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Constructing human phenome-interactome
networks for the prioritization of candidate genes

YoNG CHEN*T, WANGSHU ZHANG*, MINGXIN GAN' AND Rul JiaNG*$

Although remarkable success has been achieved by tra-
ditional gene-mapping methods in locating genes associated
with inherited human diseases, the resulting chromosomal
regions are usually large, containing tens or even hundreds
of genes. Therefore, it is indispensable to develop computa-
tional methods for the identification of genes that are truly
responsible for diseases from candidate genes. To tackle this
problem, several methods have been proposed to use both
a phenotype similarity profile (phenome) and a protein-
protein interaction network (interactome) for the prioriti-
zation of candidate genes. The use of the phenome broad-
ens the scope of applications of these methods for iden-
tifying disease-associated genes, and the use of the inter-
actome provides a reliable measure of functional similari-
ties between genes. These two data sources, together with
carefully designed computational models, result in compu-
tational methods with superior performance in the prior-
itization of candidate genes for a given query disease of
interest. In this paper, we review recent achievements of
such computational methods that rely on the integration
of the phenome and the interactome to prioritize candidate
genes. We also summarize how similar methods can be read-
ily used in identifying microRNAs that are potentially in-
volved in complex diseases and discovering drugs that may
target on disease-associated proteins. Finally, we discuss fu-
ture prospects and challenges for the integration of multiple
genomic data sources to systematically discover genes that
underlie human diseases.

KEYWORDS AND PHRASES: Diseases, Genes, Phenome, In-
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1. INTRODUCTION

Knowledge about genes that are associated with hu-
man inherited diseases will facilitate the understanding of
pathogenesis of human diseases and further benefit the
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prevention, diagnosis, and therapy of these diseases. The
identification of such disease-associated genes therefore be-
comes a fundamental problem in human and medical ge-
netics. Traditionally, disease-associated genes are identified
via statistical methods such as family-based linkage analy-
sis and population-based association studies [1]. However,
these methods can only associate a query disease of inter-
est with chromosomal regions that typically contain tens
or even hundreds of genes [2]. Consequently, it becomes in-
dispensable to develop computational methods to aid the
discovery of genes that are truly responsible for the query
disease from a long list of candidate genes.

In the past few years, several methods have been pro-
posed to tackle this problem from the perspective of pri-
oritizing candidate genes. For example, according to the
“guilt-by-direct-association” principle, the prioritization is
enabled by ranking candidate genes in a susceptibility re-
gion according to their relevance to genes that are already
known to be associated with the query disease under inves-
tigation (i.e., seed genes). Based on this principle, a wide
variety of information, including protein sequences [3, 4],
gene expression profiles [4-6], functional annotations [6-9],
literature descriptions [4, 5, 10], protein-protein interactions
(PPI) [5, 6, 11, 12], and many others [13], has been used to
facilitate the prioritization of candidate genes.

Nevertheless, the requirement of the presence of a set of
seed genes limits the scope of applications of the methods
that are based on the guilt-by-direct-association principle,
because genetic bases of about half of known human dis-
eases are completely unknown [14], making these methods
not applicable to these diseases. To overcome this limitation,
a number of recent studies have suggested the “guilt-by-
indirect-association” principle, which resorts to the modular
nature of human inherited diseases [13, 15-19] and utilizes
similarities between disease phenotypes to infer genes that
are truly associated with diseases [20-24].

The basic assumption of the guilt-by-indirect-association
principle is that phenotypic overlap between two diseases
implies genetic overlap between the diseases, and thus genes
associated with the diseases would be similar in their func-
tions [25, 26]. The phenotypic overlap between two diseases
is typically quantified using a similarity score that can be
calculated using text mining techniques [19, 20], and the re-
sulting pairwise similarity profile between every two disease
is often referred to as the phenome. The functional similarity
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Figure 1. The phenome-interactome network. A: Red numbers in ellipses indicate accession IDs of diseases in the Online
Mendelian Inheritance in Man (OMIM) database, and black words represent gene symbols. An edge between two diseases
indicates that the connected diseases share significant phenotypic overlap. An edge between two genes indicates that the

corresponding proteins have physical interaction. A dashed line between a disease and a gene indicates a known association
between the disease and the gene. 136120: Fish-eye disease, 144010: Hypercholesterolemia, autosomal dominant, type b,

143890: Hypercholesterolemia, autosomal dominant, 604091: Hypoalphalipoproteinemia, primary, 603813:

Hypercholesterolemia, autosomal recessive, 205400: Tangier disease, 245900: Lecithin: cholesterol acyltransferase deficiency.
B: The expression profile of the genes in 18 human tissues (collected from GeneCards [37]). 1: Bladder, 2: Brain, 3: Bone
Marrow, 4: Kidney, 5: Heart, 6: Lung, 7: SalivaryGland, 8: Prostate, 9: Thymus, 10: Whole Blood, 11: Colon, 12: Cervix,

13: Liver, 14: Spleen, 15: Breast, 16: Ovary, 17: Pancreas, 18: Skin. (Color online)

between two genes is typically quantified using the related-
ness of the genes in a PPI network, which is usually referred
to as the interactome. Furthermore, the combination of a
phenome, an interactome, and known associations between
diseases and genes is typically referred to as a phenome-
interactome network. An example of the mapping between
the phenome and the interactome in a phenome-interactome
network is shown in Figure 1. In the figure, seven example
diseases are of high phenotype similarity scores, and genes
associated with these diseases genes have physical interac-
tions. Moreover, the diseases of high similarity and the genes
having interactions have similar graph structures in the phe-
nome and the interactome, respectively. In addition, the ex-
pression values of the genes in 18 normal tissues are also
highly correlated. Therefore, the mapping between the phe-
nome and the interactome is essential for systematically ex-
ploring not only the molecular complexity of a query disease,
but also the molecular relationships between apparently dis-
tinct phenotypes [20, 22, 26].

The discovery of relationships between diseases and genes
through a phenome-interacteome network is not trivial, be-
cause the network is usually far from complete, and noise
often exists. To tackle these difficulties, several methods
have been proposed. For example, Lage et al. proposed a
Bayesian model to integrate a phenotype similarity profile
and a PPI network [20]. Wu et al. developed a regression
model called CIPHER to explain phenotype similarities us-
ing gene proximities in a PPI network [22]. Wu et al. also
proposed a method called AlignPI to align the phenotype
similarity network against the PPI network [21]. Li and Pa-
tra utilized a random walk model called RWRH to simulate
the stationary distribution of the strength of associations for
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genes [23]. Vanunu et al. proposed a network propagation
method called PRINCE to mimic the sharing of disease sta-
tus among genes [24]. These methods have exhibited state-
of-the-art performance in finding genes that are associated
with diseases.

In this paper, we first present a review of existing
methods for constructing phenome-interactome networks.
Then, we analyze principles of existing methods for discov-
ering disease-associated genes using phenome-interactome
networks. Finally, we analyze potential applications of
phenome-interactome networks in the identification of mi-
croRNAs that are potentially involved in complex diseases
and the discovery of drugs that may target on disease-
associated proteins.

2. CONSTRUCTION OF A
PHENOME-INTERACTOME NETWORK

A phenome-interactome network is usually constructed
by integrating a phenotype similarity profile, a PPI network,
and known associations between diseases and genes.

2.1 Phenotype similarity profiles

Clinical traits of human disease phenotypes have been
recognized and collected in databases such as the Online
Mendelian Inheritance in Man (OMIM) [14]. In the recent
version of this database (Released on January 23, 2011),
6,675 human disease phenotypes have been collected, and
descriptions of clinical traits of each of these diseases have
been provided. Therefore, to calculate similarity scores be-
tween disease phenotypes, one needs to first extract clini-
cal characteristics of the diseases automatically from OMIM



record using text analysis techniques. Currently, there have
been three methods for this purpose, based on 1) the Medical
Subject Headings (MeSH), 2) the Unified Medical Language
System (UMLS), and 3) the Human Phenotype Ontology
(HPO).

van Driel et al. proposed to use the anatomy (A) and the
disease (C) sections of the medical subject headings vocab-
ulary (MeSH) to extract terms from the OMIM database,
thus providing a standard way of presenting the OMIM
records as corresponding phenotype feature vectors [19]. As
a result, each disease phenotype was characterized by a vec-
tor of standardized and weighted phenotypic feature terms
mapped from corresponding OMIM records in the full text
(TX) and clinical synopsis (CS) fields. Then, for each pair
of disease phenotypes, a similarity score was calculated as
the cosine of the angle between their corresponding feature
vectors. The reliability of the phenotype similarity score was
tested, showing that these similarities were positively corre-
lated with a number of measures of gene functions [19]. The
final phenotype similarity network contained pairwise sim-
ilarity scores for 5,080 OMIM records, covering a majority
of recorded human disease phenotypes.

Lage et al. proposed to quantify each OMIM records us-
ing a phenotype vector that was composed of weighted med-
ical terms by parsing the clinical synopsis and mapping text
into the metathesaurus (MTH) concepts of the Unified Med-
ical Language System (UMLS) [20]. Then, the phenotype
vector was normalized and projected onto a medical term
space. In this space, the cosine of the angle between each
normalized vector pair was calculated to quantify the pair-
wise phenotypic overlap between records. Implementing the
above process for all combinations of vector pairs, a matrix
of pairwise phenotypic similarity scores between all OMIM
records was finally obtained. To demonstrate the reliability
of the resulting phenotype similarity scores, the authors fit-
ted a calibration curve of the scores against the overlaps be-
tween the OMIM record pairs. With this curve, the authors
showed a direct correlation between the phenotype similar-
ity scores of records measured by the text-mining scheme
and the probability that the records had been independently
evaluated to have a phenotypic overlap by the OMIM cura-
tors. The constructed phenotype vectors and scoring scheme
were therefore verified to indeed produce a reliable measure
of phenotypic overlap between OMIM records.

Although it is obvious that accurate and clear clinical
descriptions of a disease should have positive contribution
to the understanding of molecular pathophysiology of the
disease, the terms that clinicians have used to describe phe-
notypic manifestations have been evolving in an uncoordi-
nated manner and thus are hard to be processed by comput-
ers automatically. To overcome this drawback, the Human
Phenotype Ontology (HPO) was constructed by using on-
tological concepts to represent clinical attributes of human
diseases in the form of a directed acyclic graph [27, 28].
The latest version of HPO contained over 9,500 terms and

about 50,000 annotations of these terms, describing phe-
notypic features of 4,779 human diseases collected in the
OMIM database [29]. HPO was originally constructed us-
ing data from OMIM, whereby synonyms were merged and
semantic links were created between the terms to generate
the ontological structure. Every term in HPO described a
distinct phenotypic abnormality, and all the terms of HPO
were arranged in a hierarchical structure representing sub-
class relationships. Phenotypic information in the form of
ontology could be captured to exploit the semantic rela-
tionships between terms. A most used method was Phen-
Explorer, which was available at the web site of HPO [27].
This method measured the specificity of a term as the in-
formation content (IC), which was defined as the negative
natural logarithm of the frequency of occurrence of the term,
e.g., —logp(t). The similarity between two terms ¢; and to
could then be calculated as the IC of their most informative
common ancestor, as

max {—logp(a)},

sim(ty, t2) = a€A(t1,ts)

where A(tq1,t2) denoted the set of all common-ancestor
terms ¢7 and ¢o. For individual diseases that were annotated
to have multiple phenotypic features, the similarity between
diseases d; and dy was defined as

2|D1| Z

sim(dy, ds) = max sim(s, t)

max sim(s, t),
teDy

2‘D2| s€Do
where D and D, denoted the sets of annotations for disease
dy and ds, respectively. Compared with the other two strate-
gies for inferring similarities among diseases from OMIM
or UMLS, an advantage of HPO was that the terms and
structure of the ontology were based on medical knowledge
rather than on text-mining systems. A pre-computed ma-
trix containing pairwise similarity scores between 4, 779 hu-
man diseases was provided in the web site of HPO (http://
www.human-phenotype-ontology.org).

2.2 Protein-protein interaction networks

An interactome is a collection of all genes and interac-
tions between the genes. Typically, an interactome is con-
structed using a PPI network. There have been a few PPI
networks with diverse coverage and quality. For example,
the Human Protein Reference Database (HPRD) contains
human protein-protein interactions that have been manu-
ally extracted from the literature by expert biologists [30].
In release 8 of this database, 36,634 interactions between
9,470 human genes have been collected. The Biological Gen-
eral Repository for Interaction Datasets (BioGRID) con-
tains protein and genetic interactions of major model organ-
ism species [31]. In version 2.0.63 of this database, 29,558
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interactions between 9,043 human genes have been collected.
The Biomolecular Interaction Network Database (BIND)
contains both high-throughput and manually curated inter-
actions between biological molecules [32]. There have been
14,955 interactions between 6,089 human genes collected in
this database. The IntAct molecular interaction database
(IntAct) contains protein-protein interactions derived from
literature [33]. There have been 30,030 interactions between
6,775 human genes collected in this database. The Molecular
INTeraction database (MINT) contains information about
physical interactions between proteins [34]. There have been
15,902 interactions between 7,200 human proteins collected
in this database.

2.3 Known associations between diseases
and genes

Known associations between diseases and genes can be
extracted from several databases, including OMIM [14], Lo-
cusLink [35], HGMD (The Human Gene Mutation Data-
base) [36] and GeneCards [37]. There have also been bioin-
formatics tools developed to facilitate the retrieval of these
databases. For example, BioMart [38] is a convenient tool
for extracting associations between diseases and genes from
the OMIM database.

3. PRIORITIZATION OF CANDIDATE
GENES

There have been a few methods that use the phenome-
interactome network with different probabilistic models for
the prioritization of candidate genes [12, 20-24, 39]. In the
following sections, we will briefly review these methods.

3.1 Bayesian prediction methods

Grounded on a widely acceptable assumption that muta-
tions existing in several genes of a functional module could
lead to phenotypes with overlapping clinical manifestations,
Lage et al. proposed the use of a Bayesian prediction method
to perform a large-scale prioritization of protein complexes
(comprising of gene products) that were implicated in many
categories of human diseases [20]. This method first cre-
ated a phenome-interactome network by integrating quality-
controlled interactions of human proteins with a validated,
computationally derived phenotype similarity score, and ob-
tained a benchmark set composed of 963 genes and 1,404
distinct phenotypes. They then utilized a five-fold cross-
validation experiment to validate the proposed Bayesian
predictor on the benchmark set that was composed of known
disease-associated genes and their neighbors in linkage inter-
vals. Specifically, for each phenotype in the benchmark set,
they assigned proteins corresponding to candidate genes (in-
cluding one known disease-associated gene and several genes
located nearby) to protein complexes, ranked these com-
plexes based on the phenotypes assigned to their members
by text mining, and then computed for each candidate in a
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critical interval, indicating the posterior probability that the
protein was related to the disease of interest. According to
their validation experiments, among all predictions in which
the top-ranked proteins were scored above 0.1, about 45%
of known disease-associated proteins could be successfully
recovered, while among all predictions in which the top-
ranked proteins were scored above 0.9, about 65% of known
disease-associated proteins could be successfully recovered,
demonstrating that high-scoring candidates were very likely
to be correct. Using this trained Bayesian predictor, Lage
et al. further implemented a prediction towards diseases for
which there were no confirmed disease-associated genes.

As was mentioned, the success of their method was
mainly owing to the integration of high-confidence protein
interaction data with a phenotype similarity scheme. In con-
trast, the most common failure of their method obstructing
the correct identification of the disease genes lied in the lack
of interaction partners involved in similar phenotypes.

3.2 Regression-based methods

In order to capture the relationship between phenotype
similarities of diseases and functional similarities of genes
in a systematic way, Wu et al. proposed a regression model
called CIPHER to explain relationships between phenotype
similarities of diseases using network proximities of gene
products, and then calculated a global concordance score
to measure the strength of association between a candidate
gene and a given query disease of interest [22].

In detail, the CIPHER model assumed that the pheno-
type similarity between a pair of diseases had a linear rela-
tionship with the overall proximity between genes that were
associated with the diseases. With this assumption, they
proposed the following regression model

Spp = Cp + Z Z Bpgexp(—L2,),

g€G(p) g'€G(p’)

where Sy, was the similarity score between a query pheno-
type p and another phenotype p’, and Ly, was the topolog-
ical distance between genes ¢ and ¢’ on the protein network.
G(p) denoted all disease genes associated with the pheno-
type p. The Gaussian kernel exp(—Lf] o) Was used to trans-
fer distances between genes to similarities between genes. C,
was a constant, and 3,4 was the coeflicient of this regression
model.

In this work, functional similarity between a pair of genes
was quantified using the network proximity between the cor-
responding proteins in a PPI network. In detail, CIPHER
adopted two similarity measures, depending on how indirect
interaction was considered. The first measure was called SP
(meaning shortest path), in which Ly, was defined as the
length of the shortest path between proteins corresponding
to genes g and ¢’ in the underlying PPI network. The second
measure was called DN (meaning direct neighbor), in which
Ly, was set to 400 if the corresponding proteins of the two
genes did not have direct interaction in the PPI network.



To quantify the association between a phenotype and a
gene, CIPHER defined the closeness of gene g to phenotype
p’ as the summation of similarities between gene g to all
genes that were associated with the disease phenotype p’ as

O, = Z exp(—ng,).
g'€eG(p")

Then, with the phenotype similarity profile of a given dis-
ease phenotype p defined as S, = (Spp,s---,Spp,.) and the
gene closeness profile defined as ®, = (®gp,, ..., Pyp, ), the
strength of association between the disease phenotype p and
the gene g was calculated as the concordance score

_ COV(Sm(I)g)
C = 55, )o(y)"

with cov and ¢ being covariance and standard deviation,
respectively.

It was demonstrated that CIPHER can achieve supe-
rior performance to the Bayesian prediction approach. This
method was applicable to genetically uncharacterized phe-
notypes, effective in the genome-wide scan of disease genes,
and also extensible to explore cooperativity among genes in
complex diseases [22]. A better regression strategy was still
desired to overcome the limitations of noise and incomplete-
ness of biological data.

3.3 Alignment-based methods

In modeling complex biological systems, graph topology
could reveal the basic properties of connectivity, robust-
ness, modularity, hierarchical structure, and other proper-
ties. Since similarities between diseases showed overlap with
similarities between genes that were associated with the dis-
eases, the topological structures between the phenome and
the interactome might also be similar. With this consider-
ation, Wu et al. proposed an approach called AlignPI to
directly align the phenome network with the interactome
network using the network alignment technology [21]. This
method worked as follows. First, input networks were as-
sembled into a weighted alignment graph, and a likelihood
ratio model was used to score subnetworks in the alignment
graph. Second, the scoring model compared the compatibil-
ity of a subnetwork with a desired structure (linear path or
clique) against the likelihood of the subnetwork, given that
input networks were randomly constructed. Finally, an al-
gorithm was used to search exhaustively over the alignment
graph to identify subnetworks with high scores. It was re-
ported that AlignPI could achieve higher performance than
CIPHER. AlignPT also scaled well to the whole genome, as
demonstrated by prioritizing 6,154 genes across 37 chromo-
some regions for Crohn’s disease (CD).

Another computational tool called MCDGPA used a
graph partition method to prioritize disease genes in three
steps: module partition, genes prioritization in each disease-
associated module, and rank fusion for the global rank-
ing [39]. MCDGPA was tested on a prostate cancer and

breast cancer network, significantly improving previous al-
gorithms in terms of cross-validation and disease-associated
gene prediction. In addition, the improvement was robust to
the selection of gene prioritization methods, suggesting that
MCDGPA was a general framework that allowed integrating
many previous gene prioritization methods and improving
predictive accuracy.

It is usually difficult to perform an optimal partition of
the underlying network in this category of methods, because
the number of possible partitions is huge, and the optimality
of a partition relies only on genes in the partition and thus
is not a global criterion. To overcome this limitation, a class
of diffusion-based methods has been proposed recently, as
will be introduced in the following section.

3.4 Diffusion-based methods

A random walk model was introduced by Kohler et al.
to use only the interactome to facilitate the prioritization of
candidate genes [12]. In this model, the random walk process
on a graph was defined as iterative transitions of a walker
from its current location to a neighboring location that was
selected at random, when starting from a given source node.
This process could further be modified to allow a restart at
every time step with a certain probability. Formally, let s
be the starting source node, and v the restart probability.
The random walk with a restart was defined as p(tt! =
(1 =) Wp® 4+ ~4p© where W was the column-normalized
adjacency matrix of the graph, and p(*) was a vector in which
the i-th element was the probability of being at node i at
time step ¢. The stationary probability p(°®) could then be
used to rank candidate genes.

The above random walk strategy was then extended by Li
and Patra to include the phenome, resulting a method called
RWRH (Random Walk with Restart on Heterogenous net-
work) [23]. The basic idea of their method was to construct
a heterogenous network that included both the phenome
and the interactome, and then performed the random walk
with restart method on the heterogenous network. A recent
work compared this model with other seven computational
methods and confirmed the outstanding performance of this
approach [40].

Recently, Vanunu et al. proposed a method called
PRINCE to associate genes and protein complexes with dis-
eases via a mechanism called network propagation [24]. This
method was based on formulating constraints on the prior-
itization function that related to its smoothness over net-
work and usage of prior information. This function was also
exploited to predict the association of not only genes but
also protein complex with a disease of interest. Overall the
method generalized the network-based approaches by con-
sidering the network signal in a global manner and going
beyond single genes to the modules that were affected in a
given disease. It was claimed that PRINCE could achieve
an even higher performance than RWRH and CIPHER. Al-
though PRINCE got promising results, there were still sev-
eral limitations to be acknowledged. First, the application
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of PRINCE is restricted to such diseases that are phenotyp-
ically similar to diseases with known causal genes, because
this method belongs to the supervised learning category and
thus needs to use the causal genes as the training data. Sec-
ond, this method highly depends on accurate and compre-
hensive protein-protein interaction data, but it is obvious
that available PPI datasets are both noisy and far from com-
plete. Last, the method is slower than other strategies such
as the random walk.

3.5 Network flow-based methods

Although both the random walk and the network prop-
agation models had achieved great successes in prioritizing
candidate genes, these methods were usually computation-
ally intensive [41]. To overcome this limitation, Chen et al.
proposed the first combinatorial approach called MAXIF
(MAXimum Information Flow) for prioritizing candidate
disease genes [41]. This method first constructed a flow
network by integrating the phenome, the interactome, and
known associations between diseases and genes. Then, it
calculated the strength of association between a query dis-
ease and a candidate gene as the amount of information
that could flow from the disease to the gene, and fur-
ther prioritized candidate genes according to their associ-
ation scores. Validation results showed that MAXIF could
achieve higher performance than other computational meth-
ods, including RWRH and PRINCE. Besides, MAXIF was
also more computationally economy than both RWRH and
PRINCE.

Chen et al. further introduced two interesting applica-
tions of MAXIF. In the first application, they studied the
problem of identifying diseases with which a given query
gene might be associated, and they showed that the MAXIF
method was effective in solving this problem. In the second
application, they explored the possibility of inferring driver
genes in cancer studies. It was known that copy number
aberrations (CNAs) had great influence on many biological
processes involved in many diseases. Particularly, this typ-
ical type of genomic variation had been found frequently
in cancers, probably due to genomic instability. Typically,
genes located in a copy number aberration region could be
classified into two categories according to their contributions
in a cancer: “driver genes” that were causally implicated in
oncogenesis and “passenger genes” that had no contribu-
tion to the development of the cancer. Nevertheless, how to
identify driver genes from a copy number aberration region
was still an open problem that appeals for computational
methods. In their studies, Chen et al. showed the capabil-
ity of MAXIF in predicting driver genes by a case study on
a copy number aberration data set of melanoma. In 50 re-
gions of copy number aberration, MAXIF successfully pre-
dicted 47 possible driver genes, among which 2 had been
validated as driver genes in literature [42]. Chen et al. also
analyzed the modularity properties of other predicted driver
genes.
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3.6 Validation methods and evaluation
criteria

Typically, the capability of a method in uncovering genes
that are known to be associated with certain diseases (i.e.,
disease genes) from a set of candidate genes can be val-
idated through leave-one-out cross-validation experiments.
Depending on the strategy for selecting candidate genes,
there are often three cross-validation schemes. First, in the
validation against random genes, one takes a known associa-
tion between a gene and a disease in each run, assumes that
the association is unknown, and prioritizes the gene against
a set of control genes that are selected at random from all
genes in the interactome. The number of control genes is
usually set to 99. Second, in the validation against a link-
age interval, one selects control genes in each validation run
as all genes that are located within the 10M bp region cen-
tered around the disease gene under consideration. Third, in
the validation against the whole genome, one selects control
genes as all genes in the interactome.

It is possible that a disease is associated with multiple
genes. This situation is common for complex diseases. Intu-
itively, the inclusion of known relationships between a query
disease and all its associated genes may facilitate the iden-
tification of novel genes that are associated with the dis-
ease. To eliminate such a confounding factor, one can per-
form ab initio predictions to examine the capability of a
method in discovering genes that are associated with a dis-
ease whose genetic basis is completely unknown. Specifically,
in an ab initio prediction, one considers a known association
between a gene and a disease, assumes that the association
is unknown, and prioritizes the gene against a set of control
genes. In this procedure, one should also remove all known
associations between the disease and other genes. Similar to
the leave-one-out cross-validation experiments, one can also
use three control sets, random genes, a linkage interval, and
the whole genome.

There are three measures commonly used to evaluate the
performance of a prioritization method. Taking the cross-
validation against random genes as an example, after each
validation run, one is able to obtain a ranked list and cal-
culate rank ratios of genes by dividing their ranks with the
number of genes in the list. For a set of validation runs,
one can then calculate the following measure. First, one can
calculate the proportion of top ranking disease genes and
obtain a measure named the precision (PRE). Second, one
can calculate the mean rank ratio (MRR) of all disease genes
as the average of rank ratios of all disease genes in the val-
idation runs. Third, given a threshold of rank ratio, one
can calculate the sensitivity as the fraction of disease genes
ranked above the threshold and the specificity as the frac-
tion of control genes ranked below the threshold. Varying
the threshold value from 0.0 to 1.0, one is able to draw a re-
ceiver operating characteristic (ROC) curve and further cal-
culate the area under this curve (AUC). Obviously, larger
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PRE/AUC values and smaller MRR value indicate higher
performance of a prioritization method.

4. APPLICATIONS OF NETWORK-BASED
KNOWLEDGE OF DISEASES

4.1 Micro RNAs involved in diseases

MicroRNAs (miRNAs) are small RNAs that are about
22 nucleotides long and are involved in the control of gene
expression. Several studies have found that miRNAs play
important roles in the development and progression of hu-
man diseases, and thus are critical for the prognosis, diag-
nosis and evaluation of treatment responses for these dis-
eases [43-47]. Over 1,000 miRNAs have been proposed in
two manually curated databases, the miR2Disease [48] and
the Human MicroRNA Disease Database (HMDD) [49], pro-
viding a comprehensive resource of experimentally verified
miRNA-disease associations. A computational approach has
also been proposed to infer potential miRNA-disease asso-
ciations based on a phenome-miRNAome network that is
similar to the phenome-interactome network [50]. The key
step is therefore to construct a network of functionally re-
lated miRNAs. Jiang et al. assumed that two miRNAs were
functionally related if the overlap between their target genes
was statistically significant and proposed to use a p-value
from Fisher’s exact test to evaluate such overlap [50].

Certainly, there are several limitations existing in the
above method. First, the known experimentally verified
miRNA-disease associations are insufficient. Second, the
network of functionally related miRNAs is constructed
based on the perspective that two miRNAs are functionally
related if the number of their shared target genes is statis-
tically significant. In reality, however, two miRNAs might
be functionally related when their target genes reside in the
same cellular pathways or functional modules [45, 51], rather

than overlap significantly. Therefore, integrating other in-
formation sources such as functional annotations of genes
and known interactions between proteins might be helpful.
Third, although the above method has achieved positive re-
sults, it is still a long way to predict possible association of
miRNAs and human diseases. For example, the database of
known miRNAs is far from complete, and the relationship
between miRNAs is not rigorously defined yet. Considering
these facts, the methods used in gene prioritization should
be used carefully in the identification of potential associa-
tions between miRNAs and human diseases.

4.2 Drug discovery

For many diseases, there have been increasing pieces of
evidence supporting the fact that genes associated with the
diseases often have dense connections in some biological in-
teraction network [52]. This perspective has been shifting
the paradigm of drug discovery from methods that focus on
individual genes towards approaches that are based on bio-
logical networks and/or pathways [53-55]. It is also believed
that biological systems, such as disease states, are generally
resistant to perturbations and are able to maintain their
functions through different mechanisms such as redundancy
and diversity [52, 56]. Therefore, the selection process for
new putative drug targets should also consider the network
positioning [57]. As is shown in figure 2A, the drugs that
treat a disease may have potential affects on another sim-
ilar disease. Mapping the phenome and the interactome to
achieve the selection of these nodes will allow the consider-
ation of the robustness of the system, which is not possible
in approaches based on individual genes [52, 58, 59].

As shown in figure 2B, the drug network can also be
mapped to the phenome network to discover new drugs for
query diseases. In this sense, the methods used in the priori-
tization of candidate genes can be similarly used to prioritize
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candidate drugs. For this purpose, the drug network and
known drug-disease associations are needed. For instance,
PROMISCUOUS has been designed to collect a compre-
hensive set of drugs, including withdrawn or experimen-
tal drugs annotated with drug-protein, and protein-protein
relationships compiled from public resources via text and
data mining [60]. Based on the similarities of ligand-set,
drug networks can be calculated with either an approach
called Similarity Ensemble Approach (SEA) or a method
derived from Bayesian statistics [51, 61]. Furthermore, mea-
sures of structural similarity for drugs as well as known
side-effects can also be connected to protein-protein inter-
actions to establish and analyze networks responsible for
multi-pharmacology [60].

4.3 Beyond the inference of disease genes

The ultimate goal of identifying genetic factors that are
responsible for complex diseases is to identify and char-
acterize biological pathways and processes critical to the
disorder [62]. As shown in figure 3, diseases are viewed
as perturbed states of the molecular system, and multiple
databases can be integrated and modeled to construct dis-
ease pathways. Large scale relational databases collect ex-
perimental data from different profiling platforms that in-
terrogate DNA, RNA | proteins, post-translational modifica-
tions and metabolites, among others, for mining and analy-
sis. Together with clinical and paraclinical records, realistic
mathematical and statistical models can be developed to
accurately reproduce the molecular network underlying dis-
ease [62—-64]. Extensive training of such models should allow
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the development of increasingly accurate predictions of dif-
ferential diagnosis, treatment outcome and drug-associated
toxicity. The construction of disease pathways is a challeng-
ing topic in computational systems biology after disease gene
prioritization.

5. CONCLUSIONS AND DISCUSSION

In this paper, we have reviewed recent computational
methods that rely on a phenotype similarity profile (phe-
nome) and a PPI network (interactome) to prioritize can-
didate genes. The use of the phenotype similarity profile
broadens the scope of applications of computational meth-
ods for identifying disease-associated genes, and the use of
the PPI network provides a simplified yet systematic mea-
sure of functional similarities between genes. These two data
sources, together with carefully designed probabilistic mod-
els, result in computational methods with superior perfor-
mance in the prioritization of candidate genes for a given
query disease of interest. However, the disadvantage of re-
lying on a single PPI network to estimate functional simi-
larities between genes is also obvious. It is known that PPI
networks are noisy and far from complete, and thus relying
on a single PPI network can only cover a limited number of
known human genes. A possible way to overcome the second
limitation is to incorporate multiple PPI networks into cur-
rent methods that use a single PPI network. For example,
Zhang et al. have proposed a Bayesian regression approach
that can be used with either a single PPI network or multiple
networks to prioritize candidate genes [65]. When used with
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a single PPI network, this method outperforms CIPHER in
terms of several statistical criteria. When used with multi-
ple PPI networks, this method can cover much more genes
while keeping the superior performance. Moreover, as a sim-
ple yet effective method to integrate multiple PPI networks
into a single prioritization model, the Bayesian regression
approach sheds light on integrating multiple data sources
into the prioritization of disease genes in the future.
Certainly, besides the use of PPI networks, there are
also many other genomic data available for estimating func-
tional similarities between genes. These data sources include
sequence similarity (BLAST) [66], literature (abstracts in
EntrezGene) [67], functional annotation (Gene Ontology)
[68], microarray expression (Atlas gene expression) [69],
EST expression (EST data from Ensembl) [70], protein do-
mains (InterPro) [71], protein-protein interactions (HPRD
or BIND) [72], pathway membership (KEGG) [73], cis-regu-
latory modules (TOUCAN) [74], and transcriptional motifs
(TRANSFAC) [75], and many others. The scientific question
is then how to integrate these data sources to achieve a more
precise estimation of functional similarities between genes.
For this purpose, Guan et al. have proposed to construct
a global functional network from the perspective of super-
vised learning through a Bayesian integration of diverse ge-
netic and functional genomic data [76]. In their work, such
a global functional network for the laboratory mouse is con-
structed, resulting in a network named MouseNet. Based on
this network, people can do many valuable explorations such

as querying biological processes or pathways participated by
certain proteins, identifying disease-associated genes, ana-
lyzing the network topology and genome evolutionary his-
tory, and many others. In a more specific way, a general
scheme of integrating multiple data sources for the prioriti-
zation of candidate genes is given in Figure 4.

The integration of multiple data sources can also be done
from the viewpoint of unsupervised learning. For example,
Ma et al. propose a method called CGI to integrate a PPI
network and a gene expression profile for the prioritization of
candidate genes [77]. Aerts et al. propose a method called
Endeavour that uses order statistics to combine multiple
ranking lists obtained using different data sources [4]. In the
above ensemble strategies, different data sources should be
given different weights in the decision of the combined rank-
ing, since different data sources differ in their usefulness and
suitability to rank candidate genes for a certain disease fam-
ily. In most cases, the optimal parameters are designed by
cross validation [78]. Therefore, an important topic is how to
optimize the different contributions in an ensemble system.
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