and is computationally
more efficient, delivering post burn-in posterior samples with
approximately 20% savings in CPU time. Therefore, in our
subsequent examples we present only the results from (5).
We illustrate our proposed approach in a simulation study,
and then apply it to real data analysis in Section 4.2. On
a workstation using an Intel dual core 4 GHz processor our
entire simulation exercise, where we analyzed 50 simulated
datasets on a Minnesota map, took less than five hours of
CPU time. Our analysis of the Minnesota Pneumonia and
Influenza data consumed less than fifteen minutes of CPU
time.

4.1 Synthetic example

The simulation study serves two main purposes: 1) to
evaluate the proposed model performance in detecting true
difference boundaries as compared to existing methods; and
2) to identify which levels of FDR can be accurately esti-
mated by the SMA model.

Our synthetic example is based on a Minnesota county
map. There are 87 counties and 211 geographical bound-
aries between counties on the map; thus, there are 211
different boundary hypotheses in our analysis. We di-
vided the Minnesota map into six regions, and let u; €

mu=0, 0.5
mu=1.0
mu=1.5
mu=2.0
mu=2.5

EEEO0O

Figure 1. A map of the simulated data with the grey-scales

showing the six different clusters, each having its own mean.

There are 47 boundary segments that separate regions with
different means (shades).

{0,0.5,1,1.5,2,2.5}. Letting Y; be the simulated number of
cases in county i, we generate {Y;} ~ Poisson(5 x exp(u;))
fori =1,2,...,87. This resulted in six well defined clusters
with 47 true difference boundaries mapped in Figure 1. Note
that two of the clusters are shaded white. The one in the in-
terior comprises a single county (Sherburne) and has mean
0, while the other has a mean of 0.5. This configuration cre-
ates a county with all its boundaries being true difference
boundaries.

A uniform (0,1) prior is assigned to «. The conditions
for positive-definiteness of the variance-covariance matrix
for ¢ were discussed in Section 2. The prior distribution for
the precision in (1) was taken to be a weakly informative
Gamma distribution, p(Z;) o< I'(0.01, 0.01), and we also take
a flat prior for 8. For the hyperparameters, we set a = 1 and
b = 9 after some preliminary explorations. Ideally, the hy-
perparameters a and b should reflect the proportion of true
difference boundaries on the map. In practice, unfortunately,
such prior information is rarely available and naive choices of
a and b may detract from the performance of our approach.
However, in our experience, even informal approaches such
as obtaining eye-ball estimates of difference boundaries from
choropleth maps of the raw data can suggest hyperparame-
ter values that seem to deliver robust inference with regard
to boundary detection. Alternative approaches include using
Boundary Likelihood Values (BLV’s) (Jacquez and Greil-
ing, 2003a, 2003b) or the model-based (LC) method of Lu
and Carlin (2005) to arrive at initial estimates for robust
boundary detection. A sensitivity analysis was carried out
with varying number of true difference boundaries and we
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found that setting hyperparameters using any of the above
approaches delivered essentially indistinguishable posterior
inference.

For each of 50 simulated datasets, we estimate the 211
hierarchical models described in (1) and (3), one for each
geographical boundary, using Markov chain Monte Carlo
methods (see, e.g., Carlin and Louis, 2009; Gelman et al.
2004). We assumed only an intercept term (i.e. &; = 1 in
(1)) in the mean, with 8 as the corresponding global mean
parameter. Upon convergence, each model yields posterior
samples of 3, the ¢;’s and «. For a typical simulated dataset,
the posterior means across the 211 models for S hovered
between —0.23 and —0.21, while the posterior standard de-
viation ranged between 0.13 and 0.17; the posterior mean
for o was between 0.37 and 0.43 and the posterior standard
deviation was between 0.021 and 0.045.

For every pair of geographical neighbors (4, j), we com-
pute the posterior probability P(Hy . = 0[{Ya;k =
1,2,...,n}); higher posterior probabilities provide evidence
in favor of (4,7) being a difference boundary. For illustra-
tive purposes, we choose the top T' = 35,40,45,50 and 55
edges with the highest posterior probabilities. In practice,
health professionals might seek to identify a “top bracket”
of difference boundaries. Our choices of T considers 17% to
26% of the most probable difference boundaries (based upon
their posterior probabilities). Since there are 47 true dif-
ference boundaries, these choices encompass settings where
we could, theoretically have obtained 100% accuracy (when
T = 35,40, 45) and also where we are assured of a few false
positives (when T' = 50, 55).

Since we know the true difference boundaries, we can ob-
tain the sensitivity and specificity for the SMA model; the
sensitivity corresponds to the probability of correctly de-
tecting a true difference boundary, while specificity corre-
sponds to the probability of correctly rejecting a difference
boundary. We compare the performance of our method with
two existing methods: the deterministic Boundary Likeli-
hood Value (BLV) algorithm of Jacquez and Greiling (2003a,
2003b) and the model-based approach of Lu and Carlin
(2005). The average detection rates for these different meth-
ods applied to the 50 simulated datasets are listed in Table 1.
Our proposed method seems to be slightly outperforming
the two existing methods in both sensitivity and specificity
under all five scenarios. -

In order to investigate if the FDR based decision rule can
be used for controlling false discovery rates, we compare the
estimated FDR (fﬁ) and the true FDR after choosing a
threshold ¢. The estimated FDR can be worked out by equa-
tion (7), while the true FDR is given by (6). By examining
the closeness of the estimated FDR to the true FDR, we
are able to assess the accuracy of the FDR estimation by
the proposed approach. Figure 2 plots the FDR against the
number of edges selected from a cutoff value ¢t. Also plotted
are the realized FDR computed (dashed line) based on the
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Table 1. Sensitivity and specificity in the simulation study (50
datasets) for the SMA model, the Boundary Likelihood Value
approach of Jacquez and Greiling (2003a) and the approach
of Lu and Carlin (2005) model. The simulation study was
based on a Minnesota county map

T Method Sensitivity Specificity
35 SMA 0.740 0.998
BLV 0.711 0.990
LC 0.702 0.989
40 SMA 0.818 0.991
BLV 0.778 0.979
LC 0.767 0.976
45 SMA 0.872 0.975
BLV 0.831 0.964
LC 0.813 0.959
50 SMA 0.901 0.955
BLV 0.869 0.944
LC 0.859 0.941
55 SMA 0.925 0.930
BLV 0.891 0.920
LC 0.881 0.917
@
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Number of edges selected

Figure 2. The realized FDR and the estimated FDR curves in
the simulation study. The x-axis is number of edges selected
as difference boundaries.

discoveries and the underlying truth from which we simu-
lated the data. Both estimated and realized FDR curves are
averages over the 50 simulated datasets for each number of
edges selected. The two curves follow each other closely on
the plot, demonstrating that the FDR is well estimated by
the proposed approach. The FDR in the lower level region
(<0.6) is slightly overestimated, while in the higher level
region (>0.6) is slightly underestimated. This suggests that
we are being conservative here because only the lower region
is of interest when the FDR is controlled by a certain target,
say 10%.
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Figure 3. The realized FDR and the estimated FDR curves in the simulation study for M = 26, 39, 57, 73, 90. The x-axis is
number of edges selected as difference boundaries.

Finally, we check the sensitivity of the prior selection
to the number of true difference boundaries M. Figure 3
compares the estimated FDR with the realized FDR when
M = 26, 39, 57, 73 and 90. Rather than the patterns of
true difference boundaries, here we are more interested in
comparisons between the estimated and the true FDR for
varying numbers of true difference boundaries. The plots
show that the estimated FDR lies slightly above the realized
FDR most of the time. An exception to this conservatism
is when both of them are exactly zero and when M is 57,
73 or 90. Overestimating the FDR would make the practi-
tioner declare more errors than he actually made, which is
arguably better than underestimating the FDR to achieve a
pre-specified level. Although this may sacrifice some power,
the model allows for more conservative control of the FDR
as is desirable.

4.2 The Minnesota Pneumonia
and Influenza data analysis
We illustrate our model comparison approach in the con-

text of a Minnesota Pneumonia and Influenza (P&I) diag-
nosis dataset. Influenza and pneumonia are major causes of

illness and death. In 2005, these conditions ranked as the
eighth leading cause of death in the United States and the
sixth leading cause in people over 65 years of age. An ac-
tive surveillance program for an influenza-like illness can
help impede the spread of the infection by appropriate in-
tervention. Boundary analysis can help identify “health bar-
riers” separating counties that experience different impacts
of the influenza virus. Identifying difference boundaries can
improve coordination between neighbors and execute plans
for hospital needs and antiviral or vaccine interventions.
Our dataset includes subjects older than 65 years who
were enrolled in both Medicare part A and part B in De-
cember 2001. Residents of Minnesota who were 65 years of
age and older and who were enrolled in the Medicare fee-for-
service program as of December 31, 2001, formed our study
population. This population had been identified as part of
a multi-year study regarding the impact of vaccinations on
elderly Minnesota residents. The Medicare Denominator file
for 2001 was used to define the cohort. In addition to meet-
ing the age and state of residence criteria, to be eligible for
inclusion in the study, the person had to be enrolled in both
Medicare Part A and Medicare Part B, not be enrolled in

Bayesian areal wombling 155



L

[ ] [T

0-20%
20%-40%
40%-60%
60%-80%
80%-100%

EEEOO

[ ] [T 1

Figure 4. The plot on the top is the choropheth map of pneumonia and influenza hospitalizations in the MN (P&l) dataset.
The plot on the lower left highlights the difference boundaries declared when FDR is controlled at 5%, and the plot on the
lower right highlights the ones when FDR is controlled at 10%.

a Medicare Advantage health plan, and not have end-stage
renal disease. The denominator file also indicated the county
of residence for each person.

Hospitalizations for Pneumonia and Influenza were iden-
tified by the Medicare Provider Analysis and Review (Med-
PAR) short stay inpatient file for the above Minnesota res-
idents. This annual file contains extensive patient records
per hospitalization based on the date of discharge. Rates of
P& hospitalization are traditional measures of the impact
of influenza virus in the elderly population. We identify the
boundaries that separate the more affected areas from the
less affected areas. Here we studied the number of hospi-
talizations from P& in both influenza and a “shoulder”
period among persons at risk in each county. The definition
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we, and others, have used to define the influenza season is
period of weeks that include the 2.5-th to 97.5-th percentile
of all influenza isolates for a given influenza year (July 1,
2000 through June 2001, for example). The “shoulder” pe-
riod includes the weeks on either end of the influenza season
beginning with the week of the first influenza isolate and ex-
tending through the week of the last isolate.

Let Y; be the observed number of hospitalizations in
e Yi 0.
Z;CL:l 0; 77
be the expected number of cases (under the assumption of
no spatial variation in rates), where n is the total num-
ber of counties. The map appearing in the top row of Fig-
ure 4 shows the raw data. The high-hospitalization counties
are scattered over the map, with a clump in the southwest

county i, O; be the population of county i, E; =



Table 2. Names of adjacent counties that have significant boundary effects from the SMA model. The county pairs (i, 7) are
arranged in descending order based upon the estimated posterior probability for Hy(; ;) being equal to zero. Numbers 1-33 are
detected to be difference boundaries when the FDR is controlled at 5%, and numbers 142 are detected when the FDR is
controlled at 10%

1 Beltrami, Koochiching
2 Cass,Wadena

3 Douglas, Pope

4 Goodhue, Olmsted

5 Itasca, Koochiching

6 Kandiyohi, Pope

7 Koochiching, St. Louis
8 Pope, Stearns

9 Steele, Waseca

10 Anoka, Isanti

11 Dakota, Goodhue

12 Freeborn, Steele

13 Pope, Stevens

14 Cass, Morrison

15 Cottonwood, Murray
16 Isanti, Sherburne

17 Lincoln, Pipestone

18 Clay, Otter Tail

19 Murray, Redwood

20 Renville, Yellow Medicine
21 Koochiching, Lake of the Woods

22 Isanti, Mille Lacs
23 Lyon, Redwood

24 Todd, Wadena

25 Pope, Swift

26 Fillmore, Olmsted
27 Jackson, Martin

28 Dodge, Olmsted
29 Murray, Pipestone
30 Kandiyohi, Swift
31 Rice, Waseca

32 Chippewa, Renville
33 Blue Earth, Brown
34 Otter Tail, Todd
35 Murray, Nobles

36 Pennington, Polk
37 Becker, Mahnomen
38 Cook, Lake

39 Blue Earth, Watonwan
40 Chisago, Isanti

41 Redwood, Yellow Medicine
42 Morrison, Todd

and some isolated regions surrounded by sparsely inhabited
counties that also have lower counts.

We fit the model in (3) and used (7) to identify bound-
aries for the P&I hospitalization map. Fixing FDR at 5%,
the proposed method identifies 33 difference boundaries,
while with FDR at 10% it proposes 42 difference bound-
aries. Table 2 lists these 42 adjacent counties having the
boundary effect, ranked by the posterior probabilities of
Hy (i jy=0- The boundaries corresponding to 5% and 10%
FDR are highlighted in the two maps in the lower row of
Figure 4.

Though the method makes no effort to draw connected se-
ries of boundary segments, the higher hospitalization region
in the southwest is largely isolated from the remainder of
the map. Also note that Koochiching county (North-central
county with high hospitalization) is completely isolated from
its three neighbors, even when FDR is controlled at the 5%
level.

5. DISCUSSION AND FUTURE WORK

This article demonstrated how hierarchical spatial mov-
ing average mixture models can be used to detect difference
boundaries on areal maps by controlling the false discovery
rate. The method’s appeal lies in that it is easily estimable
(can be implemented in WinBUGS) and, based upon our sim-
ulation experiments, it tends to enjoy higher sensitivity and
specificity compared to some existing methods. The pro-
posed method can also produce an estimate of the error

measure, such that the practitioner is aware of the errors
incurred by any decision.

A potential issue is the sensitivity of the inference to the
hyperparameters of the mixture probability 7. Simulation
experiments, such as in Section 4.1, are often used to ascer-
tain hyperparameter values that can yield robust inference.
We use descriptive wombling with BLV’s (e.g. Jacquez and
Greiling, 2003a, 2003b) and the method of Lu and Carlin
(2005) to obtain some idea about the proportion of dif-
ference boundaries on the map, and set the hyperparam-
eters accordingly. In our current setting, we did not find
significant performance differences between the BLV and
LC methods. Nevertheless, a more elaborate exploration to
ascertain performance gains achieved by setting hyperpa-
rameters with the BLV and LC methods over more ad-hoc
approaches can be worthwhile.

An apparent disadvantage of our current approach is
that we need to estimate as many models as there are geo-
graphical boundaries. This is in contrast to the model-based
wombling approaches (e.g. Lu et al., 2007; Ma et al. 2010; Li
et al. 2010) that jointly estimate difference boundaries, per-
haps thereby circumventing the need to adjust for the false
discovery rates. From an implementation standpoint, how-
ever, the current approach is much simpler and, as already
mentioned, can be entirely executed in BRugs.

Finally, we point out that here we rejected null hypothe-
ses by fixing a pre-specified FDR, level. Variations of the de-
cision rules under other forms of loss functions are certainly
possible and discussed by Mueller et al. (2008). Interesting
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options include loss functions that are linear combinations
of the false discovery rate and false negative rate, or bivari-
ate loss functions that explicitly acknowledge both. These
are future directions of research that extend naturally from
our current work.

Received 1 February 2011

REFERENCES

ANSELIN, L. (1988). Spatial Econometrics: Methods and Models.
Kluwer Academic Publishers, Boston.

ANSELIN, L. (1990). Spatial dependence and spatial structural insta-
bility in applied regression analysis. Journal of Regional Science,
30, 185-207.

Assuncao, R. and KRAINSKI, E. (2009). Neighborhood dependence
in Bayesian spatial models. Biometrical Journal, 51, 851-869.
MR2751717

BANERJEE, S. (2010). Spatial gradients and wombling. In Handbook of
Spatial Statistics. EA(s) P. Diggle, M. Fuentes, A. E. Gelfand and
P. Guttorp, Taylor and Francis, Boca Raton, FL.. MR2761512

BANERJEE, S., CARLIN, B. P. and GELFAND, A. E. (2004). Hierarchical
Modeling and Analysis for Spatial Data. Chapman and Hall/CRC
Press, Boca Raton, FL.

BANERJEE, S. and GELFAND, A. E. (2006). Bayesian wombling: curvi-
linear gradients assessment under spatial process models. Journal of
the American Statistical Association, 101, 1487-1501. MR2279474

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false dis-
covery rate: A practical and powerful approach to multiple testing.
Journal of the Royal Statistical Society B, 57, 289-300. MR 1325392

BesT, N. G., IcksTADT, K., WOLPERT, R. L. and Bricas, D. J. (2000).
Combining models of health and exposure data: The SAVIAH study.
In Spatial Epidemiology: Methods and Application. Oxford Univer-
sity Press, 393-414.

CARLIN, B. P. and Lours, T. A. (2009). Bayesian Methods for Data
Analysis. 3rd ed. Chapman and Hall/CRC Press, Boca Raton, FL.
MR2442364

CREsSIE, N. A. C. (1993). Statistics for Spatial Data, 2nd ed. Wiley,
New York. MR1239641

CRESSIE, N. and PavLicova, M. (2002). Calibrated spatial moving av-
erage simulations. Statistical Modelling, 2, 267-279. MR1951585

GELMAN, A., CARLIN, J. B., STERN, H. S. and RUBIN, D. B. (2004).
Bayesian Data Analysis, 2nd ed. Chapman and Hall/CRC Press,
Boca Raton, FL. MR2027492

GENOVESE, C. and WASSERMAN, L. (2002). Operating characteristics
and extensions of the false discovery rate procedure. Journal of the
Royal Statistical Society B, 64, 499-518. MR1924303

HAINING, R. P. (1978). The moving average model for spatial inter-
action. Transactions of the Institute of British Geographers, New
Series 3, 202-225.

IckstapT, K. and WOLPERT, R. L. (1998). Multiresolution assessment
of forest inhomogeneity. In Case Studies in Bayesian Statistics, 3.
Lecture Notes in Statistics, 121. Ed(s) C. Gatsonis, J. S. Hodges,
R. E. Kass, R. McCulloch, P. Rossi and N. D. Singpurwalla.
Springer-Verlag, New York, 371-386. MR1630084

JAacQuEz, G. M. and GREILING, D. A. (2003a). Local clustering in
breast, lung and colorectal cancer in Long Island, New York. Inter-
national Journal of Health Geographics, 2, 3.

JACQUEZ, G. M. and GREILING, D. A. (2003b). Geographic boundaries
in breast, lung and colorectal cancers in relation to exposure to air
toxics in Long Island, New York. International Journal of Health
Geographics, 2, 4.

LESAGE, J. P. (1997) Analysis of spatial contiguity influences on state
price level formation. International Journal of Forecasting, 13, 245—
253.

LESAGE, J. P. and PAcE, K. (2009). Introduction to Spatial Econo-
metrics. Chapman and Hall/CRC, Boca Raton, FL. MR2485048

158 P. Li et al.

L1, P., BANERJEE, S., HANSON, T. A. and MCBEAN, A. M. (2010). Non-
parametric hierarchical modeling for detecting boundaries in areally
referenced spatial datasets. Technical Report rr2010-014, Divison
of Biostatistics, School of Public Health, University of Minnesota,
Twin Cities.

Lu, H. and CARLIN, B. P. (2005). Bayesian areal wombling for geo-
graphical boundary analysis. Geographical Analysis, 37, 265—285.
Lu, H., REILLY, C., BANERJEE, S. and CARLIN, B. P. (2007). Bayesian
areal wombling via adjacency modeling. Environmental and Ecolog-

ical Statistics, 14, 433-452. MR2405556

LUNN, D., THOMAS, A., SPIEGELHALTER and BEST, N. (2000). Win-
BUGS — A Bayesian modelling framework: Concepts, structure, and
extensibility. Statistics and Computing, 10, 325-337.

Ma, H., CARLIN, B. P. and BANERJEE, S. (2010). Hierarchical and
joint site-edge methods for Medicare hospice service region bound-
ary analysis. Biometrics, 66, 355—364.

MUELLER, P., PARMIGIANI, G. and RICE, K. (2006). FDR and Bayesian
multiple comparisons rules. In Bayesian Statistics 8. Ed(s) J. M.
Bernardo, S. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman,
A. F. M. Smith and M. West. Oxford University Press.

Rao, C. R. (1973). Linear Statistical Inference and its Applications,
2nd ed. Wiley, New York. 2 MR0346957

STOREY, J. (2002). A direct approach to false discovery rates. Journal
of the Royal Statistical Society B, 64, 479-498. MR1924302

STOREY, J. (2003) The positive false discovery rate: A Bayesian in-
terpretation and the g-value. Annals of Statistics, 31, 2013-2035.
MR2036398

WALLER and GOTWAY. (2004). Applied Spatial Statistics for Public
Health Data. John Wiley and Sons, New York. MR2075123

WHEELER, D. and WALLER, L. (2008). Mountains, valleys, and rivers:
the transmission of raccoon rabies over a heterogeneous landscape.
Journal of Agricultural, Biological and Environmental Statistics,
13, 388-406. MR2590936

WOLPERT, R. and IcksTADT, K. (1998). Poisson/gamma random field
models for spatial statistics. Biometrika, 85, 251-267. MR1649114

WoMBLE, W. H. (1951). Differential systematics. Science, 114, 315—
322.

Pei Li

710 Medtronic Parkway

Minneapolis, MN 55432-5604

USA

E-mail address: pei.li@medtronic.com

Sudipto Banerjee

420 Delaware Street S.E.

A460 Mayo Building MMC 303
Minneapolis, MN 55455

USA

E-mail address: mcbea002@umn . edu

Alexander M. McBean

420 Delaware Street S.E.

A369-1 Mayo Building

Minneapolis, MN 55455

USA

E-mail address: mcbea002@umn . edu

Bradley P. Carlin

420 Delaware Street S.E.

A369-1 Mayo Building

Minneapolis, MN 55455

USA

E-mail address: car1i002@umn.edu


http://www.ams.org/mathscinet-getitem?mr=2751717
http://www.ams.org/mathscinet-getitem?mr=2761512
http://www.ams.org/mathscinet-getitem?mr=2279474
http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.ams.org/mathscinet-getitem?mr=2442364
http://www.ams.org/mathscinet-getitem?mr=1239641
http://www.ams.org/mathscinet-getitem?mr=1951585
http://www.ams.org/mathscinet-getitem?mr=2027492
http://www.ams.org/mathscinet-getitem?mr=1924303
http://www.ams.org/mathscinet-getitem?mr=1630084
http://www.ams.org/mathscinet-getitem?mr=2485048
http://www.ams.org/mathscinet-getitem?mr=2405556
http://www.ams.org/mathscinet-getitem?mr=0346957
http://www.ams.org/mathscinet-getitem?mr=1924302
http://www.ams.org/mathscinet-getitem?mr=2036398
http://www.ams.org/mathscinet-getitem?mr=2075123
http://www.ams.org/mathscinet-getitem?mr=2590936
http://www.ams.org/mathscinet-getitem?mr=1649114
mailto:pei.li@medtronic.com
mailto:mcbea002@umn.edu
mailto:mcbea002@umn.edu
mailto:carli002@umn.edu

	Introduction
	Areal wombling using the spatial moving average model
	FDR based decision rules
	Illustrations
	Synthetic example
	The Minnesota Pneumoniaand Influenza data analysis

	Discussion and future work
	References
	Authors' addresses

