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Protein quantitation using iTRAQ:
Review on the sources of variations and analysis
of nonrandom missingness
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As a technique that allows simultaneous quantitation of
proteins in multiple samples, iTRAQ (isobaric Tags for Rel-
ative and Absolute Quantitation) has gained increased in-
terest and applications in proteomics research. Despite its
success, iTRAQ data present a number of statistical chal-
lenges even after the proteins and peptides are identified and
the peak areas of the reported ions are estimated for peptide
intensities. In this article, we review recent studies on the
analysis of iTRAQ data, the computation problems involved
and the nonrandom missingness in the iTRAQ data.
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1. INTRODUCTION

One main objective of proteomics research is to detect
and quantify all proteins present in a biological sample.
Proteins that exhibit an increase or decrease in abundance
between distinct proteomes (e.g., disease and nondisease or
control and treatments) are potential biomarkers. Many dif-
ferent techniques have been developed to simultaneously
compare protein levels across multiple samples. One method
that has gained increased attention is iTRAQ [10, 14, 23, 30],
a shotgun technique that uses Isobaric Tags for Relative
and Absolute Quantitation. Compared to other methods
such as 2DE [20], ICAT (isotope-coded affinity tags) [4],
and DIGE (differential gel electrophoresis) [5, 21], iTRAQ
offers improved quantitative reproducibility, higher sensitiv-
ity [32], and has broad applications in proteomics research
[1, 2, 8, 13, 29, 33].

Using four or eight isobaric tags, iTRAQ can simulta-
neously analyze up to eight biological samples [3, 23]. The
four reagents used in the 4-plex version of iTRAQ are named
114, 115, 116 and 117. The eight reagents include these four
and four additional reagents named 113, 118, 119 and 121.
Each reagent is composed of a peptide reactive group and
an isobaric tag that consists of a reporter group and a bal-
ance group. The peptide-reactive group specifically reacts
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with primary amine groups of peptides. The reporter group
gives strong signature ions in tandem mass spectrometry
(MS/MS) and is used to determine the relative abundance
of a peptide. The balance group keeps the overall mass of the
isobaric tag constant. With this property, identical peptides
labelled with different isobaric tags will not be distinguish-
able in mass spectrometry.

In the experimental workflow for iTRAQ, unlabelled pro-
tein samples are first trypsin-digested and labelled with dif-
ferent isobaric tags independently. These labelled peptides
from different samples are then mixed together and sepa-
rated by liquid chromatography. Identical peptides from dif-
ferent samples labelled with different isotopes are chromato-
graphically indistinguishable and appear as a single precur-
sor. The isolated peptides are finally run through MS/MS
for further fragmentation and generate a collection of mass
spectra. The property of isobaric tags allows otherwise iden-
tical peptides from different samples to be detected as a
single peak by mass spectrometry and to produce a single
set of sequencing ions in MS/MS. The ion signals produced
from the reporter regions together with the normal frag-
ment ions provide information on peptide identification and
quantitation for different samples. Using softwares such as
MASCOT (Matrix Science Inc., Boston, MA, USA), a pro-
tein database search can be performed on the fragmentation
data to identify the labelled peptides and hence the corre-
sponding proteins. The relative abundence of low molecular
mass reporter ions generated from the isobaric tags can then
be used to quantify the relative abundence of peptides and
proteins across the samples studied.

The observed peptide intensities are approximated by the
peak areas of the ions originating from the isobaric tags used
to label different samples. Several factors can affect the ob-
served peptide intensities, such as the expression level of the
protein that generates the peptide, some peptide specific fea-
tures relating to different efficiency in ionization and frag-
mentation, different amounts of samples loaded into differ-
ent channels, differences in sensitivity to instrument detec-
tion, sample preparation and experimental variations. Hill
et al. [7] described in detail these biological and experimen-
tal factors and incorporated them into an ANOVA model
to evaluate differential protein expression from iTRAQ data
that are generated by a single experiment or multiple exper-
iments.

http://www.intlpress.com/SII/


One commonly encountered issue in iTRAQ data analysis
is data missingness. Due to the nature of the technology, the
overlap in identified proteins and peptides between replicate
experiments is less than ideal, and many peptides are only
observed for some samples in some spectra, leading to a large
amount of missing data. For example, in a controlled study
with 9 technical replicates described in [16], only 35.4% of
the total 1,751 proteins were found in every experiment.
Wang et al. [31] found that the total number of features
identified in an experiment decreased over time by 49–73%.
In a study of the effect of Caveolin-1 in three pairs of wild-
type mice and knock-out Cav-1 mice, only about 1/3 of the
proteins were identified in all three experiments, and only
1/4 peptides originating from these proteins were identified
in all experiments [17]. These studies found that missingness
does not occur at random. Instead, the probability that a
protein/peptide is missing is related to its abundance. Less
abundant peptides are harder to detect due to the data-
dependent acquisition of the analysis process, hence more
likely to be missing. This presents a nonignorable missing
data problem. Ignoring the nonrandom missing pattern in
statistical analysis may lead to significant bias in statistical
inference and scientific conclusions.

To identify differentially expressed proteins across sam-
ples, one common approach is to calculate the ratio of the
observed peptide intensities between two samples and to
compare the calculated ratios against pre-specified upper
and lower bounds. However, the criterion for threshold selec-
tion is subjective. For example, Seshi [27] considered iTRAQ
ratios >5/4 or <4/5 as significant, whereas Salim et al. [26]
used thresholds 1.20 and 0.83. These thresholds fail to con-
sider the variability in data and are not statistically based.
In this paper we review emerging new statistical approaches
to quantitative proteomics that address the variations and
missingness in iTRAQ data.

2. ANOVA ANALYSIS

Hill et al. [7] carefully studied the sources of variations
in iTRAQ and applied ANOVA models to incorporate these
variations in inferring differentially expressed proteins. They
performed the normalization and quantification of differen-
tial protein expression with a single model fit to the observed
peptide intensities obtained from the reporter ion peak areas
from all observed tandem mass spectra. Their model relates
differences in treatment to relative differences in protein ex-
pression, relates protein expression to peptide expression,
and relates peptide expression to observed reporter ion peak
areas. These relationships are captured using simple multi-
plicative expressions in the original scale, which is equiva-
lent to a simple additive model in the logarithmic scale. The
computional issues involved in the ANOVA model fitting for
a medium or large size of global proteomics data sets were
studied by Oberg et al. [19].

2.1 Model

Suppose that there are K iTRAQ experiments and the
proteome contains I proteins. Let j(i) indicate the j-th pep-
tide derived from the i-th protein, s index the biological
sample obtained under a particular treated or control con-
dition, and l index the isobaric tag labeling the sample.

We use yijksln to denote the log transformed value of the
observed intensity for the j-th peptide derived from the i-th
protein in the s-th biological sample, the k-th experiment,
the l-th labeling reagent and the n-th MS/MS spectrum.
Then the observed value is decomposed as

yi,j(i),k,s,l,n = (μ+ bk + vk,l) + (pi + fj(i))(1)

+ (rs + ri,s + gj(i),s) + hi,j(i),k,s,l,n,

where μ represents the grand mean, bk describes the effect
due to a given iTRAQ experiment, vk,l describes the experi-
mental effects of loading, mixing, and other sample handling
effects, pi represents the protein effect, fj(i) corresponds
to the peptide effect, rs denotes the sample effect, ri,s de-
notes the proteins differentially expressed between samples,
and gj(i),s denotes the peptides differentially expressed be-
tween samples obtained under different conditions. The term
hi,j(i),k,s,l,n represents the residual error for each observation
that is not captured by the model. To ensure identifiability,
one level of each predictor is referred to as the variable’s
“reference level”. So the parameters in (1) (except μ) repre-
sent the relative effect of the corresponding predictor, and
the value of each parameter corresponding to the “reference
level” is zero. For example, if the sample from the control
condition is referred to as the “reference sample”, then rs
is the relative amount of total protein comparing the s-th
sample to the reference sample, and ri,s denotes the relative
amount of protein i comparing the s-th sample to the ref-
erence sample (the primary parameter of interest). When s
indicates the reference sample, ri,s = rs = 0.

The terms in (1) are arranged into three groups describing
the experimental effects, the protein and peptide effects, and
the differences between samples (or the treatment effects).
The first group (μ + bk + vk,l) describing the experimental
effects includes variations in the amount of samples loaded
into iTRAQ channels, the labeling efficiency, the mixing of
labelled samples, and so on. These effects would not exist in
an ideal world of perfectly reproducible instruments, experi-
ment procedures, and subjects. The second group (pi+fj(i))
describes the differential effects of protein i and the j-th
peptide derived from this protein. It has been observed
that if a single purified protein is trypsinized and the re-
sults subjected to mass spectrometry, the reported peptide
abundances may vary by the magnitude of two-to-three or-
ders. The term fj(i) captures the variation of the expected
amount of the j-th peptide to the expected amount of the i-
th protein for subjects in the reference condition. The third
group of effects (rs+ ris+ gj(i),s) capture the interest of the
research, from which we infer the differentially expressed

100 R. Luo and H. Zhao



proteins and/or peptides between samples obtained under
different treatment conditions. The term gj(i),s captures the
effect of conditions at the peptide level. There are certainly
biological conditions where a change to the levels of one or
more peptides, but not the protein as a whole, will occur;
for example a post-translational modification that involved
a peptide substitution.

2.2 Model fitting

Parameters in models like (1) generally can be esti-
mated using the standard method of least squares. How-
ever, the large size of global proteomics data sets may result
in hundreds and thousands of parameters involved in the
model (1), making it hard to estimate all of the parameters
simultaneously using current software and computing facil-
ities. Oberg et al. [19] described the following methods to
partition the modeling process into a normalization portion
(bias removal) and a differential expression portion.

2.2.1 Subsetting

This method partitions the global proteomics dataset into
subsets by proteins and estimates the parameters separately
for each identified protein. This will lead to biased estimates
of parameters in the ANOVA model because model (1) in-
volves the “experimental effects” (bk, vk,l) which would af-
fect all proteins in an experiment. For example, a larger
(or smaller) total amount of protein mixture loaded in an
iTRAQ experiment will lead to all of the proteins in that ex-
periment to have higher (or lower) intensities. Fitting model
(1) separately for each protein will lead to different esti-
mates of the global experimental effects for different pro-
teins, which is unreasonable. So estimating the experimen-
tal effects for each protein individually rather than globally
leads to incorrect normalization.

2.2.2 Stagewise regression

Denote the three groups of terms in the model (1) as
groups I, II, and III, where group I corresponds to the exper-
imental effects, group II corresponds to the protein and/or
peptide effects, and group III corresponds to the differential
expression portions of the model. The stagewise regression
strategy fits the model to the entire data set in a stagewise
fashion, that is, first group I, followed by group II, and then
group III. Then it would be simple for each of the individual
fits.

However, for the stagewise approach to give correct an-
swers, it is necessary that the parameter estimates from the
multiple stages are uncorrelated. In other words, to get un-
biased estimates of parameters in the ANOVA model (1),
it is necessary that the portions of the linear model design
matrix corresponding to the multiple stages are orthogonal,
which is not satisfied by MS data. For iTRAQ data, miss-
ingness is very common. Each global proteomics experiment
detects different sets of proteins, resulting in an unbalanced
data set for which the experimental and the protein/peptide

parameters are correlated. Due to the imbalance in the pro-
teomics data, groups I and II are not orthogonal. It has
been found that the estimation bias in the stagewise esti-
mation of group I can be extreme due to misssing data [31].
Wang et al. [31] proposed to compute the experimental ef-
fects only on the balanced subset of peptides that appear
in all experiments as one approach to avoid this. To more
efficiently use the data, [19] proposed to use all the data in
an ANOVA model. Considering the imbalance in the data
across multiple iTRAQ experiments, [19] proposed to esti-
mate the group II effects together with the group I effects
for correct estimation of group I terms. When the fraction of
differentially expressed proteins is small, group III is nearly
orthogonal to the group I and II model parts. Thus, estimat-
ing the differential expression terms in group III separately
from the terms in groups I and II is likely to be reliable for
most research studies. However, estimation of groups I and
II simultaneously is still too large for current computational
resources.

2.2.3 Iterative regression

Iterative regression is an alternative approach proposed
in [19] to address the estimation of groups I and II simul-
taneously. The Gauss-Siedel algorithm [6] for instance, also
known as backfitting, is one iterative technique that iter-
ates over the stages, so that each stage is repeatedly re-fit
given the solution to the previous stages. Specifically, the
iterative regression for model fitting of (1) works as below.
First, backfitting is used to iteratively solve for parameters
in groups I and II (the experimental and protein/peptide
terms). Second, the final result of the iterative fit is used to
normalize the data by substracting out the systematic bias
factors from the fits of groups I and II. The residuals are the
normalized data. Third, these normalized values are used as
inputs for estimating the differential expression effects in
group III. In this analysis, the term gj(i),s in group III is
removed assuming that there will be differential expression
of certain proteins between the samples of interest but that
any increase in protein expression will affect all of the pep-
tides for that protein equally. With the peptide effects in-
cluded in the normalization stages of the model fitting, the
group III parameters are separable and can be estimated
one protein at a time. Thus, the normalized data are used
as inputs for the differential expression model, and the lat-
ter was fit separately for each of the identified proteins. In
summary, the normalization terms (bk, vk,l, pi, fj(i)) are
estimated globally, whereas the group III differential pro-
tein effects (ris, rs) are not. Fitting group III parameters on
a protein-by-protein basis assumes that each protein has a
different variance parameter, rather than a global variance
parameter.

2.2.4 Mixed effets models

Treating some effects, such as fj(i), in the model (1) as
random, is equivalent to assuming a prior distribution for
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the corresponding parameters. This introduces additional
global parameters, the hyperparameters in the prior distri-
butions, to the mixed effects model. Similar computational
issues are involved in this mixed effects model. It is compu-
tationally challenging to fit the entire model to all data si-
multaneously for large datasets. Fitting separate models for
each protein is invalid with respect to the global parameters.
Data imbalance leads to the orthogonality requirement in a
stagewise approach unsatisfied for the linear model design
matrix corresponding to the multiple stages. So parameters
from groups I and II must be estimated together to cor-
rectly estimate the group effects. But the standard iterative
regression methods available for fixed effects models are not
applicable to mixed effects models, and a solution remains
an open problem.

2.3 Differential protein expression

With the fitted model for (1), the log difference of ex-
pression levels for protein i between the s-th sample and
the reference sample (without loss of generality, let s = 1
for the reference sample), denoted by θi,s, is estimated by

θ̂i,s =

⎛
⎝r̂i,s + r̂s +

1

Ji

Ji∑
j=1

ĝj(i),s

⎞
⎠(2)

−

⎛
⎝r̂i,1 + r̂1 +

1

Ji

Ji∑
j=1

ĝj(i),1

⎞
⎠ ,

where Ji is the number of peptides derived from protein i.
The 95% confidence interval for θi,s is constructed under the

assumption of the normality of θ̂i,s as given by

θ̂i,s ± 1.96× ŝe(θ̂s,i).

Hill et al. [7] and Oberg et al. [19] studied the fac-
tors that could lead to variations in the observed peptide
intensities and inferred differential protein expression via
ANOVA analysis. The model (1) includes the experiment-
to-experiment variation which increases with the introduc-
tion of additional experiments. Not all model elements are
identifiable from one application to the next, and model (1)
does not include all sources of error, either. For example, Ke-
shamouni et al. [12] proposed an alternative ANOVA model
for the analysis of data from a single iTRAQ experiment
comparing a control and treated sample. Neither ANOVA
model considers the missingness in iTRAQ data, potentially
biasing their results.

3. NONRANDOM MISSINGNESS

Luo et al. [17] overcomes the limitations of ANOVA mod-
els through a Bayesian framework that incorporates the non-
random missingness in iTRAQ data sets. Their model as-
sumes that the measured peptide intensities are affected by

both protein expression levels and peptide specific effects.
The values of these two effects across multiple experiments
are modeled as random effects. When a sample is labelled
with multiple tags in a single experiment, the variations
across different isobaric tags are also modelled as random
effects. The nonrandom missingness of peptide data is mod-
eled with a logistic regression which relates the missingness
probability for a peptide with the expression level of the
protein that produces this peptide. A Markov chain Monte
Carlo method tailored for this model was developed for the
inference of relative expression levels across different sam-
ples.

3.1 Model

We focus on describing the model for iTRAQ data from
multiple experiments and the estimation of the relative ex-
pression levels of proteins. When the iTRAQ data is ob-
tained from multiple experiments, [17] utilizes a Bayesian
hierarchical model in the sense that the model has an obser-
vation component that models the observed peptide inten-
sities as random effects whose conditional distribution de-
pends on the expected protein expression levels and peptide
effects, and a second (hierarchical) component that defines
the distributions of these expected values.

In Luo et al. [17], the labelling effects are assumed to
be removed by normalization methods such as quantile nor-
malization. Assume that there are S (≥2) biological samples
studied in K (≥2) experiments. Since multiple isobaric tags
may label the same sample in one experiment, let Ls ≥ 1
denote the number of tags labelling the sth sample. Then∑

s Ls = M is the number of isobaric tags used in one ex-
periment, which is 4 when we use 4-plex isobaric reagents
and 8 in the 8-plex version. Assume that there are I proteins
in the sample and Ji peptides for the ith protein. For the
lth label of the sth sample in the kth experiment, let ykijsln
denote the log transformed value of measured observed in-
tensity for the jth peptide of the ith protein from the nth
spectrum. Note that j should be more appropriately denoted
as j(i) to explicitly indicate that peptides are nested within
proteins, and l should be denoted as l(s) to indicate the lth
labelled tag of the sth sample. For notational simplification,
we omit the parentheses. The measured intensity of a pep-
tide depends on the protein expression level and the peptide
effect. Let xkisl denote the log transformed expression level
of the ith protein of the sth sample with the lth labelling
tag in the kth experiment. Let zkij denote the log trans-
formed peptide effect for the jth peptide of the ith protein
in the kth experiment. Luo et al. [17] considered an additive
model for ykijsln (k = 1, . . . ,K; i = 1, . . . , I; j = 1, . . . , Ji;
s = 1, . . . , S; l = 1, . . . , Ls; n = 1, . . . , Nkijsl):

(3) ykijsln = xkisl + zkij + εkijsln,

which corresponds to a multiplicative model in the original
scale. In (3), εkijsln is assumed to be independently normally
distributed with mean 0 and variance σ2

ε : εkijsln ∼ N(0, σ2
ε ).
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3.1.1 Missing data mechanism

The statistical model for peptide missingness in [17] was
motivated by the study on the dataset obtained from the
study of the roles of Caveolae for postnatal cardiovascular
function. In this research, three experiments were conducted
where the protein profiles from two wild-type mice and two
knock-out Cav-1 mice were analyzed by iTRAQ with four
isobaric tags in each experiment. Luo et al. [17] studied the
proportion of peptides observed in one experiment but miss-
ing in another experiment, and found that there was a nega-
tive correlation between the missing probability and peptide
intensity. In other words, less abundant peptides are more
likely to be missing since they are harder to detect due to
the data-dependent acquisition of the analysis process. Ob-
serving that there was an approximate linear relationship
between the peptide missing probability and the observed
intensity at the logit scale, Luo et al. [17] modeled the miss-
ing probability through a simple logistic regression model:

(4) logit(P (Ikijsln = 1|ykijsln, a, b)) = a+ b× ykijsln,

where Ikijsln = 1 indicates that the jth peptide of the ith
protein is measured in the kth experiment, the lth replicate
of the sth sample and the nth spectrum. Formula (4) implies
that the logit of the probability of peptide missingness is
linearly dependent on its intensity. It is expected that b > 0
because peptides with lower intensities are more likely to be
missing.

3.1.2 Priors

The Bayesian hierarchical framework in [17] takes into
account the variabilities across experiments and samples,
and assumes that xkisl and zkij are independently normally
distributed across different experiments, i.e.:

xkisl ∼ N(xisl, σ
2
x),(5)

zkij ∼ N(zij , σ
2
z),(6)

where xisl and zij denote the protein and peptide effects
averaged over multiple experiments, respectively. The pro-
tein expression levels in different replicates (labelled with
different tags) of the same sample are also assumed to be
normally distributed:

(7) xisl ∼ N(xis, σ
2
δ ),

where xis denotes the expression level of the ith protein in
the sth sample. Assumptions (5)–(7) lead to an equivalent
form of (3):

(8) ykijsln = xis + zij + etisl + exkisl + ezkij + εkijsln,

where exkisl ∼ N(0, σ2
x) and ezkij ∼ N(0, σ2

z) denote the ran-

dom effects across experiments, and etisl ∼ N(0, σ2
δ ) denotes

the variation among multiple replicates of the same sample.
When a sample is labelled with a unique isobaric tag in an

experiment, there is no replicate variation component within
a sample. Formula (8) is a mixed-effects model. To ensure
the identifiability of the model, the restriction xi1 = 0 is
added. Then xis denotes the expression level of the ith pro-
tein in the sth sample relative to the first sample.

The second level of priors are normal distributions for xis

and zij :

xis ∼ N(0, τ2x) for s > 1,(9)

zij ∼ N(0, τ2z ).(10)

The hierarchical model is finished by assuming inverse
gamma distributions as priors for the hyperparameters of
variance: σ−2

x ∼ Gamma(γ1, γ2), σ−2
z ∼ Gamma(γ3, γ4),

σ−2
δ ∼ Gamma(γ5, γ6) and σ−2

ε ∼ Gamma(γ7, γ8), where γ1
and γ2 denote the shape and scale parameters of a gamma
distribution, respectively, and assuming a ∼ N(0, ν2) and
b ∼ N(0, ν2). The posterior distributions of relevant param-
eters are simulated by MCMC simulations and differentially
expressed proteins are identified by analyzing the posterior
distribution of xis.

3.2 Comparison to ANOVA analysis

The most important difference between this Bayesian
model in [17] and the ANOVA model proposed by Hill et al.
[7] and Oberg et al. [19] is that [17] clearly modeled the
nonignorable missingness in iTRAQ data. Oberg et al. [19]
remarked at the end of their paper that using a censor-
ing mechanism to fit the model would be a natural next
step. Instead of censoring the data at an unknown threshold
value, [17] modeled a higher probability of peptide missing-
ness for lower peptide intensities. These two methods also
differ in terms of variations included in the model. The ex-
perimental effect and the replicative effect (when multiple
tags label a sample) are considered constants for all pro-
teins in the ANOVA model. In contrast, [17] modeled them
as random effects that were specific to peptides and (or)
proteins. Furthermore, the ANOVA analysis involves addi-
tional effects such as the labelling effect and the interac-
tion between labelling and experimental effect gj(i),s, which
are not modeled in [17]. Inclusion of the labelling effect is
determined by the experiment design. When identical tags
are used to label the same samples in multiple experiments,
the labelling effect is not identifiable since it is confounded
with the sampling effect. It is meaningful to include the la-
belling effect only when different tags are used to label the
same samples in multiple experiments. For the interaction
between labelling and experimental effect gj(i),s, although
it is theoretically appropriate to have it in the model, there
exists large uncertainty in the estimate of gj(i),s due to the
small number of replicates (or no replicates) for each sam-
ple.

The common assumption in both the Bayesian method
and the ANOVA analysis is that all of the peptide-based ob-
servations accurately reflect the intact proteins. We ignore
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the possibility of homologous genes resulting in two or more
proteins that share identical and nonidentical peptides as
well as the possibility of post-transcriptional modifications.
Although (1) includes the interaction between peptide ef-
fects and treatment (gj(i),s), it is removed in the analysis of
[19]. This term is not included in [17] either. So both [17]
and [19] assume that certain proteins will have differential
expressions across samples under different treatments, but
that any change in protein expression will affect all of the
peptides for that protein equally.

3.3 Nonrandom missingness in mass
spectrometry data

Targeting for mass spectrometry data, the model (pro-
posed by Wang et al. [31]) described in this subsection is
not tailored for iTRAQ data. But since iTRAQ data are
obtained by running the isolated peptides through MS/MS,
this probability model provides an alternative way of study-
ing the missingness in iTRAQ. Wang et al. [31] proposed
to first remove sources of systamatic variation between MS
profiles via global normalization, and then to investigate the
intensity-dependent missingness and to impute the missed
peptide intensities.

3.3.1 Global normalization

In their global normalization, [31] assumed that the sam-
ple intensities are all related by a constant factor which is to
be chosen. In order to avoid the possible bias due to the non-
random missingness in mass spectrometry data, Wang et al.
proposed to use the top L ordered statistics (e.g., medians)
of peptide intensities in each sample for rescaling, where L
is a user-specified parameter. Let K (K > 2) be the num-
ber of MS profiles. Denote the observed intensities of the

k-th profile as Y (k) = (y
(k)
1 , y

(k)
2 , . . . , y

(k)
nk ), where nk is the

number of peptides identified in the k-th profile. For a given
number L (L < min({nk}Kk=1)), the population median is
defined as

μ0 =
1

K

∑
k

median(y
(k)
1 , y

(k)
2 , . . . , y(k)nk

),

and the scaling coefficient for normalization of the k-th pro-
file is

(11) λ(k) =
1

μ0
median(y

(k)
(1) , y

(k)
(2) , . . . , y

(k)
(L)).

3.3.2 Nonrandom missingness and imputation

To account for the nonrandom missingness, Wang et al.
[31] proposed to impute the missed peptide intensity in one
sample with the ratio of the observed intensity in another
sample divided by a scale coefficient estimated from the in-
tensities of other peptides observed in both samples. Sup-
pose the minimum detectable level of the instrument is d.

Let x
(k)
j be the true abundance of the j-th peptide in the

k-th profile corresponding to the observed value y
(k)
j . A pep-

tide may or may not exist in a profile. Let z
(k)
j be a latent

variable indicating the presence of the j-th peptide in the

k-th profile, with z
(k)
j = 1 if the j-th peptide exists in the k-

th profile, and z
(k)
j = 0 otherwise. Then x

(k)
j = 0 if z

(k)
j = 0.

Let f
(k)
j be the density function of x

(k)
i when z

(k)
i = 1, we

have

(12) x
(k)
j ∼ I0(·)P (z

(k)
j = 0) + f

(k)
j (·)P (z

(k)
j = 1),

where I0(·) indicates a point-mass at zero. With (12), Wang
et al. [31] assumed that the true abundance of a peptide has

a mixture distribution. With probability P (z
(k)
j = 0), the

peptide does not exist in the k-th profile, and the abundance

is zero. With probability P (z
(k)
j = 1), the peptide exists, and

the distribution of the abundance is described by f
(k)
j .

The missed value of the intensity level of the j-th peptide
present in the k-th profile is imputed by the expected value

E(x
(k)
j |y(k)j = 0), which is calculated as

E(x
(k)
j |y(k)j = 0)(13)

= E(x
(k)
j |y(k)j = 0, z

(k)
j = 1)Pd(z

(k)
j = 1|y(k)j = 0)

= E(x
(k)
j |x(k)

j < d, z
(k)
j = 1)Pd(z

(k)
j = 1|y(k)j = 0),

where the first equality is due to the fact that E(x
(k)
j |y(k)j =

0, z
(k)
j = 0) = 0, and the second equality is due to the

fact that when the j-th peptide exists in the k-th profile

(z
(k)
j = 1), no signal detection (y

(k)
j = 0) is equivalent to low

intensity (x
(k)
j < d). The term E(x

(k)
j |x(k)

j < d, z
(k)
j = 1) in

(13) can be determined when f
(k)
j and d are specified, and

Pd(z
(k)
j = 1|y(k)j = 0), the probability that the j-th peptide

exists in the k-th profile when no signal is detected, can be
calculated as

Pd(z
(k)
j = 1|y(k)j = 0) =

Pd(z
(k)
j = 1, y

(k)
j = 0)

Pd(y
(k)
j = 0)

(14)

=
Pd(y

(k)
j = 0|z(k)j = 1)P (z

(k)
j = 1)∑1

z=0 Pd(y
(k)
j = 0|z(k)j = z)P (z

(k)
j = z)

=
Pd(x

(k)
j < d|z(k)j = 1)P (z

(k)
j = 1)

Pd(x
(k)
j < d|z(k)j = 1)P (z

(k)
j = 1) + P (z

(k)
j = 0)

where the third equality holds because Pd(y
(k)
j = 0|z(k)j =

1) = Pd(x
(k)
j < d|z(k)j = 1) and Pd(y

(k)
j = 0|z(k)j = 0) = 1.

The term Pd(x
(k)
j < d|z(k)j = 1) in (14) can be obtained from

the density function f
(k)
j when the latter is specified, and
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P (z
(k)
j = 1) =

Pd(x
(k)
j > d, z

(k)
j = 1)

Pd(x
(k)
j > d|z(k)j = 1)

(15)

=
Pd(y

(k)
j > 0)

Pd(x
(k)
j > d|z(k)j = 1)

.

So when the conditional density f
(k)
j and d are specified, the

missed peptide intensity can be imputed with (13)–(15).
The minimum instrument detectable level parameter d

is estimated by the background noise level in all MS raw
profiles from the same instrument, denoted as d̂. Then the
detectable level of the k-th profile is d̃(k) = d̂/λ(k), where
λ(k) is the normalization scale coefficient in (11). Wang et
al. [31] assume that

x
(k)
j

λ(k)

∣∣∣∣ (z(k)j = 1
)
∼ N(μj , σ

2
j )

independently for k = 1, 2, . . . ,K. This is equivalent to

the assumption that the density function of x
(k)
j when

z
(k)
j = 1, f

(k)
j , is N(λ(k)μj , (λ

(k)σj)
2). In the special case

that σj � |d̃(k) − μj | and biological replications are avail-
able, Wang et al. [31] provided estimators for the missing

probability Pd(z
(k)
j = 1|y(k)j = 0) and the imputed value

E(X
(k)
j |y(k)j = 0) as below:

Pd(z
(k)
j = 1|y(k)j = 0) =

{
P̂ (z

(k)
j = 1), if μ̂j < d̃(k),

0, if μ̂j > d̃(k);

E(X
(k)
j |y(k)j = 0) =

{
μ̂jP̂ (z

(k)
j = 1), if μ̂j < d̃(k),

0, if μ̂j > d̃(k);

where

μ̂j =

∑
k y

(k)
j /λ(k)∑

k I(y
(k)
j > 0)

,

and

P̂ (z
(k)
j = 1) =

∑
k I(y

(k)
j > 0)∑

k I(μ̂j > d̃(k))
.

The imputed data is used for further analysis such as esti-
mation, clustering of proteins and differential protein iden-
tification.

The model proposed by Wang et al. [31] differs from the
Bayesian model proposed by Luo et al. [17] in the following
three ways. First, in [31], intensities lower than a certain
level are censored and the censoring parameter is estimated
based on the background noise levels; in [17], a logistic re-
gression model is built to relate the missing probability with
the potential true intensity. With the observation that less
abundant peptides are more likely to be missing, the model
based missing mechanism in [17] which links the probability

of missing with peptide intensity is more reasonable than
the censoring mechanism in [31]. Second, [31] conducts sin-
gle value imputation and imputes the missed intensities with
the expected values, while [17] conducts multiple imputation
and simulates the posterior distributions of missed values.
Third, [31] is not tailored for iTRAQ analysis and sources
of variations should be removed when applying the idea in
[31] to iTRAQ data. The strength of [31] lies in the smaller

computation burden. When the density f
(k)
j is specified, the

missed peptide intensity can be easily imputed with the ex-
pected value obtained from formula (13).

4. CONCLUSION AND FUTURE
DIRECTIONS

The protein and peptide identification from MS/MS data
has been addressed by many researchers [9, 11, 15, 18, 22,
24, 25, 28]. In this article, we have focused on the quanti-
tation of protein and peptide expression levels from iTRAQ
data, which is a shotgun technique that uses isobaric tags
to label peptides from different samples and analyzes the
labelled peptides with tandem mass spectrometry. We have
reviewed the studies on the sources of variations, the compu-
tational problems involved and the nonrandom missingness
in the iTRAQ data. These studies are conducted after the
protein database search for protein and peptide identifica-
tion have been conducted from the collection of spectra, and
the peak areas of the ions originating from the isobaric tags
have been normalized for the estimation of peptide inten-
sities. The uncertainties in the protein and peptide identi-
fication and the peak area evaluation are not considered.
Furthermore, these studies assume that all of the peptide-
based observations accurately reflect the intact proteins. It
is possible that homologous genes can result in two or more
proteins that share identical and nonidentical peptides. The
possibility of post-transcriptional modifications is also ig-
nored. The quantitation of protein would benefit from the
improvement of protein identification and peak area evalu-
ation from mass spectra.

As discussed above, due to the complex nature of iTRAQ
data, it is very important to use sound experimental design
and analysis strategies when using iTRAQ technology to de-
tect and quantify the relative protein expression levels across
samples, especially when multiple experiments are involved.
Poor experimental design and analysis may confound signals
with noises and lead to protein and peptide effects undistin-
guishable from systematic variations. To achieve the best
power in sample comparisons, it is important to balance the
treatment groups across experiments and to randomize the
isobaric tags for samples, as much as possible, in the appli-
cation of iTRAQ for comparative proteomic researches.

The nonrandom missingness in iTRAQ is modeled with
a simple logistic regression in [17]. It is natural to consider
more complex missingness models that include polynomial
or local polynomial terms in the logistic regression, if the
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latter better describe the relationship between the miss-
ing probability and the peptide intensity. These missing-
ness models can also be built in the Bayesian hierarchical
structure as in [17] to infer the relative expression levels of
proteins across samples.

ACKNOWLEDGEMENTS

The work was supported in part by NIH grants HV28286,
DA018343, GM59507 and NSF grant DMS 0714817. The
work was also supported in part by “Yale University
Biomedical High Performance Computing Center” and NIH
grant: RR19895, which funded the instrumentation.

Received 05 May 2011

REFERENCES
[1] Boylan, K. L., Andersen, J. D., Anderson, L. B., Hig-

gins, L. and Skubitz, A. P. (2010) Quantitative pro-
teomic analysis by itraq for the identification of candidate
biomarkers in ovarian cancer serum. Proteome Science,
http://www.proteomesci.com/content/8/1/31.

[2] Casado-Vela, J., Mart́ınez-Esteso, M. J., Rodriguez, E.,
Borrás, E., Elortza, F. and Bru-Mart́ınez, R. (2010) iTRAQ-
based quantitative analysis of protein mixtures with large fold
change and dynamic range. Proteomics, 343–347.

[3] Choe, L., D’Ascenzo, M., Relkin, N. R., Pappin, D., Ross, P.,
Williamson, B., Guertin, S., Pribil, P. and Lee, K. H.

(2007) 8-plex quantitation of changes in cerebrospinal fluid pro-
tein expression in subjects undergoing intravenous immunoglob-
ulin treatment for Alzheimer’s disease. Proteomics, 7, 3651–
3660.

[4] Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H.

and Aebersold, R. (1999) Quantitative analysis of complex pro-
tein mixtures using isotope-coded affinity tags. Nature Biotech-
nology, 17, 994–999.

[5] Hamdan, M. and Righetti, P. G. (2002) Modern strategies for
protein quantification in proteome analysis: Advantages and lim-
itations. Mass Spectrometry Reviews, 21, 287–302.

[6] Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive
Models. New York: Chapman and Hall. MR1082147

[7] Hill, E. G., Schwacke, J. H., Comte-Walters, S., Slate,

E. H., Oberg, A. L., Eckel-Passow, J. E., Therneau, T. M.

and Schey, K. L. (2008) A statistical model for iTRAQ data
analysis. Journal of Proteome Research, 7, 3091–3101.

[8] Hu, H.-D., Ye, F., Zhang, D.-Z., Hu, P., Ren, H. and Li, S.-L.

(2010) iTRAQ quantitative analysis of multidrug resistance mech-
anisms in human gastric cancer cells. Journal of Biomedicine and
Biotechnology, DOI: 10.1155/2010/571343.

[9] Kall, L., Canterbury, J., Weston, J., Noble, W. S. and Mac-

Coss, M. J. (2007) A semi-supervised machine learning technique
for peptide identification from shotgun proteomics datasets. Na-
ture Methods, 4, 923–925.

[10] Karp, N. A., Huber, W., Sadowski, P. G., Charles, P. D.,
Hester, S. V. and Lilley, K. S. (2010) Addressing accuracy
and precision issues in iTRAQ quantitation. Molecular & Cellular
Proteomics, 9, 1885–1897.

[11] Keller, A., Nesvizhskii, A., Kolker, E. and Aebersold, R.

(2002) Empirical statistical model to estimate the accuracy of
peptide identifications made by MS/MS and database search.
Anal. Chem., 74, 5383–5392.

[12] Keshamouni, V. G., Michailidis, G., Grasso, C. S., Anthwal,

S., Strahler, J. R., Walker, A., Arenberg, D. A., Reddy,

R. C., Akulapalli, S., Thannickal, V. J., Standiford, T. J.,
Andrews, P. C. and Omenn, G. S. (2006) Differential pro-
tein expression profiling by iTRAQ-2DLC-MS/MS of lung can-

cer cells undergoing epithelial-mesenchymal transition reveals a
migratory/invasive phenotype. Journal of Proteome Research,
1143–1154.

[13] Kilner, J., Zhu, L., Ow, S. Y., Evans, C. and Corfe, B. M.

(2011) Assessing the loss of information through application of the
‘two-hit rule’ in iTRAQ datasets. Journal of Integrated Omics,
1, 124–134.

[14] Lau, E., Lam, M. P. Y., Siu, S. O., Kong, R. P. W., Chan,

W. L., Zhou, Z., Huang, J., Lo, C. and Chu, I. K. (2011) Com-
binatorial use of offline scx and online RP–RP liquid chromatog-
raphy for itraq-based quantitative proteomics application. Molec-
ular BioSystems, DOI: 10.1039/C1MB05010A.

[15] Li, Q., MacCoss, M. J. and Stephens, M. (2010) A nested mix-
ture model for protein identification using mass spectrometry.
Ann. Appl. Stat., 4, 962–987. MR2758429

[16] Liu, H., Sadygov, R. G. and Yates, J. R. (2004) A model for
random sampling and estimation of relative protein abundance in
shotgun proteomics. Analytical Chemistry, 76, 4193–4201.

[17] Luo, R., Colangelo, C. M., Sessa, W. C. and Zhao, H. (2009)
Bayesian analysis of iTRAQ data with nonrandom missingness:
Identification of differentially expressed proteins. Statistics in
Bioscience, DOI: 10.1007/s12561-009-9013-2.

[18] Nesvizhskii, A. I., Keller, A., Kolker, E. and Aebersold, R.

(2003) A statistical model for identifying proteins by tandem mass
spectrometry. Anal. Chem., 75, 4646–4653.

[19] Oberg, A., Mahoney, D., Eckel-Passow, J., Malone, C.,
Wolfinger, R., Hill, E., Cooper, L., Onuma, O., Spiro, C.,
Therneau, T. and Bergen, H. (2008) Statistical analysis of rela-
tive labeled mass spectrometry data from complex samples using
ANOVA. Journal of Proteome Research, 7, 225–233.

[20] O’Farrell, P. H. (1975) High resolution two-dimensional elec-
trophoresis of proteins. Journal of Biological Chemistry, 250,
4007–4012.

[21] Patton, W. F. (2002) Detection technologies in proteome anal-
ysis. Journal of Chromatography. B, Analytical Technologies in
the Biomedical and Life Sciences, 771, 3–31.

[22] Price, T. S., Lucitt, M. B., Wu, W., Austin, D. J.,
Pizarro, A., Yocum, A. K., Blair, I. A., FitzGerald, G. A.

and Grosser, T. (2007) Ebp, a program for protein identification
using multiple tandem mass spectrometry data sets. Mol. Cell.
Proteomics, 6, 527–536.

[23] Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson,

B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey,

S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S.,
Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J.

(2004) Multiplexed protein quantitation in saccharomyces cere-
visiae using amine-reactive isobaric tagging reagents. Molecular
& Cellular Proteomics, 3, 1154–1169.

[24] Sadygov, R., Liu, H. and Yates, J. (2004) Statistical models for
protein validation using tandem mass spectral data and protein
amino acid sequence databases. Anal. Chem., 76, 1664–1671.

[25] Sadygov, R. and Yates, J. (2003) A hypergeometric probability
model for protein identification and validation using tandem mass
spectral data and protein sequence databases. Anal. Chem., 75,
3792–3798.

[26] Salim, K., Kehoe, L., Minkoff, M. S., Bilsland, J. G., Munoz-

Sanjuan, I. andGuest, P. C. (2006) Identification of differentiat-
ing neural progenitor cell markers using shotgun isobaric tagging
mass spectrometry. Stem Cells and Development, 15, 461–470.

[27] Seshi, B. (2006) An integrated approach to mapping the pro-
teome of the human bone marrow stromal cell. Proteomics, 6,
5169–5182.

[28] Shen, C.,Wang, Z., Shankar, G., Zhang, X. and Li, L. (2008) A
hierarchical statistical model to assess the confidence of peptides
and proteins inferred from tandem mass spectrometry. Bioinfor-
matics, 24, 202–208.

[29] Skorobogatko, Y. V., Deuso, J., Adolf-Bergfoyle, J.,
Nowak, M. G.,Gong, Y., Lippa, C. F. andVosseller, K. (2010)
Human alzheimer’s disease synapticO-GlcNAcsite mapping and

106 R. Luo and H. Zhao

http://www.ams.org/mathscinet-getitem?mr=1082147
http://www.ams.org/mathscinet-getitem?mr=2758429


iTRAQ expression proteomics with ion trap mass spectrometry.
Amino Acids, 40, 765–779.

[30] Unwin, R. D., Griffiths, J. R. and Whetton, A. D. (2010)
Simultaneous analysis of relative protein expression levels across
multiple samples using iTRAQ isobaric tags with 2D nano LC-
MS/MS. Nature Protocols, 5, 1574–1582.

[31] Wang, P., Tang, H., Zhang, H., Whiteaker, J., Paulovich,

A. G. and Mcintosh, M. (2006) Normalization regarding non-
random missing values in high-throughput mass spectrometry
data. Pacific Symposium on Biocomputing, 11, 315–326.

[32] Wu, W. W.,Wang, G., Baek, S. J. and Shen, R.-F. (2006) Com-
parative study of three proteomic quantitative methods, DIGE,
cICAT, and iTRAQ, using 2D Gel- or LC-MALDI TOF/TOF.
Journal of Proteome Research, 5, 651–658.

[33] Ye, H., Hill, J., Kauffman, J. and Han, X. (2010) Qualitative
and quantitative comparison of brand name and generic protein
pharmaceuticals using isotope tags for relative and absolute quan-
tification and matrix-assisted laser desorption/ionization tandem
time-of-flight mass spectrometry. Analytical Biochemistry, 400,
46–55.

Ruiyan Luo
Department of Mathematics and Statistics
Georgia State University
30 Pryor Street
Atlanta, GA 30303
USA
E-mail address: matrxl@langate.gsu.edu

Hongyu Zhao
Department of Epideomiology and Public Health
Yale University
300 George Street
Suite 503
New Haven, CT 06511
USA
E-mail address: hongyu.zhao@yale.edu

Protein quantitation using iTRAQ 107

mailto:matrxl@langate.gsu.edu
mailto:hongyu.zhao@yale.edu

	Introduction
	ANOVA analysis
	Model
	Model fitting
	Subsetting
	Stagewise regression
	Iterative regression
	Mixed effets models

	Differential protein expression

	Nonrandom missingness
	Model
	Missing data mechanism
	Priors

	Comparison to ANOVA analysis
	Nonrandom missingness in mass spectrometry data
	Global normalization
	Nonrandom missingness and imputation


	Conclusion and future directions
	Acknowledgements
	References
	Authors' addresses

