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Protein structural model selection based
on protein-dependent scoring function

ZHIQUAN HE, JINGFEN ZHANG, YANG XU, YI SHANG AND DoNG XU*

Selection of good models from a structural model pool is
an important and challenging step in protein structure pre-
diction. While various score functions have been developed,
their applications in protein structure predictions are unsat-
isfactory. In this study, we developed a novel two-stage op-
timization method which effectively combines a set of basic
scoring functions for improving the selection performance.
In the first stage of protein-dependent optimization, this
method combines seven scoring functions and optimizes the
weights among them on the model pool of each protein. In
the second stage, the method integrates scores with opti-
mized protein-dependent weights, and then seeks correla-
tions among these scores and structural features using a
Support Vector Machine (SVM) to predict the quality of
protein structures. Test results on two benchmarks from
different model generation methods showed that the sum of
basic scoring functions with optimized weights achieved bet-
ter model selection performance than any individual scoring
function or equal-weight combination of these scoring func-
tions. A leave-one-out test demonstrated further improve-
ment in the second stage over the score of the weighted
sum.

KEYWORDS AND PHRASES: Protein model selection, Score
combination, Scoring functions.

1. INTRODUCTION

Protein structure prediction has been an important and
challenging research topic for more than two decades [7, 16].
While genome-sequencing projects generate large amounts
of protein sequences, the lack of tertiary structures is a main
obstacle to fully understanding the functions of these pro-
teins. Traditionally, experimental determination of protein
structures has utilized both X-ray crystallography and nu-
clear magnetic resonance (NMR), which are time consuming
and costly. Computational structure prediction from amino
acid sequence is also a viable solution [8]. Recent reviews il-
lustrated the applications of predicted models with different
qualities [2, 10]. For example, high-resolution models with
root mean square deviation (RMSD) of 1 to 1.54 are useful
for almost any application, including drug design; and even
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if the model quality decreases to about 6A RMSD, the func-
tion of the protein could still be predicted thereby enabling
prediction methods like mutagenesis to be designed based
on the model [10].

Currently, most structure prediction methods, such as
Robetta [11], Rosetta [19], ' TASSER [18, 24, 27], and MU-
FOLD [29] adopt a sampling-selection strategy. With this
strategy, the first step is to generate a large number of can-
didate models with a sampling procedure; and the second
step is to apply a scoring method to identify the most native-
like conformations. For this protocol to work, it is required
that the sampling procedure is capable of producing at least
some near-native conformations and the scoring method is
able to identify more native-like structures from the struc-
tural model pool [20].

Methods for ranking structural models roughly fall into
four categories: physical-based energies, knowledge-based
scoring functions, consensus methods, and machine learning
based approaches. Physical-based energy functions [12, 15]
compute the energy of a protein structure based on physics
principles at the atomic level. Physical energies are often
too sensitive to small atomic changes, and hence they are
not widely used in model selection. Knowledge-based scor-
ing functions, such as OPUS-CA [23], DFire [31] and RW
[30], score the models based on the statistical information of
structural attributes in known native structures. These scor-
ing functions are widely used in protein structure prediction.
However, knowledge-based scoring functions can only reflect
some aspects of protein structures. For example, OPUS-
CA uses the distance-dependent energies from the C-alpha
atoms of a model, while RW is a side-chain orientation de-
pendent potential. While some success is achieved, overall
they have limited discerning power for ranking structural
models. Consensus methods [3, 6, 22] assume that the mod-
els most similar to others in a dataset have better quality.
This approach has been the most successful for model qual-
ity assessment in Critical Assessment of Protein Structure
Prediction (CASP) [14], where the model pool contains the
top predictions submitted by the attending groups. How-
ever, consensus methods often do not work well when the
dataset is not dominated by good models. Hence, individual
tools for protein structure prediction usually do not include
consensus methods. Machine learning methods [6, 17], which
are typically support vector machine or neural network, eval-
uate models according to some learned “rules”. The input
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features for training include sequence or structural model
attributes, and the output target value is the real model
quality. Such methods do not rely on a specific statistical
model and train a score function using both native and in-
correct structures, which may improve model selection over
knowledge-based scoring functions. A drawback of machine
learning methods is that it tends to over-train the training
dataset and may not generally work well for a different kind
of test structural model.

Scoring functions have performance inconsistencies for
different proteins. We believe that combining several scoring
functions can result in better performance as they comple-
ment each other to some extent. Although consensus meth-
ods do not work well for a dataset that does not contain pre-
dominantly good models, one may overcome this by select-
ing a subset of good models using scoring functions. Based
on these considerations, in this study, we proposed a two-
stage optimization approach to take advantages of scoring
functions, consensus method and machine learning. In the
first protein-dependent optimization, different “noisy” scor-
ing functions were combined to improve the sensitivity of
scores for model selection. In this step, each target protein
has a pool of structural models without knowing the native
structure. For each protein, a subset of models was selected
using basic scoring functions to remove likely poor models.
Then weights for these scoring functions were optimized on
the selected model set of each protein. Ideally, we should
use the real GDT-TS score [28] (one of the most widely
used scores for protein quality) of models to optimize the
weights. Due to lack of native structures, we replaced the
real GDT-TS score with a consensus GDT-TS score, which
is an estimate of GDT-TS using a consensus approach. The
sum of these scores with the optimized weights can be di-
rectly used to rank models. However, it was still “noisy” due
to the errors introduced by scoring functions and the consen-
sus method. In the second stage optimization, we integrated
the weighted scoring functions, correlations of these scores to
consensus GDT-TS, model quality computed by consensus
method and structural features to train an SVM that maps
these features to the real GDT-TS scores based on separate
protein targets with structural model pools and known na-
tive structures. Through the two sequential optimizations,
the resulting score can gain sufficient discerning power to
outperform basic scoring functions and consensus method
for model selection. We have applied this new method to
two benchmarks and demonstrated that the weighted sum
of individual scoring functions improved the top-1 and top-5
model selection performance, and a following SVM gained
further improvement.

2. METHODS

An overview of our method is presented in Figure 1. The
first step was to compute the basic scores for each model us-
ing scoring functions. Then for each protein, the best weights
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Figure 1. Method Flowchart.

for scoring functions were obtained through the protein-
specific optimization on the subset (at most top 300) models
selected by the average rank based on basic scores. The re-
sultant weighted sum (S1 in Figure 1) can be directly used
to rank the models. The basic scores and weights were in-
tegrated into the second stage optimization using an SVM
which was trained on models from different proteins with
the real GDT-TS score of each model as the target value.

2.1 Scoring functions

In this method, five published protein structure quality
assessment (QA) scores were selected, namely OPUS-CA
[23], OPUS-PSP [13], DFire [31], DDFire [26] and RW [30].
These scores evaluate structure models from different per-
spectives. Also we computed two additional statistical based
scores, i.e., environment fitness score and secondary struc-
ture similarity score, which are widely used in threading-
based protein structure predictions [25].

Environment fitness score  This score measures the propen-
sity of an amino acid type a to appear in a structural envi-
ronment env; on the model. The environment type is speci-
fied by the secondary structure type (H: helix, E: beta sheet,
or C: coil) and solvent accessibility type (B: buried, I: in-
termediate or E: exposed). The environment fitness score is
given by

N 20
envfitness = Z Zprob(em;j, a) X prob(j,a)

j=1a=1

(1)

where N is the protein sequence length. prob(env;,a) is the
probability of amino acid type a to appear in structural
environment env; obtained through statistical analysis on a
set of training native structures [25]. It is worth mentioning
that these structures had no overlap with the ones used in
the following benchmark tests. prob(j,a) is the probability



of amino acid type a occurring at position j of the protein,
which can be calculated from the sequence profile generated
by PSIBLAST [1].

Secondary structure similarity score For each model, we
computed its actual secondary structure based on its 3D co-
ordinates using DSSP [9]. We also used PSIPRED [4] to pre-
dict the secondary structure from its amino acid sequence.
The similarity between these two secondary structures is a
good indication of model quality. Higher secondary struc-
ture similarity usually means better model quality. Suppose
the secondary structure type at position j of model is Sy,
and the corresponding predicted secondary structure from
sequence by PSIPRED is S, with confidence value P, the
score is defined as

N
sssimilarity = Zprobj(Sd, Sp, P)

j=1

(2)

where Sq, S, € {H,E,C}, P € [0,9] and prob(Sq, Sp, P) is
the probability of Sy being predicted as .S, with confidence
value P, obtained from a training dataset whose proteins
had no overlap with the ones used in the following bench-
mark tests.

2.2 Protein-dependent weights optimization

Let s1,82,...,87 be the seven scores of a model, and
w1, Wa, ..., wr be the weights for the scores. We optimized
the weights by minimizing

7 2
Ly =" |3 wj(si — s2) = [GDT(iy) — GDT (i)

11,52 Lj=1

where w; <0 and 41, i are two structural models of the same
protein. 3;1 is score j of structure model 41 and GDT (i) is
the GDT-TS score of model 7.

In practice, GDT-TS score is not available as we do not
have the native structure. So we used consensus GDT-TS
score, cgdt(), to approximate the real GDT() score. A ref-
erence set R containing the top 300 models was selected
according to the average rank using the seven basic scores.
cgdt of a model is defined as the average GDT-TS score to
the remaining models in R. Thus the weights were optimized
on R by minimizing

. 2
Ly= Y [Zwﬂsél—s?)—[cgdt(h)—cydt(ia)}] :
i1,i2€R Lj=1

Let mf = sj-l - sé? and yx = cgdt(i1) — cdgt(iz), we have

7 2
(3) LQ:Zlijxf—yk] , w; <0,
k Lj=1

Further, let W = [wy,...,w7]T and X}, = [zF,... 25T,
Eqn. (3) becomes

(4)

Ly=W"Y XpX[W —2W™> "y Xi + Y yi, W <0.

k k k

Minimization of Eqn. (4) was solved by quadratic program-
ming. Before optimization, all the scores were normalized to
Z-score. Z-score of score S is defined as Z = %&S)‘g), where
avg(S) is the mean value and dev(S) is the standard devi-
ation in the structural model pool. Each scoring function
has its “direction”; for example, OPUS-CA is “negative”
compared to GDT-TS, which means lower OPUS-CA values
usually have higher GDT-TS scores. In the actual optimiza-
tion, the “directions” of seven scores were all adjusted to
be “negative”. Also, due to the noise in the training data,
weights were constrained to be less than —0.0001 to keep
the optimization from reversing or disabling any scores. Af-
ter optimization, weights were obtained for each score and
the score S7 in Figure 1 was S; = 25:1 w;s;.

2.3 Second stage optimization

This optimization was implemented as an SVM. The in-
put features for each model included:

e Weighted scores w;s;,j=1,...,7.

e Spearman correlation of each score s;,j = 1,...,7 to
consensus GDT-TS score. The correlations of different
scores indicate their relative performance on models of
a specific protein.

e Consensus GDT-TS score cgdt.

e Another secondary structure score to strengthen the
similarity between the actual secondary structure in
model and the predicted one from sequence. It is de-

N
fined as SSIden = —Zizlg(zsp’ssd)
sequence length and

, where N is protein

1 88, =SS,

5(Ssp,ssd):{0 S5 £ 55,

e Solvent accessibility (SA) matching scores, which is

N
similar to SSIden. SAlden = 2= 05 4p,544)
N is protein sequence length and

, where

1 SA, =S54,

0(54,, 54a) = {o SA, # SA,.

S A, is the predicted solvent accessibility by SSPro [5]
and SAg is computed from models by DSSP [9] with
cutoff 25% (above which means the exposed state and
otherwise the buried state).

Although the secondary structure and solvent accessibil-
ity information were used in the seven scores, SSIden and
SAlden were more direct to help SVM to learn the “weak”
relationship between features and real GDT-TS score. The
SVM was trained using SVMLight [21] with a linear kernel.
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Figure 2. Model quality measured by GDT-TS score to the native structure. The X-axis is the proteins of each benchmark
sorted by the GDT-TS score of the best model. (A) Model quality distribution of benchmarkl. (B) Model quality distribution
of benchmark?2.

2.4 Dataset

We applied the method to two benchmarks produced by
different model generation methods. Benchmarkl was from
Yang Zhang’s lab, generated by the I-TASSER ab initio
modeling tool, containing 56 proteins. The other one, bench-
mark2, included models generated by Robetta or Rosetta,
containing 34 CASP8 proteins. Each protein in both bench-
marks had hundreds of decoys. Figure 2 shows the maxi-
mum, average and minimum GDT-TS score of models of
each protein for both benchmarks. The best model of each
protein had a GDT-TS score greater than 0.4, which ensured
that the pool contained some reasonably good models.

3. RESULTS

In the test, each score was used to rank the models of
a given protein. We used four metrics to compare the per-
formance of each scoring method. Table 1 compares seven
basic scores mentioned above, avezscore, averank and S1 on
benchmarkl and benchmark2. The term averank was used
to select the top 300 models for each protein to optimize the
weights for S1. Table 2 shows the selection performance of
cgdt and S2 on the subset models selected by averank.
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As shown in Table 1, weighted sum with the optimized
weights improved over seven basic scores, in top-1 and top-
5 selection performance. For example, for benchmark2, the
best scoring function was DDFire, which had GDT1 perfor-
mance of 0.3976 and avgGDT5 of 0.3833, while S1 achieved
GDT1 of 0.4012 and avgGDT5 of 0.3977. Furthermore,
weight optimization improved over avezscore and averank in
selection performance, especially for benchmark?2, as our op-
timization was carried out on the subset selected by averank.
For Pearson and Spearman, we can see from Table 1 that S1
had the best correlation to the real GDT-TS score among
the scores being compared on both benchmarks. For exam-
ple, for benchmarkl, although the selection improvement of
S1 over the best of other scores was small, the improvement
in correlation was quite significant. In Figure 3 we took the
protein 1SHF from benchmarkl as an example to show the
score distribution. It is evident that S1 had a much better
correlation to real GDT-TS than sssimilarity and the top
model selected by S1 was better than the one by sssimilarity.

Table 2 shows that after selecting the top 300 models
for each protein using averank, the GDT-TS loss between
the best model in the 300-model set and the best model in
the entire pool was acceptable for benchmarkl; the average



Table 1. Comparison of scores based on their performance. “GDT1" is the average GDT-TS score of top 1 model;
“avgGDTb5" is the average of the mean GDT-TS score of top 5 models. “Pearson” indicates the Pearson correlation to real
GDT-TS and “Spearman” is the Spearman correlation to real GDT-TS score. “avezscore” is the sum of the seven scores after
normalization; “averank” is the average rank using seven basic scores. “S1” is the weighted sum of basic scores

Benchmark1 Benchmark?2
GDT1 avgGDTH Pearson Spearman GDT1 avgGDT5 Pearson Spearman
GDT-TS 0.6918 0.6737 1.0000 1.0000 0.5504 0.5281 1.0000 1.0000
OPUS-CA 0.5935 0.5904 0.4952 0.4159 0.3769 0.3705 0.2980 0.2709
OPUS-PSP  0.5670 0.5715 0.2893 0.2906 0.3171 0.3253 0.0993 0.0941
DFire 0.5984 0.5882 0.5332 0.4416 0.3389 0.3277 0.0723 0.0786
DDFire 0.5984 0.5883 0.5328 0.4411 0.3976 0.3833 0.3050 0.2718
RW 0.5927 0.5855 0.4909 0.4178 0.3707 0.3738 0.2987 0.2727
envfitness 0.5604 0.5691 0.3805 0.2985 0.3501 0.3396 0.1050 0.0962
sssimilarity 0.5836 0.5823 0.3578 0.2938 0.3571 0.3623 0.2366 0.2152
avezscore 0.5966 0.5919 0.5486 0.4530 0.3856 0.3823 0.3291 0.2987
averank 0.5970 0.5895 0.5126 0.4562 0.3861 0.3707 0.3200 0.2969
S1 0.5989 0.5953 0.5824 0.4841 0.4012 0.3977 0.3709 0.3489

Table 2. Comparison of scores based on reference set.
“GDT1" is the average GDT-TS score of top 1 model;
“avgGDT5" is the average of the mean GDT-TS score of top
5 models. “cgdt” is the consensus GDT-TS, and “S2”
corresponds to the SVM output in Figure 1

Benchmarkl Benchmark?2
GDT1 avgGDT5  GDT1 avgGDT5
GDT-TS 0.6892 0.6713 0.5504 0.5273
cgdt 0.6047 0.6030 0.4351 0.4217
S2 0.6098 0.6034 0.4446 0.4220

GDT-TS loss was only 0.6918 —0.6892 = 0.0026. For bench-
mark2, the best models of all proteins were kept in the
selected top-300 model set, i.e., with 0 GDT-TS loss. Ta-
ble 2 also shows the leave-one-out performance of the SVM.
This research trained different models for benchmarks 1
and 2 as they were generated by different methods and had
quite different structural characteristics and distributions
which were reflected by the diverse performances of basic
scores. In leave-one-out training and testing, all proteins
were tested using one model while the remaining were used
as training data. Table 2 shows that S2 improved over cgdt
on both benchmarks, especially in GDT1 performance.
For benchmarkl, GDT1 of S2 was 0.6098, which gained
about half a GDT-TS point (0.6098 — 0.6047 = 0.0051)
over cgdt (0.6047). For benchmark?2, the improvement over
cgdt in GDT1 was 0.4446 — 0.4351 = 0.0095 = 0.01. On
the other hand, S2 had significantly better GDT1 and
avgGDT5 performance than basic scores. Especially, for
benchmark2, the best basic scoring function was DDFire,
whose GDT1 was 0.3976, while S2 had GDT1 of 0.4446.
The improvement was 0.4446 — 0.3976 = 0.047.

4. DISCUSSION

Our new approach combined the advantages of various
methods and avoided some of their limitations. Existing

scoring functions such as OPUS-CA and DFire do not work
consistently well for model selection of different proteins es-
pecially when models are generated by different methods.
Consensus method depends only on the dataset itself and
does not use any information from native structures. In or-
der to improve the selection performance, for each protein,
we trained the weights for each score on a reference set which
was selected to enrich the overall quality of the smaller pool.
The resultant weighted score was less noisy and more corre-
lated with the real GDT-TS score. With the weighted scores,
it is more advantageous for the second stage optimization to
learn the weak intrinsic correlation between input features
and real model quality.

However, several factors may affect the performance of
our method. One such factor is model distribution. S1 and
S2 had more GDT-TS loss between the selected top-1 model
and the best model in the pool in benchmark2 than in bench-
markl. Specifically, GDT-TS loss of S2 in benchmarkl was
0.6918—0.6098 = 0.082; while for benchmark2, the GDT-TS
loss was 0.5504 —0.4446 = 0.1058. Comparing the two distri-
butions of model pools in Figure 2, it is evident that the gap
between max and mean GDT-TS in benchmark2 was much
bigger than that in benchmarkl. The distribution differ-
ence also affects the performance of other scores in the same
way. For benchmark2, GDT1 of the real GDT-TS score was
0.5504, while all basic scores were less than 0.4, losing more
than 0.15, significantly bigger than that in benchmarkl.

For the second stage optimization, selection of features
and learning method directly affects the performance of S2.
Although S2 is not significantly better than cgdt on either
of the two benchmarks, the S2 method has some merit. In
particular, cgdt and basic scoring functions have different
properties and combining them theoretically may improve
the performance. Furthermore, the performance of cgdt de-
pends on the distribution of the model pool or how the
model pool is generated. The model pool generated in CASP
or by the tools that guarantee good sampling of structural
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Figure 3. Score distributions for models of protein 1SHF from benchmarkl. (A) Score distribution of sssimilarity with respect
to GDT-TS. (B) Score distribution of S1 with respect to GDT-TS. The point highlighted in the box is the top model selected
by the score.

conformation can lead to good performance of cgdt; other-
wise the performance of cgdt may not be good. In addition,
this research concluded that the S2 method has significant
room for improvement. We are exploring a better way to do
the second stage optimization and combine the two stages.
For example, one may use the priori general information of
model quality vs. a given scoring function and use that infor-
mation to guide optimization. The SVM here was developed
to demonstrate that integrating weighted scores, their statis-
tical features and structure-related features into optimiza-
tion over different proteins can improve the performance
over any individual feature. On the other hand, more ad-
vanced machine learning techniques, such as random forests
may further enhance the performance.

There are some limitations of our method. Given that
it is based on training from a model pool, it may not be
applicable to simultaneously assess models from different
generation methods as they may have different characteris-
tics or distributions. For example, our method may not be
applicable to the model pool generated by different servers
in CASP. Our method is mainly designed for model selec-
tion with a single tool which is most practical in protein
structure prediction applications.
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