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Statistical methods for proteomic biomarker
discovery based on feature extraction or
functional modeling approaches∗

Jeffrey S. Morris

In recent years, developments in molecular biotechnology
have led to the increased promise of detecting and validating
biomarkers, or molecular markers that relate to various bi-
ological or medical outcomes. Proteomics, the direct study
of proteins in biological samples, plays an important role in
the biomarker discovery process. These technologies produce
complex, high dimensional functional and image data that
present many analytical challenges that must be addressed
properly for effective comparative proteomics studies that
can yield potential biomarkers. Specific challenges include
experimental design, preprocessing, feature extraction, and
statistical analysis accounting for the inherent multiple test-
ing issues. This paper reviews various computational aspects
of comparative proteomic studies, and summarizes contribu-
tions I along with numerous collaborators have made. First,
there is an overview of comparative proteomics technologies,
followed by a discussion of important experimental design
and preprocessing issues that must be considered before sta-
tistical analysis can be done. Next, the two key approaches
to analyzing proteomics data, feature extraction and func-
tional modeling, are described. Feature extraction involves
detection and quantification of discrete features like peaks
or spots that theoretically correspond to different proteins in
the sample. After an overview of the feature extraction ap-
proach, specific methods for mass spectrometry (Cromwell)
and 2D gel electrophoresis (Pinnacle) are described. The
functional modeling approach involves modeling the pro-
teomic data in their entirety as functions or images. A gen-
eral discussion of the approach is followed by the presenta-
tion of a specific method that can be applied, wavelet-based
functional mixed models, and its extensions. All methods
are illustrated by application to two example proteomic data
sets, one from mass spectrometry and one from 2D gel elec-
trophoresis. While the specific methods presented are ap-
plied to two specific proteomic technologies, MALDI-TOF
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and 2D gel electrophoresis, these methods and the other
principles discussed in the paper apply much more broadly
to other expression proteomics technologies.
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1. INTRODUCTION

In recent years, the emergence of new technologies pro-
viding detailed information at the genomic, transcriptomic,
proteomic, and epigenetic levels has revolutionized biomedi-
cal research. These tools provide broad snapshots of activity
at various molecular levels that, when correlated with fac-
tors of interest, can yield insights into molecular processes
and raise the possibility of finding molecular biomarkers for
various aspects of these processes. These biomarkers can
then be validated and further studied for possible clinical
applications, for example to use for early disease detection,
for patient stratification, or to guide treatment decisions in
an effort for “personalized therapy.”

Clearly, complementary information exists at the differ-
ent molecular levels, although much research to date has
focused on the genome and transcriptome levels, mainly be-
cause they are technically easier to study than proteins. The
expression levels of different proteins in an organism span
many orders of magnitude, while the dynamic range of cur-
rent proteomic technologies is more limited. Thus, a given
proteomic study can only survey a particular slice of the pro-
teome. Unlike genomics, there is no proteomic procedure like
polymerase chain reaction (PCR) to amplify weak signals,
which makes it difficult to detect and measure less abun-
dant proteins. This causes difficulties since it is expected
that many potentially important biomarkers may have rel-
atively low abundance.

In spite of these difficulties, proteomics has an important
role in the search for biomarkers. Proteins, not genes or mes-
senger RNA, play the functional role in cellular processes,
and it has been shown in a number of settings that mRNA
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expression and protein expression correlate poorly with
each other. This is not surprising, since many physiologi-
cally important events like cleavage and post-translational
modifications occur after translation. Proteomics allows the
direct monitoring of protein expression as well as post-
translational events, and thus has potential to provide a
more global molecular picture that goes beyond what genes
and mRNA can provide.

Proteomics encompasses a wide variety of technologies
and techniques, all of which require computational atten-
tion. Some of these technologies are summarized in Sec-
tion 2. One commonality of these methods is that they
yield spiky functional or image data with peaks or spots
that correspond to proteins and peptides in the biologi-
cal sample and whose intensities are related to abundance.
Nearly all standard analysis work flows for these data follow
what could be called a feature extraction approach, which
involves detection and quantification of peaks/spots in the
functions/images, followed by an analysis of these quantifi-
cations to determine which differ across defined populations
or factors of interest. While reducing the dimensionality of
the data, this approach can miss out on potential proteomic
discoveries if the peak/spot detection fails to find or properly
quantify the corresponding features. An alternative to fea-
ture extraction is a functional modeling, or functional data
analysis (FDA) approach, which involves building statisti-
cal models for the entire function or image. While challeng-
ing statistically and computationally, methods based on this
approach have the potential to make discoveries missed by
feature-extraction-based analyses.

This paper will discuss various statistical issues of im-
portance to comparative proteomics, with a particular fo-
cus on several specific feature extraction and functional
modeling approaches. The proteomics informatics literature
has grown in recent years to include a number of differ-
ent methods, most of them feature extraction approaches.
This paper does not attempt to provide an exhaustive re-
view of such methods, but instead seeks to describe the key
issues underlying proteomic data analysis and summarize
work in which I along with numerous collaborators have
participated. The methods presented will be applied to two
specific proteomic methods: 2D gel electrophoresis (2DGE)
and matrix-assisted laser desorption and ioniozation time
of flight (MALDI-TOF) mass spectrometry data, although
their scope also extends to the many other proteomic tech-
nologies currently in use.

An outline of the remainder of this paper is as follows.
Section 2 contains a brief description of various proteomic
technologies with an explanation of how they yield spiky
functional data and a description of the two data sets used
to illustrate the methods. Section 3 contains a description
of important preliminary statistical issues that must be ad-
dressed before performing analyses, including experimental
design and preprocessing, and summarizes the key statis-
tical questions of interest in comparative proteomics. Sec-
tion 4 deals with feature extraction approaches, reviewing

Cromwell and Pinnacle, specific methods for peak detection
and quantification for mass spectrometry data and spot de-
tection and quantification for 2DGE data, respectively, and
describing how to use them to perform comparative pro-
teomics analyses. Section 5 deals with functional modeling
approaches, introducing functional mixed models (FMM),
reviewing a specific Bayesian method for fitting functional
mixed models using wavelet bases (WFMM), describing how
to use this method for comparative proteomics analysis, and
describing useful extensions of this method. Section 6 con-
tains a general discussion and conclusions.

2. OVERVIEW OF PROTEOMIC DATA

The study of the proteome is difficult given the com-
plex nature of proteins and the way they interact with
other molecules to affect biological functions. Like genes,
proteins have sequences, but a sequence alone is not suf-
ficient for characterizing a protein and its functional role.
Other important factors include its three-dimensional ge-
ometric structure, its location inside or outside of a cell,
the presence or absence of certain chemical modifications,
and its interaction with other molecules. For this reason,
proteomics is a field with many areas, including sequence
proteomics, structural proteomics, expression proteomics,
interaction proteomics, and functional proteomics, each of
which has its own technologies and approaches [67]. In the
context of biomarker discovery, perhaps the most relevant
area is expression proteomics, which involves the separa-
tion of proteins from complex biological mixtures, followed
by their quantification and analysis. These are commonly
used in comparative proteomics studies, which look to de-
termine proteins whose expression levels differ across prede-
fined populations or factors of interest, which can be used
to detect potential biomarkers. This paper will focus on sta-
tistical issues in the design and analysis of comparative pro-
teomics experiments using large-scale expression proteomic
technologies that can separate and simultaneously measure
expression levels for a large number of proteins. Many other
technologies exist for studying protein expression for small
numbers of prespecified proteins, and these methods can
be used to validate discoveries made using a large-scale ap-
proach.

2.1 2D gel electrophoresis

Since its development in the middle 1970’s by Patrick
O’Farrell [54], 2DGE has been the major workhorse in ex-
pression proteomics. 2DGE physically separates proteins in
a biological sample on a polyacrimide gel based on isoelec-
tric point (pH) and molecular mass. In the first step, a pH
gradient is applied to the gel and then an electric poten-
tial is applied, causing the proteins to migrate across the
gel and set into position based on their pH. Next, the pro-
teins are treated with sodium dodecyl sulfate (SDS), which
denatures (i.e., unravels) the proteins and attaches nega-
tively charged particles roughly proportional to the protein’s

118 J. S. Morris



length or molecular mass, to the proteins. Next, an electric
potential is applied in the perpendicular direction, causing
the proteins to migrate. The friction of the gel acts as a
sieve, so lighter proteins migrate further. Next, an appropri-
ate stain is applied to the gel, binding to the proteins, and
the gel is scanned to produce an image containing spots,
with high intensities of spots in regions of the gel with high
protein content. Since spots on the gel physically contain the
corresponding protein, the proteomic identity of the spot
can be determined by cutting it out of the gel using a spot
excision robot and then analyzing it using protein identifica-
tion techniques like tandem mass spectrometry (see below).
A variant of 2DGE with the potential for more accurate
relative quantifications is 2D difference gel electrophoresis
(DIGE, [39]), which involves labelling two samples with two
different dyes, loading them onto the same polyacrimide gel,
and then scanning the gel twice using two different lasers
that differentially pick up the two dyes. This technology
can be used in paired designs to find proteins differentially
expressed between two different factors, or in more general
designs with one channel used as a common reference chan-
nel to serve as an internal normalization factor. Figure 1b
illustrates a typical 2DGE gel image.

The impact of 2DGE has been limited by a number of
technical and computational factors. Its sensitivity is lim-
ited by the physical resolution of the gel. While thousands
of protein spots are detectable on a modern gel, this ac-
counts for only a fraction of the many proteins expressed
in a sample. Certain types of proteins, most notably mem-
brane proteins, are typically underexpressed on gels because
of their poor solubility. Also, a given protein in 2DGE does
not migrate to a single point on the pH/molecular mass grid,
but rather is dispersed into spots spanning a range of values
on the pH and m/z axes. As a result, a given visual spot on
a gel may actually contain multiple co-migrating proteins,
with the most abundant protein dominating and thus sup-
pressing measurement of adjacent proteins of low or medium
abundance [31].

Perhaps the most significant bottleneck in proteomic re-
search has been the lack of automatic, efficient, and effective
methods for analyzing the gel images. Until very recently,
available analysis methods involved commercial packages us-
ing feature extraction algorithms that severely broke down
for studies with more than a very small number of gels
[15, 48]. In the past few years, commercial and freely avail-
able methods have been developed that use improved analy-
sis work flows and are more automated and effective feature
extraction approaches [24]. One of these methods (Pinnacle
[48]) is described in detail in this paper. Further, functional
data modeling approaches [45] are now being considered and
could provide further improvements, for example, showing
the potential of finding low abundance protein biomarkers
that have co-migrated with more abundant but less interest-
ing proteins. These new analysis work flows promise to help
the 2DGE technology to reach its potential for biomarker
discovery.

Figure 1. Sample proteomics data from (a) MALDI-TOF
mass spectrometry and (b) 2D gel electrophoresis.

2DGE cocaine addiction study The following is a descrip-
tion of a 2DGE proteomics study intended to search for
brain biomarkers of addiction. A critical issue for the neu-
robiology of drug addiction is the identification of changes
responsible for the transition from non-dependent drug use
to addiction, characterized by increased drug intake and loss
of control over drug intake. Animal models have demon-
strated that rats given long access to cocaine or heroin (6–
12 hours/day) show a significant escalation of drug intake,
whereas rats allowed short access (1 hour/day) remained at
the same level of intake for several weeks [2]. Neurochemical
changes in the extended amygdala part of the brain have
been shown to parallel decreases in the reward system [57].
These neurochemical changes may involve cellular effects at
the translational and post-translational levels that alter pro-
tein expression and function, and thus may be detected by
proteomic analysis.

To study these concepts, an experiment was done in
which rats were trained to obtain cocaine by pressing a
lever. Six rats were given short durations of drug access
(1 hour/day), and 7 rats were given long durations of drug
access (6 hours/day). The study included 8 control rats
without drug access. After a period of time, the rats were
euthanized and their brain tissue extracted and microdis-
sected to isolate various regions of the extended amygdala.
The proteomic content of these tissues was then analyzed
using 2DGE, with multiple (2–3) gels obtained from each
rat for each brain region. The data consist of a total of 53
gels from 21 rats, with each gel image consisting of a series
of 556,206 pixel intensities observed on a 646×861 grid. One
of the research goals is to search for proteins differentially
expressed in these brain regions between animals with long
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cocaine exposure and control animals. This begins with the
determination of regions on the gel image where the inten-
sities are significantly different across groups.

2.2 Mass spectrometry

Mass spectrometry (MS) includes a series of methods that
are used to survey the proteomic content of a biological
sample by measuring the mass-to-unit charge (m/z) ratio
of charged particles [1]. For each MS method, a biological
sample is loaded into the mass spectrometer and the par-
ticles are ionized, separated based on their m/z ratio in a
vacuum chamber, and detected and assembled into a mass
spectrum. Various mass spectrometry methods exist, and
the key differences among them are the ionization and sep-
aration techniques employed.

Commonly used ionization techniques include MALDI
and electrospray ionization (ESI). In MALDI [38], a bio-
logical sample is mixed with a matrix compound, loaded
onto a plate, and placed in a vacuum chamber in the mass
spectrometer, where it is struck by a laser. This produces
ionized peptide and protein fragments that are then acceler-
ated towards a detector. In ESI [28], the sample is dissolved
and pushed through a small needle with high voltage, lead-
ing to a fine spray of charged droplets that enter the mass
spectrometer, where they are converted into gaseous form,
and then accelerated towards a detector.

There are different types of mass analyzers that are used
to separate the proteins, and all use an electrical or magnetic
field applied inside of a vacuum. Particle separation by MS is
driven by two basic principles in physics: the Lorentz force
law, which computes force generated by an electric field,
and Newton’s second law, which relates force to mass and
acceleration. The basic idea is that, given a constant charge,
the acceleration provided by the electric field will separate
ions based on their molecular mass, with lighter ions mov-
ing faster than heavier ones. Some commonly used mass an-
alyzers are TOF, quadrapole ion traps (QIT), and Fourier
transform ion cyclotron resonance (FT-ICR). In TOF ana-
lyzers, the ions are accelerated through the potential where
they separate and fly down a vacuum chamber towards a
detector, which records the number of particles striking it
at time t, that, using physics principles, can be mapped
to m/z ratio x. With QIT, oscillating electric fields alter-
natively stabilize and destabilize the paths of ions passing
through a radiofrequency quadrapole field created by four
parallel rods, letting particles of different m/z ratios pass
based on the changing potentials of the rods. In FT-ICR,
the ions are injected into a Penning ion trap, where they
form part of a circuit. An oscillatory electric field produces
periodic motion, with ions of different m/z having different
frequencies. Fourier transforms are used to get the frequen-
cies that are assembled to yield the mass spectrum. For all of
these mass analyzers, the resulting data unit is a mass spec-
trum y(x), a spiky function characterized by many peaks,
with intensity y(x) at a peak relating to the abundance of

a protein or peptide in the sample with m/z of x. Figure 1a
illustrates a typical MALDI-TOF spectrum. Of these mass
analyzers, FT-ICR and QIT give sharper peaks than TOF,
which makes them better able to resolve proteins with sim-
ilar m/z.

The most common use of MS is in protein identifica-
tion, which is done using a procedure called tandem mass
spectrometry, or MS/MS [62]. Deutsch, Lam and Aeber-
sold (2008) [20] have published an overview of tandem mass
spectrometry data that includes a description of key quan-
titative issues. As implied by its name, tandem MS involves
two hierarchical MS steps. The first MS is done on the entire
proteomic sample, followed by a focusing step to isolate ions
corresponding to a chosen peak. These ions are digested to
break them into smaller pieces, which are subsequently fed
into the MS instrument again to get a second level spectrum.
The distance between the peaks in this spectrum provides
information about the amino acids comprising the corre-
sponding protein, which can be used to sequence the pro-
tein and find its identity. This procedure is repeated for any
peaks of interest.

To obtain a partial proteomic catalog for a biological sam-
ple, tandem MS can be combined with a chromatography
step that effectively fractionates the proteome and repeats
the tandem MS procedure for each fraction in a procedure
that has been called shotgun proteomics. The most common
approach is liquid chromatography MS (LC-MS), which uses
LC to do the fractionation. Mueller, et al. (2008) [52] have
an overview of LC-MS that summarizes available software
packages for its analysis. In LC-MS, proteins are digested
and separated in an LC column based on a gradient of some
factor, commonly hydrophobicity. Over a series of elution
times, a set of protein ions with a common hydrophobicity
are fed into the MS analyzer to produce a spectrum. This
method effectively separates and analyzes the proteins on
two axes: hydrophobicity and m/z ratio, and so like 2DGE
can be visualized as image data with spots corresponding
to proteins of interest. A second MS step can be done to
produce protein identifications for peaks in the spectra at
each elution time, in which case the procedure is called LC-
MS/MS.

Although most commonly used for protein identification,
mass spectrometry methods have also been used in com-
parative proteomics studies. In this case, biological samples
consisting of complex mixtures of proteins are fed into the
MS analyzer, and the resulting spectra are analyzed to find
peaks that are correlated to outcomes of interest that might
serve as proteomic biomarkers. In these cases, the spectral
intensities y(x) are considered quasi-quantifications of pro-
tein expression levels. They are not absolute quantifications,
since currently available ionization techniques do not ionize
all types of proteins with equal efficiency, but frequently
they yield reasonable relative quantifications across spectra
for given peaks. Thus, it is reasonable to consider the use
of MS for comparative proteomics studies. MALDI-TOF,
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while not the most commonly used mass spectrometry tech-
nique, has been used in this way. Its coverage is not very
good, as it samples only a small portion of the proteome
(at most maybe a few hundred proteins) and has poor peak
resolution. It is, however, relatively high throughput and
can detect proteomic markers if they are among the slice
of the proteome that is sampled, so it is feasible to per-
form medium to large size biomarker studies with this tech-
nology. Frequently, a pre-fractionation step is done before
MALDI-TOF to select a particular subset of proteins, lead-
ing to increased proteome coverage when combining data
across fractions. LC-MS is much higher resolution and, since
it separates in two dimensions, covers much more of the
proteome. The elution step can be thought of as a large
number of fractionations on a fine grid of the elution fac-
tor. However, LC-MS takes a relatively long time to run,
so it is difficult to perform adequately powered compara-
tive proteomics studies using this approach. Additionally,
there are unresolved reproducibility issues [24] with the tech-
nology, and the proteome coverage is still far from com-
plete.

MALDI-TOF cancer study The following is a description
of a MALDI-TOF study to find serum proteomic markers
of pancreatic cancer. In this study, blood serum was taken
from 139 pancreatic cancer patients and 117 healthy con-
trols [41]. The blood serum was fractionated, and then run
on a MALDI-TOF instrument to obtain proteomic spectra
for each sample. The analysis included a region of the spec-
tra from x = 4000 to x = 40, 000 daltons containing 12,096
observations per spectrum. These 256 samples were run in
four different blocks over a period of several months. The
primary goal was to find regions of the spectra that were
differentially expressed between pancreatic cancer patients
and healthy controls, which may correspond to blood serum
proteomic biomarkers of pancreatic cancer. Our primary fo-
cus here will be on the region of the spectra from x = 4000
to x = 20, 000 daltons.

3. PRELIMINARY STATISTICAL ISSUES

Before the main statistical analysis to find differentially
expressed proteins is done, certain preliminary statistical is-
sues must be considered, including experimental design and
preprocessing. If the experimental design is poor or prepro-
cessing is not properly done, it may not matter what statis-
tical analyses are done on the data; these flaws may prevent
effective proteomic discovery.

Experimental design Like many other high-throughput
technologies, proteomic methods can be very sensitive to
varying experimental conditions and sample preprocessing,
which frequently leads to systematic differences in data ob-
tained at different times or from samples with different han-
dling conditions. For example, a study [16] was performed
to detect ovarian cancer based on high resolution mass spec-
trometry applied to blood serum. Astonishing results were

obtained, with 100% sensitivity and 100% specificity on val-
idation data. In Figure 6A of the paper, the authors plotted
a quality control measure for each sample using 3 different
symbols indicating which of 3 days the sample was run. As
suggested by the figure, the authors noted that something
went wrong with the instrument on the third day. Thus, they
discarded individual samples whose quality was deemed too
poor for use in the study. Figure 7 in the paper plotted the
“good” samples, with normal controls on the left and can-
cer samples on the right. Superimposing these two figures
[5] shows that they coincide perfectly, and reveals a con-
founding of day and case/control status in the study. On
day one, only control samples were run; on day two, a few
control samples were run followed by many cancer samples;
and on day three, only cancer samples were run. This con-
founded design has a serious flaw, as systematic changes
in the instrument from day-to-day would distort one group
more than the other. As a result, it is not clear if the ob-
served 100% sensitivity and specificity were driven by bi-
ology or by technical artifacts induced by the confounded
design.

This case study illustrates the danger of confounding,
whereby in the experimental design a nuisance factor is in-
separably intermingled with a factor of interest in the study.
It can also occur at the sample collection and handling level.
For example, if all cases come from one center and all con-
trols from another, it is impossible to tell whether any dif-
ferences between groups are caused by biology or by factors
specific to the centers. Unfortunately, this problem is not
limited to the case study mentioned above, but is a com-
monly encountered problem in proteomics and other high-
throughput technologies [6, 7, 4, 34, 44]. What makes this
problem especially troubling is that it can lead to strong pos-
itive results that are mistaken for scientific breakthroughs,
and errors are only discovered later when results cannot be
reproduced in subsequent studies.

Sound experimental design principles can prevent con-
founding from ruining a proteomics study. Two key prin-
ciples are blocking and randomization. Blocking is neces-
sary when it is not possible to perform the entire experi-
ment at one time. Each block represents a portion of the
experiment performed concurrently during a given period
of time. Frequently, blocks are constructed merely out of
convenience, which can lead to the confounding described
above. Instead, thought should be given to balance blocks
with respect to the study factors of interest. For example,
in the study above, the authors should have tried to run
equal numbers of cases and controls on each day. If this is
done then strong block effects, if they exist, will increase
the noise in the data but will not induce bias in the form
of strong signals that are confounded with the factors of in-
terest. For a given technology, one should identify the key
steps in the process introducing the most variability and
ensure that prospective blocking designs are used for those
steps. When further blocking is not practical, randomization
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should be done to determine the run order, sample positions,
etc., using a random number generator. In the study above,
this would mean that the cases and controls run on a given
day would be run in a random order. Following these basic
principles will prevent systematic bias from creeping into
the study through the specter of confounding.

Preprocessing Assuming that the data are collected from a
valid experimental design, another under appreciated statis-
tical issue is preprocessing. Certain preprocessing steps must
be done on the observed raw gels or spectra before statis-
tical analysis; if done improperly, these steps could prevent
the discovery of biological results.

The key preprocessing steps for proteomic data include
alignment, denoising, baseline/background correction, and
normalization. Suppose we have a sample of proteomic data
yi(t), i = 1, . . . , N , where t is a (possibly multi-dimensional)
functional index for the functional or image-based pro-
teomic data. For example, t represents the m/z ratio for
1D MS data, it is a two-dimensional index representing hy-
drophobicity and molecular mass for 2D gels, and is a two-
dimensional index representing elution time and m/z for LC-
MS. The basic preprocessing steps can be represented by the
following statistical model:

(1) gi{yi(t)} = Bi(t) +Ni ∗ Si(t) + ei(t).

First, alignment is done to match up the peaks or spots
across the different mass spectra or gels using a function
gi{•} estimated for each spectrum or gel. If t ∈ T , then gi
is a mapping from T onto T in such a way that maximizes
the correspondence across the N functions. After this step,
all spectra or gel images are defined on a common grid of
t and should have features aligned as best as possible. For
mass spectrometry, we have found that simple models (e.g.,
linear) suffice for gi, while for the elution time axis in LC-MS
[17, 25] and for both axes in 2DGE more complex smooth
nonlinear transformations are necessary [24, 22, 23]. Robust
automated image normalization (RAIN) [21] is an automatic
method for estimating smooth, nonlinear warping functions
gi using a multi-resolution spline approach.

Next, if desired, denoising can be done to remove white
noise ei(t) from the spectra or images. This can effec-
tively be done using wavelet thresholding or shrinkage
[17, 50, 55, 68]. Baseline/background correction removes
smooth background artifacts Bi(t) from the data, caused
by systematic ion artifacts in the early part of the experi-
ment for MS data [25, 17], and for non-specific background
staining on 2DGE images [48, 45]. For mass spectrometry,
this can be done by subtracting local minima after wavelet
smoothing [17, 50, 25], and for 2DGE this can be done by
subtracting a local minimum or low quantile within a neigh-
borhood for each pixel in the image [48, 45]. Normalization
corrects for systematic differences in the total amount of
protein ionized from the sample plate in MS and moving

through the gel for 2DGE. The most commonly used ap-
proach is to divide the pixel intensities by a constant Ni

representing the total ion current for MS data and the total
protein content for 2DGE data, which is obtained by sum-
ming all pixel intensities across the image. For DIGE, the
normalization can be done in a more elegant way by dividing
by the intensity of the reference channel for each pixel.

After these steps, one has an estimate of the protein sig-
nal Si(t) that can be analyzed statistically to detect differ-
entially expressed proteins. The remainder of the paper will
discuss three areas of methods to perform these analyses,
(1) group comparison, (2) classification, and (3) clustering.

Group comparison involves comparing groups (e.g.,
case/control) to find regions of the spectra/gels that are
significantly different across groups. The proteins corre-
sponding to these differentially expressed regions are po-
tential biomarkers. With classification, one tries to build a
model to classify individuals into groups based on their pro-
teomic data (e.g., cancer/not for diagnostic studies and re-
sponders/not for personalized therapy studies). Clustering
involves the unsupervised grouping together of proteomic
data. This is typically an exploratory exercise, for example
to check for any unintended structure (e.g., block effects),
but can also be used as a building block for other inferential
statistical methods. For any of these areas, the analysis can
be done using either a feature extraction or functional/image
modeling approach.

4. FEATURE EXTRACTION APPROACHES

4.1 Statistical analysis through feature
extraction

In principle, the relevant proteomic information in the
signal Si(t) for most proteomic assays should be contained
within detectable discrete features of the functions (e.g.,
peaks for MS data and spots for 2DGE data). As a result,
one efficient way to analyze complex functional or image
data is to detect and quantify these features, then analyze
these features using standard univariate and multivariate
modeling techniques to determine which are associated with
factors of interest. This modeling strategy could be called a
feature extraction approach.

For MS data, feature extraction involves performing
peak detection on the spectra and then producing a semi-
quantitative summary for each peak, either by computing
the area under the peak or using the maximum peak inten-
sity. For 2DGE data, feature extraction involves spot de-
tection on the gel images, followed by a quantification of
each spot by either defining spot boundaries and finding
spot volumes or using the maximum intensity in the spot
region. Typically, a minimum signal-to-noise ratio threshold
is specified for defining a feature.

There are a number of alternative feature extraction ap-
proaches in the current literature and commercial software
packages. Some perform detection on individual gel images,
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and then match results across images. One weakness of this
approach is that it leads to missing data when a given spot
does not have a corresponding detected spot on all gel im-
ages. This problem can be prevented by performing feature
detection on some type of composite gel that combines in-
formation across all gels in the set, after which quantifica-
tions for the corresponding features can be obtained for all
gel images. Besides avoiding the missing data problem, this
approach also can be more powerful since it combines in-
formation across gel images in determining what is a true
feature.

Ideally, after applying a particular feature extraction
method, we are left with a N × p matrix Y ∗ = {Y ∗

ij}, i =
1, . . . , N ; j = 1, . . . , p containing protein intensities for p fea-
tures from each of N spectra/gels. This matrix can then be
used for all downstream analyses. Frequently, one may wish
to transform the protein intensities. A log transform can be
useful in settings where multiplicative effects are expected,
since a difference in the log scale corresponds to a multi-
plicative fold-change in the raw intensity scale. The cube
root transform has been observed to effectively decouple the
mean and variance relationship for MALDI-TOF data [17].
The specific analysis details for Y ∗ depend on the goals of
the study.

If group comparison is of interest, one could perform a t-
test or analysis of variance (ANOVA) for each column of Y ∗

(i.e., each feature). One could also regress a continuous or
censored outcome on each column to see which features are
related to that outcome. In either case, there is an inherent
multiple testing issue that must be taken into account since
separate analyses are done for each of p features. A Bonfer-
roni correction preserving the experimentwise type I error
can be done by using a significance level of α/p, but this
is frequently considered too conservative to be suitable for
biomarker discovery settings. If the investigator is satisfied
with controlling the proportion of false discoveries, other
methods based on the false discovery rate (FDR) can be
used. There are a large number of FDR methods in the lit-
erature [10, 11, 69, 63, 64, 60, 26, 59, 65, 42], some of which
operate on p-values and others that operate on test statis-
tics. Alternatively, there are Bayesian FDR approaches that
can be considered [29, 35, 53, 19, 14]. By using these proce-
dures, one can identify a set of features that are considered
differentially expressed across groups while controlling the
FDR at level α.

Classification involves building a model to predict class
from multiple protein peaks or spots. This can be done
by performing stepwise or Bayesian variable selection [56]
across the columns of Y ∗ for a regression model like a
generalized linear regression model, or using a penalization
method like the least absolute shrinkage and selection opera-
tor (lasso) [66], smoothly clipped absolute deviation (SCAD)
[27], adaptive lasso [72], octagonal shrinkage and cluster-
ing algorithm for regression (OSCAR) [12], or horseshoe
[13]. After building the model, it is important to validate

the model to assess its predictive performance using data
that did not play any role in the model-building process,
either using cross-validation or a training/test split. Better
yet would be to validate the model using another indepen-
dent data set collected at a different time or place, which
would give a better sense of how predictive the model could
be if implemented in practice. It may be difficult to obtain
this degree of validation from high-throughput or large-scale
proteomic assays, so a more productive strategy for classifi-
cation might be to focus on the group comparison and dis-
covery phase using the large-scale assays and then build pre-
dictive models using specific protein biomarkers measured
using more quantitative and reproducible methods like en-
zyme linked immunosorbent assay (ELISA) or protein lysate
arrays.

Clustering can also be done on the feature matrix Y ∗.
K-means or hierarchical clustering can be done on the sam-
ples (rows) to see if an unsupervised analysis can recover
the groups of interest, or to assess whether there is some
nuisance factor by which the samples cluster (e.g., run or-
der or block). It is also possible to cluster protein features
(columns) to discover groups of related proteins. Similarly,
graphical modeling can be done on this matrix to estimate
relationships among the proteins.

When using a feature extraction approach, it is crucial
that the feature detection be done right since subsequent
analyses are based only on these detected features. Infor-
mation about any proteins that are missed in the feature
detection are lost to the analysis. We will now describe spe-
cific feature extraction methods we have developed for MS
data {Cromwell [17, 50]} and 2DGE data {Pinnacle [48]},
and explain why we believe they are effective.

4.2 Cromwell: Wavelet-based peak detection
and quantification for MS data

We have developed a method, Cromwell, for peak detec-
tion and quantification of MS data [17] that involves de-
noising the spectra using the translation-invariant undec-
imated discrete wavelet transform (UDWT), searching for
local maxima in the denoised spectra, and then matching
peaks across spectra to construct the matrix Y ∗. While de-
veloped in the context of MALDI-TOF and SELDI data, this
general peak detection approach can also be used for other
technologies, including tandem mass spectrometry. An alter-
native implementation of this method is applied to the mean
spectrum [50]. The following are the steps of this method.

1. Align the spectra on the time scale using a linear trans-
formation of the time axis for each spectrum to maxi-
mize the pairwise correlation.

2. Compute the mean of the aligned raw spectra.
3. Denoise the mean spectrum using the UDWT.
4. Find local maxima and minima in the denoised mean

spectrum.
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5. Quantify the peaks in the individual raw spectra by
recording the maximum height and minimum height
in each interval flanked by two adjacent local minima,
which should contain a peak, and then taking the differ-
ence. Note that this subtraction of the local minimum
intensity implicitly removes the baseline artifact.

There are numerous benefits to performing peak detection
on the mean spectrum. First, it avoids the difficult and error-
prone step of matching peaks across spectra, and avoids the
missing data caused when a given peak is not detected on an
individual spectrum. Second, it tends to yield greater power
for peak detection, since averaging over N spectra reduces
the noise by

√
N while reinforcing the signal. This results

in better detection of real peaks with low intensity that are
obscured by the noise in an individual spectrum, but are
detectable in the mean spectrum with its higher signal-to-
noise ratio. These benefits are illustrated by a simulation
study [50] that shows that using the average spectrum re-
sults in improved peak detection, with the greatest benefit
for peaks with low abundance and high prevalence. Third,
computational time is much shorter when detection is done
using the average spectrum, since it avoids the time con-
suming peak-matching step.

Software for applying Cromwell is available in various
forms. The original software used in the papers is available
in Matlab or R (http://bioinformatics.mdanderson.org/
cromwell.html). A graphical-user-interface (gui) based im-
plementation of the method called PrepMS [40] is also
available (http://sourceforge.net/projects/prepms/). Crom-
well is also available as part of an R package msProcess
that can be downloaded from http://cran.r-project.org/
web/packages/msProcess/index.html.

4.3 Pinnacle: Spot detection and
quantification for 2DGE data

Following similar principles as with Cromwell, we have
also developed a method for spot detection and quantifica-
tion for 2DE data called Pinnacle [48]. We call it Pinnacle
because the spot detection and quantification is based on
finding pinnacles, or local maxima in both dimensions. By
focusing on the pinnacles, we are able to build a fast, stable
algorithm for spot detection that appears to have outstand-
ing sensitivity, and a simple approach to protein spot quan-
tification that has been shown in studies to have greater
validity and reliability than other competing approaches
[48, 49]. The following are the steps of the Pinnacle method.

1. Align the 2DGE images (e.g., using RAIN [21]).
2. Compute the average gel, taking the mean staining in-

tensity across all gels for each pixel in the image.
3. Denoise the average gel using the 2-dimensional

UDWT.
4. Find pinnacles on the denoised average gel, which are

defined as local maxima in both the horizontal and ver-
tical directions, and with intensities above some mini-

mum threshold (e.g., the 75th percentile across the av-
erage gel).

5. Quantify the spots by taking the maximum intensity
within a stated neighborhood around each pinnacle lo-
cation and subtracting a local minimum within that
same region to remove spatially varying background ar-
tifacts.

Until very recently, most spot detection algorithms were
commercial packages performing spot detection on individ-
ual gels followed by a matching of spots across gels, with
spot boundaries separately determined for each gel and
quantifications obtained by computing spot volumes. These
approaches suffer from numerous problems with missing
data, spot detection errors, spot matching errors, and spot
boundary correction errors that all worsen considerably as
the number of gels in a study increases [15, 48].

Pinnacle has considerable advantages over these ap-
proaches. By working on the average gel, strength is bor-
rowed across gels in peak detection, in principle yielding
higher power and a lower false positive rate. It also yields
a spot definition that transcends a given gel, allowing one
to obtain spot quantifications for each cognate spot for each
gel image, leading to no missing data. The use of pinna-
cles instead of spot volumes abrogates the need to deter-
mine spot boundaries, which is a difficult and error-prone
step since protein spots frequently bleed together on the
gel in a process called co-migration. Pinnacle intensities
are highly correlated with spot volumes, yet are quicker to
compute and have fewer errors, as indicated by our dilu-
tion series studies showing improved reliability and valid-
ity over the traditional approaches [48]. Commercial soft-
ware companies have subsequently developed improved al-
gorithms that start with image alignment and force com-
mon spot boundaries on all gels. These changes have re-
sulted in algorithms with faster and more accurate spot
detection and quantification performance, although it ap-
pears that Pinnacle is competitive with these commer-
cial methods [49]. A gui based software package for imple-
menting Pinnacle has been developed and is available at
https://biostatistics.mdanderson.org/SoftwareDownload/.

While developed for 2DE data, the method can be
broadly applied to any type of image-based proteomics data,
which can include LC/MS if we view the entire collection of
spectra across elution times as a single proteomic image.
Also, it can be easily applied to DIGE data, with relative
quantifications obtained by taking the ratio or difference of
pinnacle intensities across the different dyes, and if refer-
ence channels are used, using the pinnacle intensities in the
reference channel as a gel- and spot-specific normalization
factor.

4.4 Application to example data

Cromwell analysis of pancreatic cancer MALDI-TOF mass
spectrometry data We applied the Cromwell procedure us-
ing the mean spectrum to the pancreatic MALDI-TOF data,
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Figure 2. Results from analysis of pancreatic cancer
MALDI-TOF data: (a) overall mean spectrum with detected
peaks, (b) posterior mean cancer main effect function from
functional mixed model analysis, and (c) pointwise posterior
probability of 1.25-fold difference from functional mixed
model analysis. Red dots were flagged as differentially

expressed by Cromwell analysis, and green regions are those
flagged as differentially expressed by functional mixed model

method.

as described above. The top panel of Figure 2 includes the
raw mean spectrum in cyan and the the baseline corrected
mean spectrum in blue/green (The green portions of the
spectrum will be explained in Section 5). Using default set-
tings, we detected a total of 240 peaks in the plotted regions,
indicated by the dots at the corresponding locations of the
mean spectrum. These peaks were quantified for each of the
256 spectra, and brought forward for statistical analyses.

Our first goal was group comparison, in which we sought
to determine which of the 240 peaks were significantly dif-
ferent between cancer spectra and control spectra. To do
this, we log-transformed the peak intensities and then per-
formed t-tests for each peak. Using fdrtool [65], we modeled
the t-statistics nonparametrically and obtained estimates of
a corresponding q-value for each peak, which describes the
probability of that peak being a false discovery if flagged
as different. We flagged a peak as significant if its q-value
< 0.10 and if its observed effect size was at least 1.25 fold
different, which corresponds to a difference of log(1.25) in

Table 1. Comparison of Several Classification Approaches for
Pancreatic Cancer MALDI-TOF Data. The top table contains

results from in-block validation, while the bottom table
contains results for out-of-block validation. AUC=area under

the ROC curve, MisR=missclassification rate,
Sens=sensitivity, and Spec=specificity

Methods Model Name AUC MisR Sens Spec

Cromwell GLM-Lasso 0.834 0.223 0.755 0.803
KNN 0.774 0.273 0.633 0.838

FDA GWFMM 0.816 0.270 0.669 0.812
GWFMM90 0.854 0.211 0.719 0.880
RWFMM 0.850 0.231 0.705 0.846
RWFMM90 0.865 0.215 0.727 0.855

Cromwell GLM-Lasso 0.813 0.273 0.719 0.735
KNN 0.729 0.332 0.590 0.761

FDA GWFMM 0.802 0.273 0.612 0.863
GWFMM90 0.815 0.254 0.655 0.855
RWFMM 0.838 0.266 0.619 0.872
RWFMM90 0.830 0.242 0.705 0.829

the log scale. Using this criteria, we flagged 16 peaks as sig-
nificant, which are indicated by the red dots in Figure 2.

Our second goal was classification, as we tried to build a
model to predict class (cancer/normal) using a subset of the
240 protein peaks. We did this in two ways: using logistic
regression with lasso penalties on the peaks (GLM-LASSO)
and using K-nearest neighbor classification (KNN). We per-
formed 4-fold cross-validation of this method, using 3/4 of
the samples to train the model and the other 1/4 to assess
predictive accuracy. We did both in-block and out-of-block
validation. For in-block validation, we randomly selected 3/4
of the spectra in each of the 4 time blocks for training, and
the remaining 1/4 for validation. For out-of-block validation,
we trained the model using spectra from 3/4 of the blocks,
and then validated on all spectra in the block that was left
out. This analysis was performed in [71], and a summary of
results are presented here. Results are given in Table 1 un-
der the heading “Cromwell”. The FDA analysis is described
in Section 5. The GLM-LASSO clearly outperformed the
KNN method and, as expected, the out-of-block validation
was more difficult than the in-block validation, with classi-
fication accuracies of 0.813 and 0.729 for GLM-LASSO and
KNN, respectively, for out-of-block validation and 0.834 and
0.774, respectively, for in-block validation.

Pinnacle analysis of cocaine addiction 2DGE data In [45],
we analyzed the cocaine addiction 2DGE data set discussed
in Section 2 using Pinnacle. We summarize the results here.
After aligning the gels using RAIN [21], we performed peak
detection using Pinnacle with standard settings (neighbor-
hood size 4, wavelet threshold 4, minimum threshold 75th
percentile on gel) applied to the mean gel as described above.
Using the graphical user interface for Pinnacle, we hand-
edited the spot detection to remove obvious artifacts and
add missed spots, and were left with 752 detected spots.
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Figure 3. Overall mean gel from cocaine addiction 2DGE
study, with spots detected by Pinnacle marked with ‘x’ and
spots found to be differentially expressed marked with ‘o’.
Reproduced with permission from The Annals of Applied

Statistics [45].

Figure 3 contains a heatmap of the overall mean gel, with
detected spots marked with an “x.” Quantifying each spot
for each of the 53 gels, we were left with a 53×752 matrix of
protein spot intensities. We then averaged intensities across
replicate gels for the same animal, leaving us with a 21×752
matrix of mean spot intensities for each of the 21 animals
in the study, which we used for subsequent analyses.

Our primary goal was group comparison. Specifically, we
were interested in finding protein spots that were differen-
tially expressed between the control and long-cocaine-access
groups. To do this, we log transformed the spot intensities,
performed t-tests for each spot, and then computed corre-
sponding q-values using fdrtool [65]. We flagged a spot as
significant if it had a q-value < 0.10, and an effect size in-
dicating at least a 1.5-fold difference, which is an absolute
difference of log(1.5) on the log scale. Based on this criteria,
we flagged 17 spots as differentially expressed. These spots
are indicated by “o” in Figure 3 and summarized in Table 2.

Table 2. Results of spot-based Pinnacle analysis: Details for
spots flagged as differentially expressed in spot-based

Pinnacle analysis, including location (x,y), p-value (pval),
q-value (qval), and fold-change (FC). Also included is the
maximum p1.5(t1, t2) from the WFMM within a 5-by-5

neighborhood around the corresponding pinnacle

x y pval qval FC p1.5
410 239 0.002 0.008 1.865 >0.999
418 257 <0.001 0.002 2.152 >0.999
406 264 <0.001 0.003 2.693 >0.999
405 252 <0.001 0.001 1.732 0.999
393 239 0.001 0.004 2.105 0.999
381 291 0.006 0.014 2.209 0.989
407 483 0.002 0.007 1.754 0.979
407 203 0.005 0.013 1.671 0.866
389 360 0.001 0.005 1.817 0.824
341 228 0.080 0.068 1.808 0.821
711 282 0.017 0.027 1.513 0.804
407 296 0.001 0.007 1.502 0.788
728 281 0.014 0.024 1.638 0.759
379 263 0.009 0.018 1.595 0.487
257 60 0.062 0.048 1.663 0.463
409 163 0.006 0.014 1.504 0.160
798 177 0.004 0.012 1.543 0.019

5. FUNCTIONAL DATA ANALYSIS
APPROACHES

Feature extraction is an efficient, reasonable approach to
the analysis of proteomic data. However, no feature detec-
tion method is perfect, and since subsequent analyses are
only performed on the detected features, important pro-
teomic discoveries can be missed when the corresponding
features (peaks/spots) fail to be detected. This drawback
can be avoided by using a functional modeling approach.
The functional modeling approach involves modeling the en-
tire spectrum or image as a function using FDA techniques.
This must be done after suitable preprocessing to align the
spectra or gels, background correct, and normalize.

One general model useful for this setting is the functional
mixed model (FMM) [47], which is a generalization of lin-
ear mixed models to functional and image data. This model,
described in more detail in Section 5.1, models a regression
of a functional or image response on multiple predictors,
with general random effect functions that can model the
correlation between the images and functions, for example
from repeated functions from the same subject or cluster.
The covariates can can be categorical, continuous, or them-
selves functional, with corresponding fixed effect functions
that represent the effect of the covariate on each position
t in the functions or images. FMM produces estimates and
inference that can be used for group comparison and clas-
sification, for example, yielding regions of spectra or gels
that are differentially expressed across groups or classifying

126 J. S. Morris



subjects based on their proteomic spectra or images. To de-
velop a workable method in the FMM framework, one must
first specify representations for the functions and covariance
matrices (e.g., using basis functions), as well as an approach
for model fitting and inference.

The high dimensionality and complexity of most pro-
teomic data make it challenging to develop specific FDA
methods for proteomic data. The complexity of the func-
tions rules out the possibility of representing them para-
metrically. The functions are characterized by local features
containing the key proteomic information in the data, thus
classical nonparametric smoothing methods are not suitable
for these settings since they would tend to oversmooth the
local protein features. Many existing FDA methods involve
representing the functions using principal component (PC)
decompositions [61, 18], but principal component analyses
can be highly problematic in these settings given functions of
high dimensionality (large T ), complexity (with hundreds or
thousands of proteomic features), and relatively small sam-
ple sizes (small N). While there are consistency results for
large T settings [36, 8, 9, 58], these results assume a spiked
covariance model [36] that is not relevant for proteomic data
since it implies that the data are effectively low dimensional.
Other work not making the spiked assumptions for large T ,
small N settings demonstrates strong inconsistency of the
eigenvector estimates [32, 3, 37], suggesting that principal
component modeling of large-scale proteomic data may not
be appropriate.

Wavelets are orthonormal basis functions with a number
of properties that make them useful for modeling functions
with many local features; thus they are a good choice for
modeling proteomic data. Section 5.2 describes a Bayesian,
wavelet-based method for fitting functional mixed models
[47] that has been applied to MALDI-TOF [46] and 2DGE
[45] data. Section 5.3 describes how to perform FDR-based
group comparison inference [46] and classification [71] using
the wavelet-based FMM. Section 5.4 applies these methods
to the MALDI-TOF and 2DE data sets discussed in Sec-
tion 2 and analyzed by feature extraction methods in Sec-
tion 4.4. Section 5.5 briefly describes extensions of this
method involving other basis functions [45] and robust mod-
eling [70].

5.1 Functional mixed models

In the functional mixed model, a functional response
Yi(t), i = 1, . . . , N, t ∈ T is related to a set of predic-
tors Xia, a = 1, . . . , p through fixed effect functions Ba(t)
of unspecified forms, each of which models the effect of
its corresponding factor across the domain of the function.
For example, for MALDI-TOF data, the index t is one-
dimensional and indicates the spectral domain either on the
clock-tick or m/z axis; for 2DE data, the index t is two-
dimensional and indexes the row (pH) and column (m/z) of
the gel image. Further, correlation among the functions can
be modeled through the inclusion of random effect functions

Ul(t), l = 1, . . .m of unspecified forms with a random effect
design matrix Z = {Zil} indicating the cluster structure of
the data. For example, if we observe rl replicate spectra or
gels for subject l, then Zil = 1 if spectrum i was from subject
l, and Ul(t) represents the average gel for subject l. Incorpo-
ration of these random effect functions models the correla-
tion of spectra coming from the same subject. A version of
the FMM discussed in [47] with conditionally independent
random effects is given by:

(2) Yi(t) =

p∑
a=1

XiaBa(t) +

m∑
l=1

ZilUl(t) + Ei(t).

For proteomic data, we assume all preprocessing has been
done to align, baseline correct, and normalize the func-
tions/images, so the functional response Yi(t) would actu-
ally be the estimated signal Si(t) in (1), or some trans-
formation of the estimated signal, such as log(Si(t)). For
DIGE, the pixel-wise differences in the gel images in the
separate channels can be analyzed. One can assume mean
zero Gaussian processes for the random effect functions
Ul(t) ∼ GP (0, Q) and curve-to-curve residual deviation
functions Ei(t) ∼ GP (0, S). If desired, one can include dif-
ferent hierarchical levels of variability in the random effect
functions or allow covariances to vary across strata by in-
troducing an index h = 1, . . . , H with the corresponding Zh

matrix and covariance surface Qh, or, similarly, allow the
residual error covariance surface to vary across strata Sh.

An important aspect of the FMM is that it places no re-
strictions on the form of the fixed or random effect functions,
since for proteomic data we expect their true form to be very
irregular and spiky. Although their high dimensionality pre-
cludes unstructured representation, it is also important to
allow flexibility in the forms of Q and S, as described below,
since irregular and spiky curve-to-curve deviations imply ir-
regularity in these matrices as well.

It is possible to write a discrete matrix version of mo-
del (2). Given all spectra observed on the same equally
spaced grid t of length T , we have

(3) Y = XB + ZU + E.

Each row of the N × T matrix Y contains one spectrum
observed on the grid t. The matrix X is an N × p design
matrix of covariates; B is a p × T matrix whose rows con-
tain the corresponding fixed effect functions on the grid t.
Bal denotes the effect of the covariate in column a of X
on the spectrum at clock tick or m/z value tl. The matrix
U is an m × T matrix whose rows contain random effect
functions on the grid t, and Z is the corresponding N ×m
design matrix. Each row of the N×T matrix E contains the
residual error process for the corresponding observed spec-
trum. We assume that the rows of U are independent and
identically distributed (iid) MVN(0, Q) and the rows of E
are iid MVN(0, S), independent of U , with Q and S being
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T × T covariance matrices that are discrete analogs of the
covariance surfaces in (2), defined on the grid t× t.

The FMM for image data can also be represented in dis-
crete matrix form (3) by stacking each image into a row
vector of length T = T1 ∗ T2, yi = {vec(Yi)}′, where vec
is the column stacking vectorizing operator, and then as-
sembling the rows into the N × T data matrix Y [45]. In
that case, the columns of Y , B, U , and E and rows and
columns of Q and S index pixels in the image, with column
t corresponding to column t1 = [mod(t, T1) + 1] and row
t2 = [t−mod(t, T1)+1]. Note that any reasonable structure
on these within-image covariance matrices should not just
model the autocovariance based on the proximity in t, but
rather the proximity in both dimensions t1 and t2 (i.e., in
all dimensions).

5.2 Wavelet-based functional mixed models

The wavelet-based functional mixed model (WFMM) [47]
is a Bayesian approach to fitting the FMM that uses wavelet
basis representations for the functional quantities in (3).
A preliminary version of this approach dealt with a special
case of this model with more restrictive covariance assump-
tions [51].

Wavelets possess certain properties that make them suit-
able basis functions for modeling proteomic data. First, they
have compact support, allowing them to efficiently model
spikes and other local features in the data. Second, their
whitening property [68] makes it possible to make parsi-
monious yet flexible assumptions on the covariances Q and
S. Specifically, assuming independence in the wavelet space
makes these matrices diagonal, requiring only T parameters,
yet with heteroscedasticity across wavelet coefficients it ac-
commodates various types of local nonstationarities charac-
teristic of proteomic data, for example allowing the variances
across spectra and spatial autocorrelation within a spectrum
or image to vary across different regions of the spectra or
images [47]. Third, they decompose the proteomic signal
simultaneously in the frequency and time domains, which
makes it possible to perform adaptive regularization on the
fixed effect functions. By adaptive regularization, we mean
that the functional estimates are denoised or smoothed in a
manner that, unlike classical smoothing methods with global
smoothing parameters, tends to preserve strong peaks. Fi-
nally, given the proteomics data sampled on an equally
spaced grid of length T , the special structure of the basis
functions allows us to quickly compute a set of T wavelet
coefficients using a pyramid-based algorithm, the discrete
wavelet transform (DWT) [43], in just O(T ) operations.
Conversely, given the set of wavelet coefficients, the func-
tion can be constructed using the inverse discrete wavelet
transform (IDWT), also in O(T ) operations.

The method follows a basic three-step procedure: First,
the observed functions are transformed to the wavelet space.
Second, the wavelet coefficients are modeled by a wavelet-
space version of the FMM (3) using a Markov chain Monte

Carlo (MCMC). Third, the posterior samples of the fixed
effect functions and other parameters in the wavelet-space
FMM are projected back to the data space using inverse
wavelet transforms, and then used for any desired Bayesian
inference.

After application of the DWT to the rows of Y in (3),
D = YWT, with WT as an orthonormal wavelet trans-
form matrix, we are left with the N × T data matrix in the
wavelet space D, whose columns index individual wavelet
coefficients double-indexed by scale j and location k. The
induced wavelet-space functional mixed model is given by

D = XB∗ + ZU∗ +E∗,(4)

where the rows of D,B∗,U∗, and E∗ correspond to the
DWT of the rows of Y,B,U, and E, respectively, and the
columns correspond to wavelet coefficients double-indexed
by wavelet scale j and location k rather than the loca-
tion within the function t. The induced distributional as-
sumptions are U∗ ∼ MVN(0, Q∗) and E∗ ∼ MVN(0, S∗),
with Q∗ = WQW ′ and S∗ = WSW ′ and with Q∗ =
diag({q∗jk}j,k) and S∗ = diag({s∗jk}j,k) as described above.

This model is fit using a Bayesian approach, with vague
proper priors used on the variance components q∗jk and s∗jk,
and a spike-Gaussian-slab prior used for the wavelet-space
fixed effects B∗

ajk, the ath component in the (j, k)th column
of B∗. That is, let B∗

ajk = γ∗
ajkN(0, τaj) + (1− γ∗

ajk)δ0 and
γ∗
ajk ∼Bernoulli(πaj), where πaj and τaj are regularization

parameters that can be estimated using an empirical Bayes
approach or given hyperpriors themselves. This prior effec-
tively performs Bayesian variable selection across wavelet
coefficients, leading to nonlinear shrinkage and a threshold-
like effect which, when applied in the wavelet space, leads
to adaptive regularization.

For image data, the wavelet-space transformation is done
using 2D-DWTs. This can be done in a variety of differ-
ent ways, with the most commonly used approach leading
to wavelet coefficients triple-indexed by wavelet scale j; lo-
cation k; and type l = 1 if row coefficients, = 2 if column
coefficients, and = 3 if tensor product coefficients. Using the
2D-DWTs honors the neighborhood structure in all direc-
tions of the image, so the method borrows strength across
nearby observations vertically, horizontally, and diagonally
in the image.

A Metropolis-Gibbs MCMC scheme is used to obtain
posterior samples for all model parameters. The proce-
dure is automated so that it can be run with no user in-
put once the data Y and design matrices X and Z using
default options for prior distributions, wavelet basis, and
MCMC specifications are given. Standalone executable code
is available for running this method (WFMM software at
http://biostatistics.mdanderson.org/Software Download/),
which takes Matlab data matrices as input. A technical re-
port that describes the software and computational consid-
erations is available [33].
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5.3 Bayesian functional inference

Given the posterior samples of parameters in the func-
tional mixed model (3), a number of different Bayesian
statistical inferences can be done on the proteomic data.
Here we will summarize two: a group comparison analysis
to identify regions of the curves significantly associated with
an outcome of interest and classification analysis to build
models to classify future subjects based on their proteomic
data.

Group comparison For group comparison, we would like
to perform inference on linear combinations of the fixed
effect functions Ba(t) to determine for which regions of
the spectra or images t they are considered “significant,”
while taking the inherent multiple testing issue into ac-
count. Using the posterior samples from the WFMM fit,
we can easily define a procedure that takes both practical
and statistical significance into account and corresponds to
an expected Bayesian FDR at a specified level. For exam-
ple, if the log2 intensities are modeled and we are inter-
ested in at least 2-fold expression differences, we could com-
pute pa(t) = Pr(|Ba(t)| > 1|data) for each t. The quantity
1 − pa(t) is an expected Bayesian local FDR estimate for
calling location t a discovery, defined as a 2-fold expression
difference in the factor of interest. Given a desired overall
expected Bayesian FDR α, one can easily determine a cut-
point on the pa(t) above, at which a location in the spectrum
or image is flagged as significant such that the expected in-
verse ratio of measures of the aggregated flagged regions
and the subset that are false positives is α [46]. Given a
threshold, estimates of false negative rate, sensitivity, and
specificity can be determined or, by varying the threshold, a
corresponding ROC curve can be constructed to summarize
the ability of the data and method to discover differentially
expressed regions of the spectra or images. From these mea-
sures, graphical summaries can be produced that indicate
which t are flagged as significantly different, and whose pro-
tein identities can be ascertained and validated.

Classification Suppose we have a subject with proteomic
function Y 0(t), covariates X = x0, and random effect co-
variates Z = z0 whom we wish to classify into one of two
groups, with groups indicated by V = v0 ∈ {0, 1}. While
the WFMM models the function Y as a response, not a pre-
dictor, it can be used to perform classification using a type
of Bayesian functional discriminant approach [71].

To do this, we first fit the WFMM to the training data
with the functions being the response Y and the class V
(e.g., = 1 for case, 0 for control) as a fixed effect covari-
ate, along with other covariates indicated by X and ran-
dom effect covariates indicated by Z. For the test data,
the probability of being in class 1 is given by Pr(v0 =
j | Y 0(t),x0, z0,Y(t),V,X,Z) = (1 +O)−1, where

(5) O =
f(Y 0(t) | v0 = 1,x0, z0,Y,V,X,Z)

f(Y 0(t) | v0 = 0,x0, z0,Y,V,X,Z)
· π

1− π
,

and π is the prior probability of class 1. f(·| v0,x0, z0,Y,V,
X,Z) represents the posterior predictive density of the new
function Y 0(t), and {Y,V,X,Z} represent the training
data. The posterior predictive density is obtained by

(6)

∫
f(Y 0(t) | v0,x0, z0,Θ)f(Θ|Y,V,X,Z)dΘ,

with f(Θ|Y,V,X,Z) being the posterior density of the pa-
rameters. Given the assumptions of the WFMM and approx-
imating the integration in (6) with respect to the posterior
density by averaging over a set of M posterior samples from
the MCMC Θ(m),m = 1, . . . ,M , we can estimate the pos-
terior predictive density by using

f(Y 0(t)| v0,x0, z0,Y,V,X,Z)

≈ M (−1)
M∑

m=1

∏
j,k

f
(
d0jk|V0 = 1,x0, z0,Θ

(m)
jk

)
,

where Θ
(m)
jk is the mth posterior sample of the parameters

Θjk = {Bjk, Ujk, qjk, sjk} for wavelet coefficient (j, k), and
d0jk is the corresponding wavelet coefficient for the test sub-

ject computed by applying the DWT to Y 0(t). If the rele-
vant random effects for the test subject are not known, this
procedure can be applied after first integrating the random
effects Ujk out of the model.

This approach can handle multi level functional data with
multiple levels of random effects, and can adjust for covari-
ate effects on the functions while classifying. It can also
classify based on multiple functional measurements or be
adapted to incorporate direct covariates on the class, and is
straightforward to use to combine information across mul-
tiple functional and scalar predictors in performing classifi-
cation.

Clustering The WFMM does not perform any direct clus-
tering of the spectra/images, subjects, or proteins. Bayesian
nonparametric methods based on, for example, Dirichlet
process mixtures (DPM) induce natural clustering distri-
butions, and thus could be incorporated into the structure
of the WFMM to cluster subjects and/or functions while fit-
ting the functional mixed models. This is a topic for future
extensions so will not be discussed further here.

5.4 Application to example data

WFMM analysis: Pancreatic cancer MALDI-TOF We
modeled the pancreatic cancer MALDI-TOF data intro-
duced in Section 2 using the WFMM. The fixed effects de-
sign matrix X had p = 5 columns; the first column indicated
cancer (= 1) or normal (= −1) status, and the final four
columns indicated for the four time blocks (i.e., Xia = 1 if
spectrum i is from block a+1, 0 otherwise). The correspond-
ing fixed effect functions were the cancer-control main effect
function B1(t), describing the difference between the mean
log2 intensities of cancer and normal spectra at time t, and
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the group mean spectra for blocks 1–4, (Bi(t), i = 2, . . . , 5).
Note that the inclusion of the block effect in the model
effectively calibrated spectra across different blocks, which
aligned the peaks and adjusted for systematic differences in
intensities for different parts of the spectra. No functional
random effects were specified. The residual covariance ma-
trix S was allowed to vary across cancer status.

For the group comparison analysis, our goal was to flag
regions of the spectra that were differentially expressed be-
tween cancer and control, defined as having high probabil-
ities of 1.25-fold changes in the ratio of cancer and control
means. Figure 2(b) contains the posterior mean of the can-
cer main effect function in blue, with 95% pointwise credible
intervals indicated by the grey shaded region. The yellow
dotted lines indicate +/− log2(1.25), the lines that corre-
spond to 1.25-fold differences in the mean cancer and con-
trol spectra. Figure 2(c) contains the corresponding poste-
rior probability of at least a 1.25-fold expression difference
between cases and controls. The yellow dotted line indicates
the threshold on these probabilities corresponding to an ex-
pected Bayesian FDR of 0.10, which yields an estimated
false negative rate of 0.016, a sensitivity of 0.716, and a
specificity of 0.996. The dots in the plots correspond to the
240 peaks detected in the Cromwell analysis described in
Section 4.4.

There were 488 spectral locations contained within 18
contiguous regions that were flagged as significant. These
regions are marked in green in the mean spectrum, can-
cer main effect function, and posterior probability functions
in Figure 2, and are summarized in Table 3. The table in-
cludes region endpoints (x1, x2), number of peaks detected
by Cromwell in the region (Peaks) and how many of those
peaks were flagged as significant based on q < 0.10 and at
least a 1.25-fold effect size (sigPeaks), the mean and max-
imum probability of 1.25-fold expression within the region
(meanP and maxP), and the maximum absolute fold-change
in the region (maxFC).

Note that many of the results found by WFMM were
missed by the feature extraction analysis. Eleven of the 18
regions had no significant peaks flagged in the Cromwell
analysis, and for two of these no peak was detected within
that region. Of the 36 peaks within the regions flagged by
WFMM, only 14 of them were also flagged by the Cromwell
analysis. There were 2 peaks flagged by the Cromwell anal-
ysis whose posterior probabilities of 1.25-fold difference fell
below the threshold used for the WFMM analysis, as indi-
cated by the italicized rows in Table 3.

For the classification analysis, our goal was to classify se-
rum samples as coming from cancer or normal patients
based on their proteomic spectrum treated as functional
data. The same model described above was used for this
analysis, except blocks were treated as random effects in-
stead of fixed effects. Results are given in Table 1, with
rows labelled “GWFMM” corresponding to classification
based on the full WFMM, and the “GFMM90” classification

Table 3. Results of Pancreatic MALDI-TOF Analysis: Details
for contiguous spectral regions flagged as differentially

expressed between cancer and normal spectra using WFMM
analysis, including endpoints of contiguous region (x1, x2),
number of detected peaks in region (Peaks) and how many
flagged as significant by Cromwell analysis (sigPeaks), mean

probability of 1.25-fold expression (meanP), maximum
probability of 1.25-fold expression (maxP), and maximum

absolute fold-change (maxFC) in region. Included in italics are
the two peaks flagged by the Cromwell analysis but falling
short of significance threshold for WFMM. Bold rows are
those that would have been missed had only a peak-based
Cromwell analysis been done, and those in red did not even

have a peak detected in the flagged region

x1 x2 Peaks sigPeaks meanP maxP maxFC
4711.7 1 1 0.42 0.67
5819.1 5824.2 1 0 0.63 0.65 1.53
5836.3 5846.7 1 0 0.75 0.85 1.59
8555.6 8566.0 1 0 0.92 >0.99 0.56
8576.5 8578.6 1 0 0.62 0.63 0.65
8618.3 8628.8 1 0 0.96 >0.99 0.58
8670.8 8683.5 0 0 0.88 0.97 0.59
8729.8 8786.9 2 1 0.88 >0.99 0.45
9126.8 9141.9 1 1 0.82 0.92 0.61
9337.3 9354.8 1 1 0.80 0.92 0.61
9389.8 9453.4 1 1 0.84 0.97 0.59
9621.0 9645.4 2 2 0.75 0.83 0.62
10644 10646 1 0 0.62 0.62 0.65
11314 12037 17 7 0.94 >0.99 2.77
12071 12099 0 0 0.61 0.62 1.53
13528 13573 1 0 0.83 0.97 0.55
13750 13763 1 0 0.82 0.92 0.59
13877 1 1 0.25 0.70
17103 17171 2 0 0.95 >0.99 0.53
17230 17311 1 1 0.90 >0.99 0.41

done after wavelet thresholding using a subset of wavelet
coefficients explaining 90% of the total energy in the data.
The RWFMM and RWFMM90 rows correspond to model-
ing using a robust version of the WFMM [70] described in
Section 5.5.

The performance of the WFMM for classification was
competitive with the feature extraction-based methods,
with improved performance when wavelet thresholding was
done. Its performance was also comparable or better than
other methods of functional regression to which it was com-
pared [71]. Performance was considerably better when ro-
bust WFMM was used instead of the Gaussian WFMM, as
the classification was less sensitive to outlying spectra or
wavelet coefficients than the Gaussian model.

WFMM analysis: Cocaine addiction 2DGE data We mod-
eled the cocaine addiction 2DGE data using the WFMM.
The FMM was fit to the log2-transformed images, with three
fixed effect functions, Ba(t1, t2); a = 1, . . . , 3 corresponding
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to the mean gel for the control, short-access, and long-access
animals. There were 21 random effect functions correspond-
ing to the deviation of the mean gel of each animal from their
group mean. We represented the images using a square, non-
separable 2D wavelet transform using a Daubechies wavelet
with four vanishing moments. We used wavelet compression,
choosing to model the set of 10,634 wavelet coefficients that
preserved at least 97.5% of the total energy for each of the
53 gel images.

After fitting the model, we constructed posterior samples
for the overall mean gel image, M(t1, t2) = 1/3{B1(t1, t2)+
B2(t1, t2)+B3(t1, t2)}, and the contrast between the control
and long-access animals, C13(t1, t2) = B1(t1, t2)−B3(t1, t2).
These are plotted in the top two panels of Figure 4. In the
mean gel, hotter colors indicate regions of the gel with higher
staining intensities (i.e., the protein spots). In the contrast
gel, blue regions indicate higher expression for animals in the
long-access group, and red regions indicate higher expression
for control animals. For group comparison, our goal was to
flag regions of the gel for which there was strong evidence of
at least a 1.5-fold difference between long-access and control
animals, which corresponds to regions of C13(t1, t2) signif-
icantly greater than log2(1.5) in magnitude. The bottom
two panels of Figure 4 contain, respectively, the posterior
probability image p13(t1, t2) = Pr{|C13(t1, t2)| > log2(1.5)}
(hotter colors indicate higher probabilities), and the signifi-
cance image with regions of the gel for which the posterior
probabilities crossed a significance threshold (0.757) corre-
sponding to an expected Bayesian FDR of 0.10 marked with
red. A total of 27 contiguous regions were flagged as signif-
icant using these criteria. The significance image could be
used to inform the spot-picker which physical regions of the
gel to cut out for MS/MS analysis to determine the identity
of the proteins in the flagged regions.

Out of the 17 spots flagged as significant by the feature
extraction-based Pinnacle analysis described in Section 4.4,
13 were contained within regions flagged by the ISO-FMM
analysis (see Table 2). Two of the others had high probabil-
ities of a 1.5-fold difference (≈ 0.50), but that just missed
the FDR < 0.10 threshold. The other two were very faint
spots with fold changes barely greater than 1.5 fold.

Of the 27 regions flagged by the WFMM analysis, only
13 had corresponding Pinnacle results. Six of the other re-
gions contained clearly visible spots whose pinnacles had
fold changes less than 1.5 fold, and the remaining eight re-
gions corresponded to subregions of visible spots or regions
between two visible spots. For example, Figure 5 contains
the mean gel, contrast image, posterior probability image,
and significance image for the part of the gel marked by the
large rectangle in Figure 4. From the mean gel, we see 7 vis-
ible protein spots detected by Pinnacle, as marked by the
x’s. From the other panels, we see two regions flagged as dif-
ferentially expressed. These regions resemble protein spots
in shape, but correspond to the left tails of two dominant
spots in this region of the gel rather than the visible spots

in the mean gels. These regions could represent less abun-
dant co-migrating proteins that were visually obscured by
the more abundant neighboring protein spots. These pro-
teins are clearly detectable as differentially expressed by
the functional modeling-based WFMM analysis, but would
have been missed by feature extraction spot-based analysis.
This demonstrates the key potential benefit of using a func-
tional modeling approach over a feature extraction-based
approach.

5.5 Extensions

There is great potential for further methodological devel-
opment of the functional mixed model framework beyond
the WFMM presented in Section 5. We will briefly summa-
rize two valuable extensions of the WFMM: one that leads
to robust modeling and inference and one that extends the
approach to other basis functions and transformations.

Robust functional mixed models (RWFMM) The FMM un-
derlying the WFMM allows one to perform multiple regres-
sion of functional responses on a variety of predictors. While
allowing flexible, nonparametric forms for the fixed effect
functions, which are the functional regression coefficients,
the estimation and inference are sensitive to outlying curves
and regions of curves because of the Gaussian assumptions
underlying the model. To produce robust functional regres-
sion, we developed a new multi level hierarchical model for
the WFMM framework with separate scale parameters for
each curve and each wavelet coefficient at different levels
of modeling: fixed effects, random effects, and residual er-
rors [70]. Conditional on these scale parameters, the model
is Gaussian, so we can use the efficient code and analyt-
ical tractability of the Gaussian WFMM, but integrating
out these parameters we are left with heavier-tailed distri-
butions.

These heavy-tailed distributions for the residual errors
cause the functional regression to be a weighted functional
regression in the wavelet space, with outlying observations
for each wavelet coefficient downweighted in estimation of
the fixed and random effects. The heavy-tailed distributions
for the random effects similarly lead to a downweighting of
outlying random effect units in estimation and inference of
the functional fixed effects. As a result, we are left with ro-
bust estimation and inference for the random and fixed effect
functions. It can be shown that, with this modeling frame-
work, as an entire curve or part of a curve goes to infinity, the
influence of the diverging data goes to zero, and the poste-
rior distribution conditions only on the non-diverging parts
of the curves [70]. In simulation studies based on the pan-
creatic cancer MALDI-TOF data set described in Section 2
[70], we demonstrate that for heavier-tailed random effects
and residuals, the robust WFMM dominates the Gaussian
WFMM; when the data are in fact Gaussian, there is a less
than 10% loss of efficiency in using the robust model. This
robustness property leads to considerably improved classi-
fication results [71], since the WFMM-based classification
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Figure 4. WFMM results: Heatmaps of posterior mean of overall mean gel (M(t1, t2), upper left) and control vs. long cocaine
access effect gel (C13(t1, t2), upper right), plus probability discovery plot (p1.5(t1, t2), lower left) and regions of gel flagged as

significant (FDR< 0.10, 1.5-fold, lower right). Higher intensities are indicated by hotter colors, lower intensities by cooler
colors. Reproduced with permission from The Annals of Applied Statistics [45].

Figure 5. Specific Results 2: Posterior mean of overall mean gel (upper left), effect gel (upper right), probability discovery plot
(lower left), and indicating WFMM flagged regions (lower right) for region marked by large box in Figure 4, with pinnacles for
detected spots marked (x), and differential expression in Pinnacle analysis indicated by a (o). Note that regions flagged by

WFMM correspond to tails of visible spots that themselves are not differentially expressed. These results are not found by the
Pinnacle analysis. Reproduced with permission from The Annals of Applied Statistics [45].
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can be sensitive to outlying curves and wavelet coefficients
(see Table 1).

Also, this hierarchical model underlying the robust
WFMM induces prior distributions on the random effect
functions and fixed effect functions that have better spar-
sity and variable selection properties than the Gaussian and
spike-Gaussian slab priors used in the GWFMM. The in-
duced distributions have connections to the adaptive lasso
[72] and the normal-exponential-gamma (NEG) prior distri-
bution [30]. When applied in the wavelet space, these pri-
ors can lead to more effective adaptive regularization, thus
allowing the model to do a better job of removing spuri-
ous features of the fixed and random effect functions while
retaining true local features, as demonstrated by the sim-
ulation study [70]. This improved adaptive smoothing may
partially explain our results that the RWFMM analysis led
to more flagged spectral regions than the GWFMM analysis
when applied to a MALDI-TOF example [70].

Beyond wavelets: Isomorphic functional mixed models with
other basis functions Wavelets are a compelling choice of
basis representation for irregular functional data, and ap-
pear to work well for many different types of functional
data. The FMM can be fit using the same 3-step approach
underlying the WFMM but using other basis functions, or
more generally using some invertible transformation of the
observed functions [45]. The key idea of this multi domain
modeling approach is that we transform the data into an
alternative domain where modeling can be done more par-
simoniously and effectively, and we then transform results
back to the original data domain for inference and interpre-
tation. It is especially appealing to use what we term an
isomorphic transformation, which is one that preserves all
of the information in the original data (i.e., is invertible or
lossless). More precisely, given row vector y ∈ �(T ), we say
a transform f : �(T ) → �(T ) is isomorphic if there ex-
ists a reverse transform f−1 such that f−1{f(y)} = y. The
wavelet transform is isomorphic because IDWT(DWT(y))=
y, but isomorphic transformations can be constructed in
other ways as well, for example, by using other basis func-
tions including Fourier bases, spline bases, and certain em-
pirically determined basis functions like functional princi-
pal components, or even nonlinear transformations. Given a
choice of transformation, one must carefully consider the im-
plications of the distributional and covariance assumptions
made in the alternative transformed domain in the data
space model to ensure that the modeling approach makes
sense.

6. DISCUSSION AND CONCLUSIONS

Proteomics is an exciting, growing field with many chal-
lenges ahead. Undoubtedly, new proteomic technologies and
approaches that help overcome some of the current limita-
tions will emerge. Moving forward, it will remain important
to give careful consideration to statistical issues, including

experimental design, preprocessing, and analysis, if the field
is going to reach its potential in detecting useful proteomic
markers.

Experimental design is a crucial but underappreciated as-
pect of proteomic studies. It is important to think carefully
about issues like batch effects and to prospectively incorpo-
rate design principles such as blocking and randomization to
ensure that nuisance factors are not confounded with factors
of interest, thus preventing effective comparative proteomics
studies. Effective preprocessing must be done to get the pro-
teomic spectra and images ready for analysis.

Feature extraction remains the dominant mode of anal-
ysis for proteomic data. It is efficient and can be effective,
as long as the feature extraction approaches used are sensi-
tive and precise. This is crucial, since subsequent analyses,
whether group comparison, classification, or unsupervised
clustering, conditions on these determinations. An emerging
alternative is to use flexible functional data analysis mod-
eling techniques to model the proteomic spectra or images
and perform analysis, which does not depend on feature ex-
traction. This approach promises to find discoveries that
could be missed by the feature extraction approach because
of co-migrating proteins, but any effective approach must
be flexible enough to capture the complex local features
characterizing these data and must be computationally effi-
cient enough to handle these studies’ large sample sizes. The
wavelet-based functional mixed model [47] appears to be an
effective approach for these data. The approach scales up
to higher dimensional data like images, to other basis func-
tions, and to robust analyses. Further study and software
interface development are necessary to get these methods
more accessible to proteomic investigators.

Statistics and other quantitative sciences will need to con-
tinue to make a strong contribution for proteomics to reach
its full potential.
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Data Analysis. Birkhäuser, Boston, USA, 1997. MR1420193

[56] O’Hara, R. B. and Sillanpaa, M. J. A review of bayesian vari-
able selection methods: What, how and which. Bayesian Analysis,
4(1):85–118, 2009. MR2486240

[57] Parsons, L. H., Koob, G. F., and Weiss, F. Serotonin dysfunc-
tion in the nucleus accumbens of rats during withdrawal after
unlimited access to intravenous cocaine. Journal of Pharmacol-
ogy and Experimental Therapeutics, 274:1182–1191, 1995.

[58] Paul, D. Asymptotics of sample eigenstructure for a large dimen-
sional spiked covariance model. Statistical Sinica, 17:1617–1642,
2007. MR2399865

[59] Pounds, S. and Cheng, C. Improving false discovery rate esti-
mation. Bioinformatics, 20(11):1737–1745, 2004.

[60] Pounds, S. and Morris, S. W. Estimating the occurrence of false
positives and false negatives in microarray studies by approximat-
ing and partitioning the empirical distribution of p-values. Bioin-
formatics, 19(10):1236–1242, 2003.

[61] Ramsay, J. O. and Silverman, B. W. Functional Data Analysis.
Springer-Verlag, New York, 2006. MR2168993

[62] Sherman, N. E. and Kinter, M. Protein Sequencing and Iden-
tification Using Tandem Mass Spectrometry. Wiley, New York,
2000.

[63] Storey, J. D. A direct approach to false discovery rates. JRSS-B,
64:479–498, 2002. MR1924302

[64] Storey, J. D. The positive false discovery rate: A bayesian inter-
pretation and the q-value. The Annals of Statistics, 31:2013–2035,
2003. MR2036398

[65] Strimmer, K. A unified approach to false discovery rate estima-
tion. BMC Bioinformatics, 9:303, 2008.

[66] Tibshirani, R. J. Regression shrinkage and selection via the lasso.
JRSS-B, 58:267–288, 1996. MR1379242

[67] Twyman, R. M. Principles of Proteomics. Bios Scientific Pub-
lishers, Taylor & Francis Groups, Independence, KY, 2004.

[68] Vidakovic, B. Statistical Modeling by Wavelets. John Wiley &
Sons, Chichester, England, 1999. MR1681904

[69] Yekutielli, D. and Benjamini, Y. Resampling-based false dis-
covery rate controlling multiple test procedures for correlated test
statistics. Journal of Statistical Planning and Inference, 82:171–
196, 1999. MR1736442

[70] Zhu, H., Brown, P. J., and Morris, J. S. Robust, adaptive func-
tional regression in functional mixed model framework. JASA,
106(495):1167–1179, 2011.

[71] Zhu, H., Brown, P. J., and Morris, J. S. Robust classi-
fication of functional and quantitative image data using func-
tional mixed models. UT MD Anderson Cancer Center Depart-
ment of Biostatistics Working Paper Series, Working Paper 72,
http://www.bepress.com/mdandersonbiostat/paper72/.

[72] Zou, H. The adaptive lasso and its oracle properties. JASA,
101:1418–1429, 2006. MR2279469

Jeffrey S. Morris
PO Box 301402
Houston, TX 77230-1402
USA
E-mail address: jefmorris@mdanderson.org

Proteomic biomarker discovery by feature extraction or FDA 135

http://www.ams.org/mathscinet-getitem?mr=2188981
http://www.ams.org/mathscinet-getitem?mr=2011673
http://www.ams.org/mathscinet-getitem?mr=1420193
http://www.ams.org/mathscinet-getitem?mr=2486240
http://www.ams.org/mathscinet-getitem?mr=2399865
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=1924302
http://www.ams.org/mathscinet-getitem?mr=2036398
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=1681904
http://www.ams.org/mathscinet-getitem?mr=1736442
http://www.ams.org/mathscinet-getitem?mr=2279469
mailto:jefmorris@mdanderson.org

	Introduction
	Overview of proteomic data
	2D gel electrophoresis
	Mass spectrometry

	Preliminary statistical issues
	Feature extraction approaches
	Statistical analysis through feature extraction
	Cromwell: Wavelet-based peak detection and quantification for MS data
	Pinnacle: Spot detection and quantification for 2DGE data
	Application to example data

	Functional data analysis approaches
	Functional mixed models
	Wavelet-based functional mixed models
	Bayesian functional inference
	Application to example data
	Extensions

	Discussion and conclusions
	References
	Author's addresses

