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Label-free shotgun proteomics holds great promise, and
has already had some great successes in pinpointing which
proteins are up or down regulated in certain disease states.
However, there are still some pressing issues concerning the
statistical analysis of label-free shotgun proteomics, and
this field has not enjoyed as much dedication of statisti-
cal research towards it as microarray research has. Here we
reapply previously used statistical methods, the QSpec and
quasi-Poisson, as well as apply the negative binomial distri-
bution to both a control data set and a data set with known
differential expression to determine the successes and failure
of each of the three methods.
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1. INTRODUCTION

The on-line linking of liquid chromatography with tan-
dem mass spectrometry enabled the development of shotgun
proteomics (Link et al. 1999). It includes digesting a protein
sample into peptides, and separating them with two liquid
column chromatography steps. Stable-isotope labeling based
methods of shotgun proteomics soon gained ground, such
as ICAT (Gygi et al. 1999), SILAC (Ong et al. 2002) and
iTRAQ (Ross et al. 2004). However, they require a higher
amount of startup material, complex experimental proto-
cols, and have higher reagent costs, as well as one must
hope that the protein is not altered in any manner by the
labeling.

The advent of the label-free methods have circumvented
some of the issues of labeling methods (Bondarenko et al.
2002; Chelius, Bondarenko 2002). Spectral count methods
became a popular and successful method for relative pro-
tein quantification using mass spectrometry data (Liu et al.
2004; Old et al. 2005). Determination of differential protein
expressions in real biological samples is a very complex art,
with many different complications that must be considered.
Proteins from within the same system need to perform dif-
ferent tasks, leading to substantial differences in function,
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and therefore structure. The effects of digestion can be sig-
nificantly different between proteins of differing structures.
Not all proteins ionize in a similar manner, affecting their
ability to be detected by the mass spectrometer (Vogel, Mar-
cotte 2008). There is also the issue of size bias, since larger
proteins are more likely to appear in spectral counts than
smaller proteins due to the fact that they are on average cre-
ating a larger amount of peptides than their smaller coun-
terparts (Paoletti et al. 2006). There are usually a small
number of replicates, a problem also found within gene mi-
croarray data that is referred to as the “many genes, few
replicates” problem (Pavelka et al. 2008).

Recently there have been several contributions to the de-
velopment of statistical models specific to spectral count
data. A global error model assumes that the amount of
variability is a function of the measurement levels within
all the measurements for a single experimental condition
(Pavelka et al. 2004). The advantage of making this assump-
tion is that the number of measurements used to estimate
the global error is equal to the total number of genes or pro-
teins (Pavelka et al. 2004). The power law global error model
(PLGEM) is a global error model governed by a power law,
where the frequency of an event varies as a power of some
attribute of that event (Pavelka et al. 2004). This type of
model has been successfully used with gene microarray data
(Pavelka et al. 2004), with normalized spectral abundance
factors to normalize for the size bias (Paoletti et al. 2006;
Griffin et al. 2010; Zybailov et al. 2006; Zybailov et al. 2011).
Pavelka and colleagues (Pavelka et al. 2008) showed that
the coefficient of variation becomes smaller as the average
abundance values increase, even though the absolute stan-
dard deviation still increases. They demonstrated that their
parameters were still stable even under decreasing replicate
numbers, which is an issue in shotgun proteomics. However,
this model does not produce direct p-values to ease interpre-
tations. Using Pavelka et al. 2008’s data, Choi and colleagues
created a Poisson model with a hierarchical Bayesian estima-
tion referred to as QSpec (Choi et al. 2008). Spectral counts
are considered random numbers amongst a large population
of proteins, and therefore all replicates (and proteins) share
model parameters. The per protein basis helps with the low
replicate numbers (Choi et al. 2008). The Poisson model
treats variance as equal to mean, which may be problematic
as over-dispersion is often observed in spectral count data.
Li and colleagues (Li et al. 2010) attempted to circumvent
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this problem by using a quasi-likelihood generalized linear
model. This quasi-Poisson model allows over-dispersion, us-
ing the F-test to calculate p-values and the false discovery
rate (FDR) to rectify the effects of multiple hypothesis test-
ing (Li et al. 2010). Asymptomatic properties of maximum
likelihood models are minimized, dispersion is treated as a
free parameter, regression coefficients are given even if the
variance function is not specified, and a clear idea of the
distribution is not needed beforehand to model. This was
compared to the student’s t-test and Fisher’s exact test (Li
et al. 2010).

Here we use existing quasi-Poisson and QSpec models,
and test a new, negative binominal model to improve statis-
tical understanding of label-free shotgun proteomics data.
Over-dispersion is still an issue despite the successes of
quasi-Poisson, and zero entries create problems for statis-
tical models. A model that can handle small sample sizes
and different variances is expected to be better suited for
describing shotgun proteomics data.

2. DATASETS

In this work we used two freely available datasets from
label-free shotgun proteomics studies. The first dataset is of
the yeast Saccharomyces cerevisiae strain BY4741, which
was obtained from the work of Pavelka and colleagues
(Pavelka et al. 2008). This dataset constitutes a control or
test dataset. The protein concentrations in the two samples
are expected to be identical. The dataset is used to detect
false positives produced by the statistical modeling. We call
this dataset as a control dataset (isotope-labeled proteins
are mixed at 1:1 ratio with unlabeled proteins). The iso-
topically labeled and unlabeled parts of the control dataset
are called N15 and N14 datasets.

The second dataset was obtained from 20 head and neck
squamous cell carcinomas (HNSCC) and 20 normal tonsil-
lectomy tissues (Li et al. 2010). The proteins in the two
states are expected to exhibit differential expressions and
thereby it is possible to determine which proteins are up-
regulated or down-regulated in the cancerous cells com-
pared to the normal cells, hoping to point out which path-
ways are involved in head and neck squamous cell carcino-
mas.

The benchmarking of the statistical models on two differ-
ent datasets, with distinct characteristics, is a good test plat-
form for comparing quantification models of shotgun pro-
teomics data. It is widely believed that the Poisson family
of models provides a good prediction of the data. However,
in scenarios with scarce data as is the case with spectral
count data, the issue is far from clear. This is similar to
the assumptions often made in applications such as the se-
rial analysis of gene expression, SAGE (Huang et al. 2008).
Negative binomial models have been particularly success-
ful in explaining over-dispersed data. Ultimately choosing
among these methods or if needed to devise a new strategy
is a model selection problem (Neal, Simons 2007).

3. QUASI-POISSON, NEGATIVE BINOMIAL
AND QSPEC MODELS

3.1 Problem statement

Spectral counts of proteins are indicative of protein abun-
dance levels in a sample. Normally there are two groups, con-
trol and disease (or treatment), and the goal is to design an
adequate model for assigning statistical significance levels to
differences in observed protein spectral counts. The depen-
dent variable is assumed to be the spectral count (Y) and
the independent variable is the group (a categorical vari-
able). The inference from the model will be obtained by
comparing full (two groups) and reduced (a single group)
models. Significance of individual protein differences is eval-
uated by the p-values from the inference. The p-values are
adjusted for multiple testing, for example, by Benjamini-
Hochberg procedure (Benjamini, Hochberg 1995; Hochberg,
Benjamini 1990) which produces false discovery rates. Gen-
eralized linear models (GLM) with distributions describing
count data are natural candidates for the outlined frame-
work. A preferred distribution for spectral counts was Pois-
son distribution. However, equal mean variance assumption
of the Poison model is not supported in the spectral count
datasets (Pavelka et al. 2008). Therefore, more flexible mod-
els are used as discussed below.

The outcome of the analysis is a list of differentially ex-
pressed proteins between two samples. The list is used as
an input into biological knowledge bases, such as FatiGo,
Davids or IPA (Al-Shahrour et al. 2004; Shah et al. 2010;
Schulz-Trieglaff et al. 2009). Information about affected sig-
naling pathways, protein interaction networks, protein local-
izations and functionality are used in a systems biology view
of a disease state, progression, efficacy of treatment, etc.

3.2 Maximum likelihood for quasi-Poisson
and negative binomial models

The standard Poisson model has difficulty handling the
over-dispersion of the variance found in shotgun proteomics
data, and the quasi-likelihood model lets dispersion remain
a free parameter. This quasi-Poisson likelihood model only
claims to know the first and second moments, since trying
to claim spectral counts fit a known distribution is unreal-
istic. The likelihood model offers more parameters and this
extra flexibility is what gives the model much more strength
compared to the standard Poisson model. The quasi-Poisson
model has been previously used in SAGE data (Cai et al.
2004). In general, quasi-likelihood estimation is one way of
allowing a greater variability in the data. However, a prac-
tical problem with Poisson regression is observed when the
variance of the spectral counts is greater than the mean
(over-dispersion). Though quasi-Poisson gives a better ac-
count of the variance compared to the original Poisson, still
the quasi-Poisson is a part of the Poisson family. The neg-
ative binomial regression model is also a subclass of the
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exponential family of generalized linear models and in some
cases it is a good predictor for over-dispersed data. The
negative-binomial model deals with this problem by intro-
ducing noise into the linear predictor. We describe here
briefly the two models from a unified perspective, both be-
ing a class of GLM’s and amenable to maximum likelihood
estimations.

The spectral counts, Yi, of a protein are expressed as:

ln(Yi) = ln(Ni) + β0i + β1iXj + εi(1)

where Xj denotes group, Ni is the total number of counts
in replicate i and εi is the error. The group variable is a
categorical variable with values 1 (for example control) and
0 (treatment). In addition we have the following constraints
satisfied as

E[Yi] = μi and Var(Yi) = ϕV (μi),

V (μi) = μi with Yi ∼ Poi(μi, ϕ) (quasi-Poisson)
(2)

E[Yi] = μi and Var(Yi) = V (μij) = μi + αμ2
i ,

Yi ∼ NB(μi, α), (negative binomial)

where ϕ is the over-dispersion parameter and α is the clump-
ing parameter in each case. The standard procedure in han-
dling these exponential families is to define a score

Ui =
Yi − μi

Var(Yi(μi))
(3)

The score satisfies the properties of a log likelihood function,
namely, E[Ui] = 0 and E[∂Ui

∂μi
] = V (Ui). So it is quite natural

to construct the quantity

Q =
N∑
i=1

∫ μi

Yi

Yi − x

Var(Yi(x))
dx(4)

which has equivalence to log likelihood which is then maxi-
mized to obtain the estimate of the regression coefficients (Li
et al. 2010). Usually the procedure involves using iterative
weighted least squares (IWLS), where

βk+1 = (X ′W k
i X)−1X ′W kŶ ,

(5)

Wk = diag
(μ1

θ
, . . . ,

μn

θ

)
(quasi-Poisson)

βk+1 = (X ′W k
i X)−1X ′W kŶ ,

Wk = diag
( μ1

1 + αμ1
, . . . ,

μn

1 + αμn

)
(negative binomial)

It is clear that the variance of the outcome in the negative bi-
nomial model is greater than or equal to that for the Poisson
regression model. The hypothesis of over-dispersion can be
tested either by testing for evidence that α > 0 against the
null hypothesis that α = 0, or by constructing a likelihood-
ratio test comparing the Poisson and negative binomial re-
gression models. In comparison to the quasi-Poisson model

the over-dispersion in the negative binomial case is a mul-
tiplicative factor 1 + αμ, showing that for the Poisson (in
this case the quasi-Poisson model), the variance is linearly
related to the mean, whereas for the negative binomial, the
variance is quadratic in mean. Thus, in contrast to the quasi-
Poisson where weights are directly proportional to the mean,
for the negative binomial the weights have a concave rela-
tionship with the mean, which implies that very small means
get little weight, while as the mean increases, weights level
off to 1/α.

In general for models with a known dispersion the chi-
squared test is most appropriate, and for those with dis-
persion estimated by moments and fits, the F test is
most appropriate (Ver Hoef, Boveng 2007). However in
our case the dispersion is not known a priori and is al-
lowed to be a free parameter and ANOVA tests are used
to generate the p-values for the case based on two fit-
ted models, one with no distinction of the groups and
in the other, where there are two explicit groups. How-
ever, in these cases we also have to compare many pro-
teins for differences, for which we require multiple testing
and thereby to control the FDR and adjust the obtained
p-values.

3.3 QSpec statistical model

This is a mixed effects statistical model which uses hierar-
chical Bayes factor for taking into account the small number
of replicates in the data, which is achieved by pooling the in-
formation on regression models across the proteins (Choi et
al. 2008). The model equations get modified in this case to

ln(Yij) = ln(Li) + ln(Nj) + c0 + β0i + β1iX + εi(6)

where the changes have been to include the length Li of the
proteins and an introduction of a baseline abundance c0. As
a matter of fact the counts here too are assumed to have
a Poisson distribution similar to the quasi-Poisson model,
however the equation (6) gives a full model MF as compared
to the reduced model MR when the treatment effect β1i is
not significant. The key difference in this case is the fact that
the regression parameters are assumed to have prior normal
distribution, along with an inverse γ distributed variance
parameters, which gives rise to a mixed effects model. The
Bayes factor and the FDR values are calculated as follows

Bi =
p(Xi|MF )

p(Xi|MR)
, FDR(Bi) =

π0p0(Bi)

π0p0(Bi) + π1p1(Bi)

(7)

where p0 and p1 are the proteome wide distributions of the
Bayes factor for proteins with trivial and significant differ-
ential expression respectively and π0 and π1 are the corre-
sponding proportion of the proteins.

We have modified the Quasi-tel program (Li et al.
2010) in R to generate the quasi-Poisson and negative
binomial models (attached in the supplementary infor-
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Table 1. The top five proteins by FDR adjusted p-value are listed for each of the three methods for the control dataset

Method Protein Length N14 N15 Quasi-Poisson Neg. binomial QSpec

QSpec gi|6323768 592 (98, 66, 73, 75) (59, 17, 59, 54) 0.74 0.019 0
gi|6324534 106 (12, 6, 9, 5) (17, 7, 67, 36) 0.784 0.035 0
gi|6324027 144 (36, 16, 6, 19) (38, 30, 34, 49) 0.74 0.02 0
Cont gi|7463016 269 (56, 52, 83, 26) (0, 0, 0, 0) 0.74 0.999 0
gi|6323104 221 (15, 18, 4, 4) (12, 12, 3, 3) 0.993 0.333 0.114

negative binomial gi|6323470 424 (99, 64, 32, 5) (64, 30, 41, 2) 0.993 0.004 0.266
gi|6323768 592 (98, 66, 73, 75) (59, 17, 59, 54) 0.74 0.019 0
gi|6324027 144 (36, 16, 6, 19) (38, 30, 34, 49) 0.74 0.02 0
gi|6322075 385 (21, 1, 0, 0) (4, 0, 0, 2) 0.993 0.021 1
gi|6324534 106 (12, 6, 9, 5) (17, 7, 67, 36) 0.784 0.035 0

quasi-Poisson gi|6323768 592 (98, 66, 73, 75) (59, 17, 59, 54) 0.74 0.019 0
gi|6324027 144 (36, 16, 6, 19) (38, 30, 34, 49) 0.74 0.02 0
gi|37362683 377 (0, 0, 0, 0) (0, 3, 1, 1) 0.74 0.999 0.285
gi|6320353 2748 (18, 4, 0, 0) (0, 0, 0, 0) 0.74 0.997 0.326
gi|6319520 334 (2, 0, 0, 0) (6, 0, 3, 3) 0.74 0.08 0.421

mation http://www.intlpress.com/SII/p/2012/5-1/SII-5-1-
leitch-supplement.pdf). The QSpec method was run on a
dedicated server at the University of Michigan. Finally we
generate all the plots and tables in R and python matplot.

4.1 Applications of the three methods
to the control dataset

We have applied all methods to a control dataset from the
Pavelka et al. 2008 paper. The dataset contains 1,314 pro-
teins, reduced to 1,270 when proteins flagged by the QSpec
software were removed. This dataset makes an excellent con-
trol since it should have no differentially expressed proteins
and therefore none of our three methods should show any
significant results.

It is established from Table 1 and fully demonstrated in
the full data (available within the supplementary materials
http://www.intlpress.com/SII/p/2012/5-1/SII-5-1-leitch-
supplement.pdf) that there is no differentially expressed
proteins in the control dataset once p-values are adjusted
by the false discovery rate. This is expected since there is
no true difference between the datasets, and any difference
in expression should be due to chance or contamination
and/or error. But even here we can begin to see in the quasi-
Poisson, there is already a favoring of proteins that have
zero variance among their spectral count replicates. The
QSpec method’s high number of zeros as p-values indicates
that there could be some false positives in there, and it is in-
teresting that a possible contaminant was ranked so highly.

Figure 1 demonstrates the relationship between the
means of the N14 and N15 labeled samples. An interesting
observation made from Figure 1 is that there is not an even
spread of data points between the N14 and N15 datasets,
with a large bias towards N15. This implies there is a sys-
tematic bias within the system. This bias is also very obvious
from Table 1, as normal datasets have higher spectral count
numbers than cancerous datasets. This will be shown later

Figure 1. Graph for the log base2 of the mean values for the
N14 dataset plotted versus the log base2 of the mean values
for the N15 dataset. The variance is demonstrated by the
coloration of the data points, with red data points having

greater variance than blue data points.

to exist as well within the HNSCC dataset. One advantage
that the negative binomial, quasi-Poisson and QSpec meth-
ods have over a simple student’s t-test is that they com-
pensate for biases like this by taking the logarithm of the
total number of proteins as in the case of the Poisson based
models or adjust for the offset as in the case for negative
binomial.

In Figure 2 we have shown how the mean behaves with
the variance in a control dataset for both controls and it is
clear that the behavior is as expected for a non-differentially
expressed dataset.
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Figure 2. The mean spectral count against the variance for
the control dataset. Yellow is N15 dataset, for which there is
a clear bias towards the mean compared to the N14 (purple)

dataset.

4.2 Comparison of the three methods
on the HNSCC dataset

The main focus of our study was the application of the
three statistical methods to the head and neck squamous cell
carcinoma dataset obtained from the Li et al. 2010 paper.
This dataset has been previously shown to have differentially
expressed proteins (Li et al. 2010), and shall serve as the
testing grounds for each of the three methods. The dataset
had a total of 1,713 proteins, which was reduced to 1,617
once proteins that are flagged by the QSpec method were
removed.

There are differentially expressed proteins in this dataset.
There is some overlap, generally different proteins made it
into the top 5 for each of the methods, with quasi-Poisson
sharing none with the other methods, and only two of the
top five are shared between negative binomial and QSpec.
We can see that quasi-Poisson labels the greatest number
of proteins as differentially expressed, while QSpec labels
less than half that many as differentially expressed, and the
negative binomial even fewer than that. This also shows that
quasi-Poisson is only one of the three methods to recognize
a great number of its top 100, while most of QSpec and the
negative binomial’s top 100 proteins are shared with each
other.

Figure 3 is the Venn diagram of the top 150 proteins of
each method (based on FDR adjusted p-values). FDR ad-
justed quasi-Poisson recognizes 158 proteins out of 1,617 as
differentially expressed at a level of 0.01 and 167 at level
of 0.1. QSpec recognizes 130 proteins out of 1,617 as dif-
ferentially expressed at a level of 0.01 and 167 at a level of
0.1. FDR adjusted negative binomial recognizes none of the

Figure 3. Venn diagram which shows how many proteins in
the top 150 from the HNSCC dataset are shared by the 3
different statistical methods. Ranking was based on FDR

values.

Figure 4. Comparisons of the p-values for quasi-Poisson and
negative binomial methods for the HNSCC dataset with

QSpec FDR values as the color label.

proteins out of 1,617 as differentially expressed at a level of
0.01, and 6 at a level of 0.1.

Figure 4 shows the relationship of the p-values of the
quasi-Poisson vs negative binomial methods with data
points color-based on the FDR values from the QSpec
method. The blue color shows low FDR values and red im-
plies higher FDR values (as computed by QSpec). It is seen
that QSpec is a comparatively conservative method, as it
gives proteins high p-values where the other two methods
are rewarding these same proteins with low p-values.
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Figure 5. Log2 mean-mean plot for the cancer vs normal
spectral count for the proteins in the HNSCC dataset. The
coloring of the points is based on the FDR values of the

QSpec method.

Also the under-dispersion in the HNSCC dataset may
imply that there exists a negative correlation in the count
data set, which is there, and the Pavelka et al. 2008 data
on the other hand clearly shows a clustering based on the
over-dispersion.

4.3 Evaluation of QSpec method
on the HNSCC dataset

We can see that most of the data points with low p-values
are spread out near the highest means, and that there are
more high p-values found within the normal data. There is
a general bias of spectral counts towards the normal data,
as Figure 5 is skewed toward the right side (the normal
side). As expected, proteins with greater means and greater
variances are assigned with lower p-values. The coefficient
of variance for cancerous data is much more spread out than
that of the normal dataset.

4.4 Evaluation of quasi-Poisson method
on the HNSCC dataset

We have here the p-values from the quasi-Poisson model.
We can see that generally the data points with low p-values
are spread out near the highest means, and that there are
more high p-values found within the normal data. However,
this trend is less pronounced than in QSpec, with many
proteins with high means given high p-values. However,
proteins with greater means and greater variances are not
necessarily rewarded with lower p-values. The coefficient
of variance for a cancerous dataset is much more spread
out than in the normal dataset, but to a lesser effect
than QSpec. In this case we see also a trend in the Log2

Figure 6. Log2 mean-mean plot for the cancer vs normal
spectral count for the proteins in the HNSCC dataset. The
coloring of the points is based on the FDR values of the

quasi-Poisson method.

Figure 7. Log2 mean-mean plot for the cancer vs normal
spectral count for the proteins in the HNSCC dataset. The
coloring of the points is based on the FDR values of the

negative binomial method.

mean-mean plot for the normal and cancer spectral counts
based on the quasi-Poisson FDR values from Figure 6.

4.5 Evaluation negative binomial method
on the HNSCC dataset

We have here the p-values from the negative binomial
model, Figure 7. The figure shows the log2 mean compar-
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Figure 8. A Venn diagram showing the number of top ranked differentially expressed HNSCC dataset proteins that were
ranked as one of the top 100 proteins by each of the three statistical methods we used. In designating common proteins for all

three methods we have used abbreviations of C for cancerous, and N for normal datasets.

isons for the normal and cancerous spectral counts based on
the negative binomial FDR values. We can see that gener-
ally the data points with low p-values are spread out near
the highest means, and that there are more high p-values
found within the normal data. The trend is less pronounced
than in QSpec or even quasi-Poisson, with a large number
of proteins with high means given high p-values. However,
proteins with greater means and greater variances are not
necessarily rewarded with lower p-values. The coefficient of
variance for cancer is much more spread out than in the
normal, but to a lesser effect than QSpec.

4.6 Known differential expression for the
HNSCC dataset

Li and colleagues used multiple reaction monitoring to
validate 18 of the dysregulated proteins in the HNSCC
dataset suggested by the quasi-Poisson model using spectral
counts (Li et al. 2010). Of these, 11 proteins were upregu-
lated in the cancerous dataset and 7 were upregulated in the
normal dataset. To compare the three methods in our case,
we generate the top hundred proteins from quasi-Poisson,
negative binomial and QSpec, and compare the results. Fig-
ure 8 summarized the comparison in a Venn diagram. It
shows the number of verified, differentially expressed pro-
teins that were ranked amongst the top 100 proteins in each

of the three methods as well as how many were shared be-
tween the three methods. QSpec places 12 out of the 18
confirmed proteins in its top 100 list of dysregulated pro-
teins. The corresponding numbers for the negative binomial
and quasi-Poisson models are 10 and 9, respectively. 7 of the
18 proteins (6 in cancerous and 1 in normal datasets) are
among the top ranked 100 proteins by all three methods.
Note that, to show the number of proteins in the intersec-
tion of all three methods, we have used abbreviations C for
cancerous, N for normal datasets. The results in this case
show a better performance for QSpec, though the prediction
cases of the cancerous proteins was found to be the best for
the negative binomial method.

5. THE STRENGTHS AND WEAKNESS
OF EACH OF THE THREE STATISTICAL

METHODS

The major findings of our research can be summarized in
these following statements: (i) The quasi-Poisson statistical
model is significantly more liberal in determining a protein
as differentially expressed than the QSpec or negative bi-
nomial are. (ii) Negative binomial is not as vulnerable to
the “zero variance problem” as quasi-Poisson and QSpec.
(iii) The negative binomial model is sensitive to cases when
there are no observations in one of the groups.
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5.1 How conservative is each model relative
to each other?

Out of the three methods, quasi-Poisson seems to be
the most liberal with the greatest number of proteins with
p-values smaller than 0.01. QSpec selects similar proteins
types as quasi-Poisson does, but is more conservative. The
negative binomial method tends to reward spectral count
observations with greater variance with lower p-values than
quasi-Poisson or QSpec do. The negative binomial method
turned out to be the most conservative method of all.

5.2 How each model handles proteins that
have zero variance?

The top ten proteins for quasi-Poisson all exhibit a simi-
lar nature of small means and variances. Spectral counts of
c(2, 2, 2, 2) for non-cancerous and c(0, 0, 0, 0) for cancerous,
and c(1, 1, 1, 1) non-cancerous and c(2, 2, 2, 2) for cancerous
make up 7 of the top ten proteins for quasi-Poisson. Quasi-
Poisson has a strong bias towards proteins that exhibit low
variance. For example, a protein with a spectral count ob-
servation of c(2, 2, 2, 2) for non-cancerous and c(0, 0, 0, 0)
for cancerous data would be treated as more significantly
expressed than a protein that has c(100, 120, 80, 100) for
non-cancerous and c(23, 34, 12, 16) for cancerous data. This
is because Poisson based models have a great difficulty with
handling low variance, and proteins whose spectral counts
have zero variance will have its importance exaggerated by
the quasi-Poisson model. c(2, 2, 2, 2) for non-cancerous and
c(0, 0, 0, 0) for cancerous data and c(0, 0, 0, 0) for non-
cancerous and c(2, 2, 2, 2) for cancerous data are given dif-
ferent p-values by the three methods. This is because within
the HNSCC dataset, there is a bias toward normal datasets,
with them accounting for a significantly greater number of
spectra than the cancerous data. The models compensate
for this by taking the natural log of the total number of
observations. When the variance is not equal to zero, all
three methods give rather high p-values to proteins which
have low mean spectral count numbers for the cancerous
and non-cancerous data. All three methods heavily favor
proteins having large mean spectral count in the cancerous
dataset and low mean spectral count in the normal dataset.
The opposite is also true, but the p-values are higher due
to the normalization for the bias towards normal dataset.
QSpec does not have any zero variance samples within its
top ten proteins, and seems to have a heterogeneous mixture
of proteins with respect to variance and mean. Amongst the
three methods quasi-Poisson model had the highest number
of zero variance proteins in its top ten protein list. The neg-
ative binomial method is less vulnerable to the zero variance
problem.

The coefficients of variance for the negative binomial dis-
tribution both increased with an increase in the p-value,
but this correlation is quite weak. This was true with the
other two methods as well, although QSpec demonstrated

the strongest correlation for coefficient of variance (although
that was still rather weak). Generally proteins with the low-
est p-values for the negative binomial distribution tended to
have greater variances, with few replications having identical
sample sizes. This was true of QSpec as well, with very few
zero values found for either QSpec or the negative binomial
distribution. The opposite phenomena occurred for quasi-
Poisson, with very low variance occurring between repli-
cates for the highest ranked proteins. A great number of
samples with four identical replicates occurred, but sam-
ples with slight variance in replicates were less likely to get
ranked favorably. The means diverge as p-values rise in the
quasi-Poisson method, the means converge as p-values rise
in the QSpec, and little correlation was noticed concerning
the means of the proteins ranked highest by the negative
binomial method. Quasi-Poisson is inclined to treat spec-
tral count replicates with greater variance amongst them as
significantly expressed. This is similarly true for negative
binomial.

5.3 The vulnerability of the negative
binomial model to replicates with zero
spectral counts

Label-free shotgun proteomics has been historically vul-
nerable to under-estimating proteins that exhibit zero spec-
tral count in one of its two groups (Li et al. 2010). It should
be noted that the negative binomial model is sensitive in
these cases when there are no observations in one of the
groups. For example in Table 1 the contaminant protein with
the occupancy vector c(56, 52, 83, 26, 0, 0, 0, 0) produces
non-significant result for the two state model. Probability
for the slope from the z-test is 1.0. However, if we slightly
“perturb” the occupancy vectors by introducing small, but
non-zero observations values in the second state, c(56, 52,
83, 26, 0, 1, 0, 0), then the slope becomes important up
to p-value of 10−7! It is clear that in this case the model
is not stable. In fact, addition of 1 spectrum to the second
group should have made the slope term even less impor-
tant if the first computation was right. Note that due to the
nature of the spectral count experiments, cut-offs based on
the scores, variations in tandem mass spectra, the number
of spectra is never accurate up to one spectrum. Therefore,
care should be practiced when analyzing data points where
there is no observation in one of the states. The negative
binomial model may not be accurate in this case. In gen-
eral, we observed that one way to check a model would be
to introduce small (up to the accuracy of the mass spectral
counts, which is always more than 1) changes in the spectral
count and check if the results are still consistent.

5.4 Summary and future directions

Here we have applied the QSpec and quasi-Poisson, two
previously established statistical methods for label-free shot-
gun proteomics, to a data set known to have differential
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expression, as well as a control data set. We have also com-
pared the negative binomial model to these two models to
determine its effectiveness in describing spectral count data.
We have seen that the quasi-Poisson statistical model is sig-
nificantly more liberal in determining a protein as differen-
tially expressed than the QSpec is, and the negative bino-
mial is significantly more conservative. The negative bino-
mial statistical model is not as vulnerable to the “zero vari-
ance problem” as quasi-Poisson and QSpec, but is still vul-
nerable when there are no observations in one of the groups.

In spite of the successes of spectral counting as a label-
free method, in comparison to other methods like isotope
labeling it has its limitations. The accuracy of the statis-
tical methods relies on the role of various instrument con-
trol settings for controlling signal to noise ratio. There are
limitations of the spectral count method with regards to
a small number of replicates and bias toward high abun-
dance proteins (Choi et al. 2008). To this end, future efforts
should focus on improving accuracies in experimental pro-
tocols which will help to design more accurate multivariate
statistical approaches that can effectively combine different
abundance metrics leading to improved statistical power of
detecting differential proteins.

There is great potential for future research in this field.
Further testing of the negative binomial model’s ability to
describe label-free shotgun proteomic data is suggested, and
there are other statistical models that like negative binomial
have been well established in research but have never been
thoroughly applied to label-free shotgun proteomics data.
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