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Permutation methods for testing the significance

of phosphorylation motifs*

HaPENG GONG AND ZENGYOU HE'

Phosphorylation motifs represent common patterns
around the phosphorylation site. As the discovery of such
kinds of motifs reveals the underlying regulation mechanism
and facilitates the prediction of unknown phosphorylation
events, some phosphorylation motif discovery methods are
proposed. Existing methods include Motif-X, MoDL, and
Motif-All. Each of these methods can find a certain number
of motifs, however, there are still no theoretically guided
measures to select true phosphorylation motifs from false
ones. Since it is very expensive and time-consuming to per-
form the biological validation on all reported motifs, the
use of effective statistical methods as a preliminary filter to
remove non-significant motifs is actually needed. To solve
this problem, we use permutation to calculate p-values of
identified motifs and thus their statistical significance can
be assessed accurately. We suggest to utilize three permu-
tation methods: the Standard Permutation (SP), the Adap-
tive Marginal Effect Permutation (AMEP) and the Modi-
fied Adaptive Marginal Effect Permutation (MAMEP). We
conduct comprehensive experimental studies to demonstrate
the effectiveness of our methods. Experimental results on
real data and simulation studies show that all permuta-
tion methods are capable of removing potential false pos-
itives. Particularly, both AMEP and MAMEP are of prac-
tical use and can satisfy different requirements of biological
researchers.

KEYWORDS AND PHRASES: Phosphorylation
Frequent-pattern mining, Permutation test.

motif,

1. INTRODUCTION

The discovery of phosphorylation motifs reveals the un-
derlying regulation mechanism and facilitates the predic-
tion of unknown phosphorylation events. Recent advances in
high-throughput methods such as tandem mass spectrome-
try enable rapid and direct discovery of hundreds of phos-
phorylation sites in a single experiment [1]. Both the bio-
logical significance and the availability of a large number of
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phosphorylation sites motivated the development of phos-
phorylation motif discovery methods, such as Motif-X [2],
MoDL [3] and Moif-All [4]. Among the three motif discov-
ery methods, both Motif-X and MoDL can only find a small
subset of phosphorylation motifs, while Motif-All can dis-
cover all statistically significant phosphorylation motifs un-
der a given parameter setting [4]. Experimental results have
shown that Motif-All outperforms Motif-X and MoDL [4].
Motif-All applies Apriori algorithm [5] (a typical frequent
pattern mining algorithm) first to find frequent motifs from
the set of phosphorylated peptides P. From a statistical per-
spective, most of true phosphorylation motifs should be fre-
quent, so almost all true positives belong to the set of fre-
quent motifs. Since the number of frequent motifs is very
large, Motif-All uses p-value derived from a normal distri-
bution to measure the significance of each candidate mo-
tif. However, no multiple testing correction is carried out in
Motif-All, leading to an inaccurate motif significance assess-
ment. As a result, most false positives are still present in the
result set.

In order to assess the significance of phosphorylation mo-
tifs more accurately, we use the permutation test to calcu-
late the p-value of each motif. In this paper, we suggest three
kinds of permutations: the Standard Permutation (SP), the
Adaptive Marginal Effect Permutation (AMEP) [8], and the
Modified Adaptive Marginal Effect Permutation (MAMEP).
We conduct experimental studies to test the performance
of the three permutation methods using the PhosPhAt
database 3.0 of Arabidopsis phosphorylation sites [6, 7] and
simulated data.

The rest of the paper is organized as follows: Section 2
presents the details of the three permutation methods. Sec-
tion 3 and section 4 show the experimental results on real
data and simulated data, respectively. Section 5 concludes
the paper.

2. METHODS
2.1 Basic terminology

Phosphorylation motif is a consensus sequence that con-
sists of conserved positions and wild-card positions that can
match any residue. Here residues symbolize amino acids. For
example, (S....... GY......A...) is a phosphorylation motif. It
contains a single phosphorylated residue, which is denoted
with an underlined character Y, 3 conserved positions (S, G
and A) and 17 wild-card positions (.). Also, it can be writ-
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ten as a combination of attribute-values, (RO = S, R9 = G,
R17 = A) in which the attribute symbolizes the position
of residue and value symbolizes certain amino acid. In this
form, we only record its conserved positions, and define the
size of a phosphorylation motif as the number of conserved
positions it contains. For simplicity, motifs with size k are
called k-motifs. We define “attribute combination” as the set
of attributes involved in the conserved positions of a motif.
For instance, (RO, R9, R17) is the corresponding attribute
combination of the example motif. For each motif, we define
f-counter as the number of matching peptides in the set of
phosphorylated peptides P and b-counter as the number of
matching peptides in the set of unphosphorylated peptides
N. Finally, the support of a motif is defined as the relative
frequency of the motif among the set of phosphorylated pep-
tides P. For example, if there are 1,000 peptides in the set
of phosphorylation peptides P, and 40 of them match the
motif m, then the support of m is 4%.

2.2 Odds ratio and z-value

The methods of calculating odds ratio and z-value are the
same as those applied in Motif-All [4]. The odds of an event
is defined as the probability that this event occurs divided
by the probability that it does not occur. The odds ratio is
defined as the ratio of the odds of an event in one group to
the odds in the complementary group.

In the context of phosphorylation motif discovery, the
first group corresponds to the set of phosphorylated pep-
tides P and the second group is the set of unphosphorylated
peptides N. For a given motif m, we can construct a contin-
gency table as shown in Tab. 1. In this table, cgg, co1, c10 and
c11 are non-negative “cell counts” and m denotes that the
motif m doesn’t exist. Then, the calculation of odds ratio
becomes:

(1)

CooC11

OR(m) = .
€10C01

An odds ratio of 1 means that the target motif is equally
likely to be present in both P and N. An odds ratio greater
than 1 indicates that this motif is more likely to appear in
the set P.

To conduct statistical inference, one approach is to use
large sample approximations to the sampling distribution of
the log odds ratio. More precisely, the sample log odds ratio
is:

(2) LOR(m) = log (M),

C10Co01

and the standard error for the log odds ratio is approxi-
mately:

(3) SE(m) =4/ —+ —+ — + —.

€00 Co1 C10 C11

Then, z-value
(4)
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Z(m) = LOR(m)/SE(m),

Table 1. A contingency table for a phosphorylation motif

m m
P Coo co1
N C10 C11

is used as the statistic in the calculation of p-value in our
permutation methods. The respective null and alternative
hypotheses of the statistical inference are as follows:

e Null hypothesis: the distributions of motifs in fore-
ground data and background data are the same.

e Alternative hypothesis: the distributions of motifs in
foreground data and background data are different.

2.3 Modified FP-growth

Frequent patterns are patterns (such as itemsets, subse-
quences, or substructures) that appear in a data set fre-
quently. Here we apply the term “itemsets” as patterns to
explain the basic definitions. Let I = {I1,Is,...,I;,} be
a set of items. Let D, the task-relevant data, be a set of
database transactions where each transaction 7' is a set of
items such that T° C I. Each transaction is associated with
an identifier, called TID. Let E be a set of items. A transac-
tion T is said to contain F if and only if £ C T'. The itemset
F holds in the transaction set D with support s, where s is
the percentage of transactions in D that contain E. E can
be claimed as a frequent itemset if its support is larger than
a given threshold. Frequent subsequences or substructures
are similar in definition and they are all called frequent pat-
terns. In this paper, we need to discover frequent motifs from
phosphorylated peptide set P, and these frequent motifs are
also in the scope of frequent patterns.

To discover frequent motifs, Motif-All applied Apriori [5],
which is one typical algorithm for frequent pattern mining.
Apriori employs an iterative approach known as a level-wise
search, where patterns of size k are used to explore patterns
of size k + 1. First, the set comprising patterns of size 1 are
found by scanning the database and collecting those ones
that satisfy minimum support. The resulting set is denoted
by L;. Next, Ly is used to find Ly, the set comprising fre-
quent patterns of size 2, which is used to find L3, and so on,
until no more frequent patterns of size k can be found. The
discovery of each Lj requires one full scan of the database.
To improve the efficiency of the level-wise generation of fre-
quent patterns, Apriori further uses an important property
“All nonempty subsets of a frequent pattern must also be
frequent” to reduce the search space.

Apriori is efficient in frequent pattern mining, however,
it has some limitations [9]:

o It is likely to generate a large number of candidates. For
example, if there are 10* frequent patterns of size 1, the
Apriori algorithm will need to generate more than 107
candidate patterns of size 2. Moreover, to discover a



frequent pattern of size k, it has to generate at least
2% — 1 candidates in total.

e It needs to repeatedly scan the database and check a
large set of candidates by pattern matching.

In order to mine the complete set of frequent patterns
without candidate generation, Han et al. proposed the fre-
quent-pattern growth algorithm or simply FP-growth [11],
which adopts a divide-and-conquer strategy as follows.
First, it compresses the database representing frequent items
into a frequent-pattern tree, or FP-tree. It then divides the
compressed database into a set of conditional databases
(a special kind of projected database), each associated with
one frequent item or “pattern fragment”, and mines each
such database separately.

The FP-growth method transforms the problem of finding
long frequent patterns to searching for shorter ones recur-
sively and then concatenating the suffix. It uses the least
frequent items as a suffix, offering good selectivity. This
method substantially reduces the search costs. FP-growth
is efficient and scalable for mining both long and short fre-
quent patterns, and is about an order of magnitude faster
than the Apriori algorithm. Hence, it is very appropriate to
be used for frequent motif discovery.

Due to the specific format of our data, we cannot
use FP-growth directly. So we first transform peptide se-
quences into transaction format. For example, the peptide
(PTGAQIIYSKYAGTEVEFNDV) will be transformed into
a transaction {1P, 2T, 3G, 4A, 5Q, 61, 71, 8Y, 9S, 10K, 11A,
12G, 13T, 14E, 15V, 16E, 17F, 18N, 19D, 20V }. In this case,
the same amino acid in different positions of the peptide
will be regarded as different items in the transformation.
After the transformation, we apply FP-growth algorithm to
find all the frequent patterns, and then we recover the fre-
quent patterns to frequent motifs for later usage. The whole
process for discovering frequent motifs is named “Modified
FP-growth” in this paper.

2.4 Overview of standard permutation

In statistics, permutation is used to generate an appropri-
ate null distribution, from which p-values can be calculated
accurately. In general, we need three steps [10]:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without
replacement in a way that is consistent with the null
hypothesis of the test and with the study design. Con-
struct the permutation distribution of the statistic from
its values of a large number of resamples.

3. Calculate the p-value by locating the original statistic
in a large number of resamples.

In the permutation test, the use of more permutations will
lead to more accurate p-value calculation; Meanwhile, it will
become more time-consuming. In practice, we typically use
1,000 permutations in the test.

2.5 Standard permutation

Standard permutation has the following null and alterna-
tive hypotheses:

e Null hypothesis: the distributions of motifs in fore-
ground data and background data are the same.

e Alternative hypothesis: the distributions of motifs in
foreground data and background data are different.

2.5.1 Direct standard permutation

Let Z be the set of all z-values obtained from the permu-
tation test and let |Z| denote the size of Z. We can divide
Direct Standard Permutation (DSP) into three stages:

1. Run Modified FP-growth on the original set of phos-
phorylated peptides P and then compute z-values of
the identified frequent motifs.

2. Generate independent data sets by randomly permuting
the class labels. Here we randomly select peptides from
the set of phosphorylated peptides P and the set of
unphosphorylated peptides N to build up a new set P
as well as a new set V. Then, we run Modified FP-
growth on the new data set to get frequent motifs and
calculate their z-values. Repeat the step for L times,
and add all z-values during all L runs to Z.

3. Obtain p-value from Z. For each identified motif m
found in step 1, we define T as the number of z-values
which are larger than the z-value of m, then the final
p-value of motif m is T'/|Z|. The motifs whose p-values
are smaller than the threshold are returned to user.

The algorithm description is shown in Algorithm 1.
2.5.2 Improved Standard Permutation (ISP)

DSP applies the standard permutation method directly
and is easy to use, however, it is time-consuming as it needs
to update b-counter through traversing the set of unphos-
phorylated peptides N in each permutation. In DSP, for
every frequent motif in each permutation, a traversal of P
set and N set is needed. In order to improve the efficiency,
it is necessary to decrease the number of traversals. As the
size of N set is definitely large, most time is wasted on the
process of updating b-counter. For each motif, f-counter
and b-counter are different in different permutations, but
their sum is always the same. In other words, permutation
changes the distribution of peptides in P set and NN set,
however, the support of each motif in the whole data never
changes. So when performing stage 1, we record the infor-
mation of frequent motifs including f-counter and b-counter
through a data structure named MotifRecords. When per-
forming permutations in stage 2, after updating f-counter,
we first look for the motif in MotifRecords. If it exists, we
update its b-counter as the result of a recorded sum sub-
tracting f-counter; If it is not found, we update b-counter
through counting the number of matching peptides from N
set, and then add information of the motif to MotifRecords.
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Algorithm 1 Direct Standard Permutation (DSP)

Algorithm 2 Improved Standard Permutation (ISP)

1. Initialization: Let F' be the set of frequent motifs found
from the original data set. Let Z be the set of all z-values
obtained from the permutation test and |Z| denote its
size.

2. Search all motifs whose support is above a threshold s by
applying Modified FP-growth. This produces F'.

3. For each motif m € F, compute its z-value using its f-
counter and b-counter.

4. For 5 = 1,2,...,L (j is the permutation index and L is
the number of permutations),

(a)

Generate independent data sets by randomly per-
muting the class labels.

(b) Search and count all motifs whose support is above
a threshold s using Modified FP-growth. This pro-

duces a set of frequent motifs G;.

(c)

For each motif m € G, compute its z-value using
its f-counter and b-counter.

Add z-value of each motif m € G; to Z.

(d)

5. For each motif m € F, get the number of z-values which
are larger than the z-value of m as T', then the permuta-
tion p-value, P*(m), is given by P*(m) = T/|Z|.

6. Obtain the set of significant motifs G as {m € F:
P*(m) < a}, where a is the significance threshold for
the p-values.

So as the permutation test goes on, the number of motifs
in MotifRecords becomes larger and larger so that more
and more motifs can update their b-counter through Mo-
tifRecords rather than traversing N set. Obviously, this will
save a lot of time. In a test using data PhAtY, we perform
1,000 permutations. DSP takes 98 minutes while ISP takes
only 9 minutes. It shows that the ISP method can drastically
improve the efficiency of a standard permutation test.

The algorithm description is shown in Algorithm 2.

2.6 Adaptive Marginal Effect Permutation
(AMEP)

The Adaptive Marginal Effect Permutation method is ini-
tially proposed for detecting epistasis in disease association
studies [8]. With minor changes, it can be used for assessing
phosphorylation motifs as well. This kind of permutation
differs from standard permutation in two important ways.

Firstly, in standard permutation method p-values for the
motifs of different size are tested together, which means that
they use the same permutation null. Since the number of
possible motifs increases combinatorially with their size and
motifs of larger size are prone to have small p-values, the
motifs of smaller size may be overwhelmed if we use the same
permutation null. This problem will become more and more
serious as the size of motifs under investigation increases.
To overcome this limitation, AMEP tests motifs of different
size separately with different permutation nulls.

64 H. Gong and Z. He

1. Initialization: Let F' be the set of frequent motifs found
from the original data set. Let Z be the set of all z-values
obtained from the permutation test and |Z| denote its
size.

2. Search all motifs whose support is above a threshold s by
applying Modified FP-growth. This produces F'.

3. For each motif m € F, compute its z-value using its f-
counter and b-counter.

4. For each motif m € F, add its information into Mo-
tifRecords.

5. For 7 = 1,2,...,L (j is the permutation index and L is
the number of permutations),

(a) Generate independent data sets by randomly per-
muting the class labels.

(b) Search and count all motifs whose support is above
a threshold s using Modified FP-growth. This pro-

duces a set of frequent motifs G;.

(c) For each motif m € Gj, look for m in Mo-
tifRecords. If it is already there, update its b-
counter through MotifRecords; Otherwise, update
its b-counter through traversing N set, and then add
its information into MotifRecords.

(d) For each motif m € Gj, compute its z-value using
its f-counter and b-counter.

(e) Add z-value of each motif m € G; to Z.

6. For each motif m € F', get the number of z-values which
are larger than the z-value of m as T, then the permuta-
tion p-value, P*(m), is given by P*(m) = T/|Z|.

7. Obtain the set of significant motifs G as {m € F:
P*(m) < a}, where « is the significance threshold for
the p-values.

Secondly, since we conduct a separate permutation test
for motifs of different size, the permutation null for longer
motifs should take into account the effects detected among
the shorter ones. For example, if an attribute combination
(R1, R5) has been determined to be significant, then many
3-motifs that contain this attribute combination may be
significant as well. More generally, if the effect of an at-
tribute combination can be explained by one or more of its
sub-combinations, then we should try to recover such sub-
combinations rather than declare the longer one to be sig-
nificant. Thus, the significant motifs of size up to n-1 should
be considered in constructing the null hypotheses for motifs
of size n.

The basic idea of AMEP is to test 1-motifs first followed
by the 2-motifs using the effects detected in the 1-motifs as
the null, and then test the 3-motifs using the effects detected
in the 1-motifs and 2-motifs as the null, so forth and so on
until for testing n-motifs there are no frequent motifs with
size n found by Modified FP-growth.



0-DGYDRRYGDRYSPGGRSPGFE  (P)
1-DGNEVVEPVDYGKSKADDEFE  (P)
2-AEKKKTKKPSYPSSSMKSKVY  (N)
3-MTKDELTEEEYLSGKDYLDPP  (N)
4-RHKDSLAAAEYPDGMKVSNSH  (N)
5-GGTAVGKDLLYDGDSVKSSTD ~ (N)

Figure 1. Original data set P and N.

Suppose we have completed our testing for motifs of size
up to n — 1, and have arrived at a set, S,_1), of significant
attribute combinations up to size n— 1. Here we declare that
an attribute combination is significant as long as one of its
corresponding motifs is significant. To test the n-motifs, we
first divide them into C' groups in such a fashion that the
motifs within each group share exactly the same set of sig-
nificant attribute combinations. The idea is to construct a
separate permutation null for each of the C' groups. It should
be noted that C' depends on both n and S(,,_1). For exam-
ple, suppose we have tested 2-motifs, and the significant
attribute combinations So = {(R1), (R2), (R2,R3)}. When
testing 3-motifs, we divide them into at most C' = 6 groups:

e (1: those that contain (R1), but do not contain either
(R2) or (R2,R3).

G3: those contain (R2), but do not contain either (R1)
or (R2,R3).

G3: those that contain (R2,R3), but do not contain
(R1).

G4: those that contain (R1) and (R2), but do not con-
tain (R2,R3).

e Gs5: those that contain (R1), (R2), and (R2,R3).

e Gg: those that contain none of (R1), (R2), (R2,R3).

Here “at most” means that in practice when partitioning 3-
motifs, we may get no more than 6 groups. For instance, if
there are no 3-motifs that contain (R1), (R2) and (R2,R3),
then G5 is empty, so it is not necessary to generate G5 in
our test and the number of groups we get is smaller than 6.

The C permutation nulls, one for each of the C groups,
can be constructed simultaneously by permuting the class
label together with all the attribute combinations in S, _1).
Here we give a concrete example to explain details of the
procedure and show how it differs from the standard per-
mutation method. As shown in Fig. 1, suppose the first two
peptides belong to the set of phosphorylated peptides P,
and the remaining 4 are present in the set of unphospho-
rylated peptides N. We have tested 1-motifs, and the set
of attribute combinations S7 we get contains four elements
(RO), (R1), (R19), (R20). Suppose we generate a random
permutation of sample id: 3, 4, 1, 0, 2, 5. That means in the
new permutation data, P contains 3, 4 and N contains 1, 0,
2, 5. Then according to this random permutation, we should
do the following assignment: 0 to 3, 1 to 4, 2to 1, 3 t0 0, 4 to
2 and 5 to 5. In the standard permutation method, this just

0-DGYDRRYGDRYSPGGRSPGFE ~ (N)

1-DGNEVVEPVDYGKSKADDEFE ~ (N)
2-AEKKKTKKPSYPSSSMKSKVY ~ (N)
3-MTKDELTEEEYLSGKDYLDPP  (P)
4-RHKDSLAAAEYPDGMKVSNSH  (P)
5-GGTAVGKDLLYDGDSVKSSTD ~ (N)

Figure 2. Standard permutation results.

0-MTYDRRYGDRYSPGGRSPGPP  (N)
1-AENEVVEPVDYGKSKADDEVY ()
2-RHKKKTKKPSYPSSSMKSKSH ~ (N)
3-DGKDELTEEEYLSGKDYLDFE ~ (P)
4-DGKDSLAAAEYPDGMKVSNEE ~ (P)
5-GGTAVGKDLLYDGDSVKSSTD  (N)

Figure 3. Adaptive marginal effect permutation results.

means in the new permutation data, P contains sample 3,
4 and N contains sample 1, 0, 2, 5. There are no data swap
but just labels. For instance, 0 to 3 just means the label of
sample 0 is given to sample 3. The final results are given in
Fig. 2. However, in AMEP, we should permute the class la-
bel together with all the attribute combinations in S, which
means that we should not only assign the sample label, but
also assign the residues associated with S;. Since S; con-
tains (RO), (R1), (R19) and (R20), the residues in position
of 0, 1, 19 and 20 are supposed to be permuted together
with the label at the same time. The results are shown in
Fig. 3, in which the blue residues are assigned based on S .

For each permutation, we apply Modified FP-growth just
as we did for the original data. By pooling the z-values of
the motifs belonging to each of the C groups from all the
permutations, we obtain a sample of z-values from the per-
mutation null for each of the C' groups. Then the p-value
for a motif can be computed as the proportion of permuta-
tions that generated a more significant z-value in the corre-
sponding group. Those motifs whose p-values pass a signif-
icance threshold, for example, 5%, are declared significant,
and their corresponding attribute combinations are joined
with S(,_1) to form S,,. The algorithm description is shown
in Algorithm 3, adapted from [8].

2.7 Modified adaptive marginal effect
permutation

We propose the Modified Adaptive Marginal Effect Per-
mutation because of the special characteristics of our data.
The motivation behind this new method and the corre-
sponding changes are follows.

The first one is that the case data set and control data
set are of the similar size in [8] when performing a permu-
tation test. However, our case data (the set of phosphory-
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Algorithm 3 Adaptive Marginal Effect Permutation
(AMEP)

1. Initialization: Let F' be the set of frequent motifs found
from the original data set. Let S be the set of significant
attribute combinations, and Sp = @.

2. Search all motifs whose support is above a threshold s by
applying Modified FP-growth. This produces F'.

3. For each motif m € F, compute its z-value using its f-
counter and b-counter.

4. Forn=1,2,..., max.length,

(a) Take all frequent motifs with size n from F' to con-
struct G.

(b) Partition frequent motifs that G contains into
groups G1,Ga,...,Gc according to the significant
attribute combinations in S(,—_1) they contain. Let
Z1, 23, ..., Zc be the corresponding collections of z-
values.

For j = 1,2,...,L (j is the permutation index and
L is the number of permutations),

i. Permute the response label together with the
attributes involved in S(,_1).

ii. Search and count all motifs whose support is
above a threshold s using Modified FP-growth.
This produces a set of frequent motifs G,

iii. For each motif m € GY), compute its z-value
using its f-counter and b-counter.

iv. Classify frequent motifs that G contains into
groups Ggﬂ, ng), ey G(g> according to the sig-
nificant attribute combinations in S(,_1) they
contain. Let Zij),Zéj),...,Z(Cj) be the corre-
sponding collections of z-values.

For each motif m € G;,i=1,2,...,C, the permuta-
tion p-value, P*(m), is given by P*(m) = #{j: max
Z9) > Z(m)}/L.

Set S = Sm-1)J {the corresponding attribute
combinations of m € G : P*(m) < a}, where «
is the significance threshold for the p-values.

lated peptides P) and control data (the set of unphospho-
rylated peptides N) are very different in size. For example,
in PhAtY data set [4], the size of P is 80 while the size of
N is 304344. Such extreme unbalance may cause a poten-
tial problem when performing a permutation directly. More
precisely, the permuted sample ids are totally random, so
almost all peptides in the new set P come from the original
set N. From the original P set, we can find a lot of frequent
motifs, especially some long motifs, In contrast, we may only
find a very small number of frequent motifs from the new set
P since most peptides it contains are from the original set N.
As a result, in the final null distribution, there are very few
motifs whose z-values are larger than that of frequent mo-
tifs of a larger size found from the original P set. Hence, it
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is very hard to prune those frequent motifs even permuting
the class label together with lower-order attribute combi-
nations they contain. In order to alleviate the influence of
unbalanced data distribution, we make some changes in the
procedure of permuting response labels. Here we use a new
sample id permutation method in which only 50 percent of
phosphorylated peptides change their response labels. We
name this modification as the fixed percentage constraint.

We define |P| as the size of P and |N| as the size of N.
Suppose I is the set of ids from 0 to |P| + |[N| — 1. First
we permute I to get random sample ids for generating Ij.
Second, we take | P|/2 ids whose values are smaller than |P|
from the beginning of Iy to construct |I;|, analogously, we
take |P|/2 ids whose values are not smaller than |P| from
the beginning of Iy to construct I, and the remaining ids of
Iy are used to construct I3. Third, we combine I; and I to
construct Iy. Fourth, we randomly permute the ids in I to
construct I, as well as the ids in I35 to construct I,,. Finally,
we use I, and I, as the set of random sample ids to finish the
permutation. For example, suppose there are 4 peptides in
P and 6 peptides in N, the procedure for permuting sample
ids is shown in Fig. 4.

The second one is that in detecting epistasis in disease
association studies [8], for one genetic pattern, the number
of potential markers is very large compared to the number of
true significant markers. However, in phosphorylation motif
discovery, our data set consists of only 20 attributes. In this
case, if we fix all the significant attributes in S(,_) at the
same time, the number of free attributes will be reduced
greatly. To be more precise, as the size of tested motifs in-
creases, more and more residues of peptides in the original
data set and the new data set will be the same. As a re-
sult, the distribution of z-values of these long frequent mo-
tifs found from the original data set and the new data set
are almost the same. Obviously this is not reasonable since
permutation test for long frequent motifs finally becomes
unnecessary. Our solution to this problem is to fix only one
significant attribute combination in S(,_1) in each permu-
tation. We call this modification as the fixed attribute con-
straint. For example, suppose we have completed the testing
of 2-motifs, and get S = {(R1), (R2), (R2, R3)}. To test
the 3-motifs, we use following permutations:

e In the first permutation, we permute the response label
together with R1.

e In the second permutation, we permute the response
label together with R2.

e In the third permutation, we permute the response label
together with R2 and R3.

e In the fourth permutation, we permute the response
label together with R1, so forth and so on until all the
permutations are finished.

We permute the response label together with only one at-
tribute combination involved in S circularly until all the
permutations are finished.
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Figure 4. The procedure of permuting sample ids for MAMEP. In this method, only 50 percent of phosphorylated peptides
change their response labels in the new permutation data.

Since there are special characteristics of data, we make
two major improvements as described above. Overall, the
null hypothesis underlying MAMEP is that the distribu-
tions of motifs in foreground data and background data are
the same under the fixed percentage constraint and fixed
attribute constraint. A formal algorithm-style description
of MAMEP is provided in Algorithm 4.

3. EXPERIMENTAL STUDIES ON REAL
DATA

3.1 Data

We use the PhosPhAt database 3.0 of Arabidopsis phos-
phorylation sites [6, 7] to construct the set of phosphory-
lated peptides P. Only the unambiguous site identifications
are utilized in the constructing process. The length of each
extracted peptide is 21 with a measured phosphorylated
residue in the 11th position. To generate the background
data set N, we first extract all 21-mers with a phosphory-
lated residue in the center position from the TAIR7 protein
database. Then, we remove all peptides already in P. The re-
maining peptides form N. Overall, we generate three groups
of data for serine (denoted by PhAtS), threonine (denoted
by PhAtT) and tyrosine (denoted by PhAtY), respectively.
Their characteristics are the following:

e PhAtS: Tt contains 2,734 foreground sequences (P set)
and 982,050 background sequences (N set).

e PhAtT: It contains 415 foreground sequences (P set)
and 550,574 background sequences (N set).

e PhAtY: It contains 80 foreground sequences (P set) and
304,344 background sequences (N set).
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Figure 5. Time comparison between DSP and ISP. Here we

perform 100 permutations in both methods. The algorithms

are implemented with Java and tested on a Lenovo notebook
computer with 2.10GHz CPU and 2GB RAM.

3.2 Time comparison between DSP and ISP

ISP needs only some additional space for storing Mo-
tifRecords, which consists of several hundred frequent mo-
tifs. That means DSP and ISP has the same space complex-
ity. Hence, we only conduct a time comparison between ISP
and DSP in the experimental section. We perform 100 per-
mutations on PhAtY, PhAtT and PhAtS, respectively. The
results are plotted in Fig. 5. It shows that ISP can drasti-
cally improve the efficiency. As ISP is much more efficient
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Algorithm 4 Modified Adaptive Marginal Effect Permuta-
tion (MAMEP)

1. Initialization: Let F' be the set of frequent motifs found
from the original data set. Let S be the set of significant
attribute combinations, and So = @. Let |S| be the size
of S.

2. Search all motifs whose support is above a threshold s by
applying Modified FP-growth. This produces F'.

3. For each motif m € F, compute its z-value using its f-
counter and b-counter.

4. Forn=1,2,..., max.length,

(a) Take all frequent motifs with size n from F to con-

struct G.
(b) Classify frequent motifs that G contains into groups
G1,G2,...,Gc according to the significant at-

tribute combinations in S(,_1) they contain. Let
Z1, 22, ..., Zc be the corresponding collections of z-
values.

(¢) For 5 =1,2,...,L (j is the permutation index and
L is the number of permutations),

i. Permute the sample ids using the new sample
id permutation method.

ii. Let r be the remainder obtained through j di-
vided by [S(,—1)|- Let attribute combination a
be the element of S(,,_1) with the index r.

iii. Permute the response label using the new sam-
ple ids together with the attributes involved in
a.

iv. Search all motifs whose support is above a
threshold s with Modified FP-growth. This pro-
duces a set of frequent motifs G,

v. For each motif m € GV, compute its z-value
using its f-counter and b-counter.

vi. Classify frequent motifs that GY) contains into
groups G§j>, Géj), ey Gg> according to the sig-
nificant attribute combinations in S(,_1) they
contain. Let Z{j),Zéj),...,Zg) be the corre-
sponding collections of z-values.

(d) For each motif m € G;,¢=1,2,...,C, the permuta-
tion p-value, P*(m), is given by P*(m) = #{j: max
Z9) > Z(m)}/L.

(e) Set Sn = Sm-1)J {the corresponding attribute
combinations of m € G : P*(m) < a}, where «
is the significance threshold for the p-values.

than DSP, we take ISP as the practical method of SP to
conduct the following experiments.

3.3 Number of reported motifs

In Motif-All, we perform its software using its default
configurations: the support threshold is 0.05 and the signif-
icance threshold is 1076, In SP, AMEP and MAMEP, we
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Figure 6. The comparison on the total number of reported
motifs on the real data.

set the support threshold to 0.05 and the p-value threshold
(significance level) to 0.05. We perform 1,000 permutations
for each method and the detailed information on the num-
ber of reported motifs of different size is shown in Tab. 2.
The comparison on the total number of reported motifs is
shown in Fig. 6.

Firstly, we compare our methods according to the mo-
tifs that have been detected by at least three algorithms
in previous studies. From [4], we know that motifs found
simultaneously by Motif-X, MoDL and Motif-All from

these three data sets are (....... R.S..ccoc... | G- SP......... ),
(v TP......... ) and (..o....... Y..R.....). SP and AMEP
can find all the four motifs while MAMEP eliminates
(oo R.S.......... ) and can find the other three motifs. We
then check the z-value of (....... R.S.......... ) and find that it is
only 7.35, which is not very large compared with other signif-
icant motifs (e.g., the z-value of (.......... SP......... ) is 51.32).

Secondly, we compare our methods with Motif-All. Ap-
plying Modified FP-growth and Apriori can find the same
set of frequent motifs, so the main difference between our
methods and Motif-All is the significance testing method.
Motif-All calculates the p-value of each motif without a mul-
tiple testing correction. Our methods use three kinds of per-
mutation approaches to estimate the significance of motifs.
From the results shown in Tab. 2 and Fig. 6, we can find
that the distribution of motifs reported by AMEP is sim-
ilar to that of Motif-All. On PhAtY, AMEP filters more
2-motifs and 3-motifs than Motif-All while Motif-All filters
more 1-motifs than AMEP on PhAtT and PhAtS. Across
all three data sets, we can see that MAEMP usually tends
to eliminate more motifs than Motif-All.

Thirdly, we compare the three permutation methods. As
shown in Tab. 2 and Fig. 6, SP retains too many motifs,
especially short motifs. This indicates that using standard
permutation directly is not effective enough in filtering mo-
tifs. AMEP retains less motifs than SP since it removes more



Table 2. The number of reported motifs of different size. Here the size of motifs ranges from 1 to 7. In PhAtT and PhAtS, no
significant motifs with a size larger than 2 could be detected. Therefore, the corresponding number is 0
) The size of motif
Data Algorithms 7 3 3 7 7 G 7
Motif-All 1 74 50 38 21 7 1
SP 3 82 50 38 21 7 1
PhAtY AMEP 1 16 45 38 21 7 1
MAMEP 1 6 29 37 21 7 1
Motif-All 3 2 0 0 0 0 0
SP 51 2 0 0 0 0 0
PhALT AMEP 7 2 0 0 0 0 0
MAMEP 1 1 0 0 0 0 0
Motif-All 57 4 0 0 0 0 0
SP 102 4 0 0 0 0 0
PhAtS AMEP 68 1 0 0 0 0 0
MAMEP 1 4 0 0 0 0 0
nonsignificant motifs by taking into account the effect of sig- 4.1.1 Data

nificant low-order motifs. MAMEP prunes more motifs than
AMEP and retains the least motifs. If we regard the mo-
tifs found simultaneously by Motif-X, MoDL and Motif-All
as the true phosphorylation motifs, we can conclude that
AMEP has a lower FDR than Motif-All and SP. MAMEP
has a lower power but its FDR is obviously much lower than
the other three methods.

Since the true phosphorylation motifs are not known for
the real data, we can only make inference in such a man-
ner. In order to quantitatively demonstrate the effectiveness
of our methods, we conduct simulation studies in the next
section.

4. SIMULATION STUDIES

In order to further demonstrate the effectiveness of our
permutation methods, we perform simulation studies. Here
we conduct two simulation experiments: the first one is
used for demonstrating AMEP’s advantage of eliminating
false positives against SP; the second one is conducted for
comparing the performance of Motif-All, SP, AMEP and
MAMEP on phosphorylation motif discovery.

4.1 Simulation study for demonstrating
AMEP’s advantage over SP

In section 2.5, we have described that AMEP differs from
SP in two important ways: the first one is that AMEP tests
motifs of different size separately with different permuta-
tion nulls; the second one is that, AMEP takes the effects
detected among shorter motifs into the construction of per-
mutation null for longer motifs. When the effect of an at-
tribute combination can be explained by one or more of
its sub-combinations, AMEP is able to recover such sub-
combinations rather than declare the longer one to be sig-
nificant. In order to demonstrate this important capability,
we generate four groups of data in the first simulation study
as follows.

We first construct a synthetic group of data consist-
ing of 20 instances as the foreground data, where each
instance has two planted motifs, (.......... Y..PE......) and
(cereee ND.Y.......... ). For each instance, the non-conserved po-
sitions are chosen uniformly according to the background
distribution (here we use set NV of PhAtY as the background
distribution). We then add 20, 40 and 60 peptides chosen
randomly from the background data to the initial foreground
data, yielding four groups of foreground data consisting of
0%, 33.3%, 50% and 60% background peptides respectively.
For each foreground data set P, we eliminate the peptides
already in P from the background data of PhAtY and the
remaining peptides form the new background data set N.
Their characteristics are the following:

e PhAtY_1: It contains 40 foreground sequences (P set)
and 304,343 background sequences (N set).

e PhAtY_2: It contains 60 foreground sequences (P set)
and 304,323 background sequences (N set).

e PhAtY_3: It contains 80 foreground sequences (P set)
and 304,303 background sequences (N set).

e PhAtY _4: It contains 100 foreground sequences (P set)
and 304,283 background sequences (N set).

4.1.2 Results

Similar to experiments on the real data, we take p-
value threshold as 0.05, which means that we keep the
type I error or significance level at 0.05. The support
threshold s for the four data sets is set to be 0.15,
0.1, 0.075 and 0.06, respectively. Here this parameter
is manually tuned so as to report as less false posi-
tives as possible while retaining all true positives. As

the synthetic motifs we plant are (......... Y.PE......)
and (... ND.Y......... ), we treat (... N.XY.......... ),
(oo DY..... ) IR PP Y.Po), (v Y..E....),
(ceeee ND.X.......... ) and (.......... Y..PE......) as true phospho-

rylation motifs. We perform 11)00 permutations for each
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Table 3. The reported motifs of different size on PhAtY_1 and PhAtY_2. Here the support threshold s is 0.15 and 0.1
respectively and the size of motifs ranges from 1 to 3. On PhAtY_1, AMEP returns no false positives containing true
sub-motifs while SP returns 4 such motifs; on PhAtY_2, AMEP returns 0 such motifs while SP returns 5

PhAtY_1 PhAtY_2
SP AMEP SP AMEP
.......... Y. E.. Y. E.. Y. E.. Y. B
.......... Y..P..... Y P, e Y P, e Y P,
I-motifs | .. DYoo |, DYoo |, DYoo |, DY......
....... N.Yoooo... e NLY e NLY e NLY
......... KY..ooo..... e KY .
.......... Y...K
.......... Y.PE..... Y. PE..... Y. PE...... Y. PE......
....... ND.Y.......... i ND.Y .o i ND.Y .o i NDY .o
2-motifs Lo N. Yoo, Lo N.Y.o, LS Yo,
L.DYoooo, L..DYooo.
LS. P S..Y.P...
LoSeoYoon,
......... KY.P....
3-motifs L. NDY.... L..NDY....

Table 4. The reported motifs of different size on PhAtY_3 and PhAtY_4. Here the support threshold s is 0.075 and 0.06
respectively and the size of motifs ranges from 1 to 3. On PhAtY_3, AMEP returns 1 false positive containing true sub-motifs
while SP returns 9 such motifs; on PhAtY_4, AMEP returns 2 such motifs while SP returns 10

PhAtY_8 PhAtY_4
SP SP AMEP
.......... Y. B.. N B o N B
.......... Y.P... e YL P e YL P
1-motifs | ... DY..... |  ...DY. ... | ... DY....... | ... DY..........
....... NoYoon, Y N Y e N Yo
......... KY..o.... e KY
.......... Y....K e YK
et Y..S... | Y....S...
..... S Y., S Y,
.......... Y.D.... v Hol Y,
PN ForoX oo,
LS Y
.......... Y.PE... Y. PE... o X.PBE.... o X PBE....
....... ND.Y.......... v ND.Y oo veeee. NDY .. veeee NDY ..
2-motifs Lo . N.Y....... LS. Yo Lo.NYo.... | SY.P....
L...... DY........ | ... Y....S.L L...... DY........ | ... DY..L....
DS XYL P bDY.L... | .. S...Y..P...
L.S...Y.......... L.S...Y. ...
......... KY..P..... v KY L P
G..N.Y.......... G..N.Y..........
G...D.Y.......... G...DY..........
........ D.Y..L...... veee...DY.. L.
.......... Y.....S.L. v Y SL
........ SY.P....
3-motifs .L....ND.Y.......... .L...ND.Y..........
G...ND.Y.......... .G..ND.Y.......

method on each dataset and the results are described in a true positive as its sub-motif. We summarize the informa-
Tab. 3, Tab. 4 and Fig. 7. tion in Fig. 7, from which we can infer that when the effect

From the reported motifs in Tab. 3 and Tab. 4, we can of motifs can be explained by one or more of its sub-motifs,
see that AMEP is much more powerful on eliminating false AMEP can effectively recover such sub-motifs rather than
positives than SP, especially on false positives which contain declare the longer ones to be significant.
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Figure 7. The comparison on the number of false
positives containing true sub-motifs between SP and
AMEP. Here we perform 1,000 permutations in both

methods on PhAtY_1, PhAtY_2, PhAtY_3 and
PhAtY 4.

4.2 Simulation study for comparing the
performance

4.2.1 Data

In order to demonstrate the effectiveness of our meth-
ods in phosphorylation motif discovery, we should generate
simulated data whose characteristics are as close as possi-
ble to the real data. To achieve this objective, we construct
the simulated data according to the method shown in Algo-
rithm 5.

Using Algorithm 5, we obtain 10 simulated datasets. Low
support or low odds ratio motifs are rarely reported by the
existing methods or our permutation methods on the real
data, so such motifs planted in our simulated data should
not be regarded as true phosphorylation motifs. In order to
alleviate this problem, we sort those 6 planted 1-motifs in
descending order with respect to their odds ratio and keep
the first 4 motifs as the true phosphorylation motifs. We
perform the same operation for 6 planted 2-motifs as well.
As a result, 8 motifs are treated as true phosphorylation
motifs.

4.2.2 Results

In Motif-All, we use its default configurations: the sup-
port threshold = 0.05 and the significance threshold = 107,
In SP, AMEP and MAMEP, we set the support thresh-
old to 0.05 and the p-value threshold (significance level)
to 0.05. We perform 1,000 permutations for each permu-
tation method. The comparison result in terms of the power

Algorithm 5 Simulation Data Generation Process

1. Initialize: Let A be the set of amino acids whose fre-
quency value in PhAtY is above a threshold, A={“G”,
“A”’ “S”’“P”’ “V”’ “T”’ “L”’ “I”’ “N”, “D”’ “Q”’ “K”’
“E]”7 “M77, “H777 “F777 HY777 “R”}.

2. Randomly choose a subset of k& peptides from N set of
PhAtY as the original P set (here we set k = 100).

3. Plant a set of 1-motifs and a set of 2-motifs. These two
sets of planted motifs have the same size L (here we use
L=6). The support of injected 1-motifs ranges from 0.12
to 0.23 and we enforce that the sum of their support
equals 1. The support of planted 2-motifs ranges from
0.05 to 0.1. Both the 1-motifs and 2-motifs are planted
in an iterative manner. For j = 1,2,..., L, let P be the
subset of peptide sequences from P that have not been
planted into any motifs. Firstly, we randomly choose two
amino acids S;1 and Sj2 from A and two successive posi-
tions Posj1 and Posjz. The two positions should be dif-
ferent from those that have been selected and none of
them should be the position of phosphorylated residue.
Then, we choose the first C;1 peptides from P and set
their residues at Pos;1 to be S;1. Finally, we choose next
Cj2 peptides from P and set their residues at Pos;1 and
Posjz to be Sj1 and Sj2. This process plants one 1-motif
with support (Cj1+Cj2)/k and another 2-motif with sup-
port Cja/k.

4. Eliminate all peptides that appear in our simulated P
set from N set of PhAtY, and the remaining peptides
form simulated N set.

and false discovery rate' on all ten simulated data sets are
given in Tab. 5. To describe the results in Tab. 5 in a
more vivid manner, we further summarize the comparison
results using boxplot graph in Fig. 8 and Fig. 9, respec-
tively.

From Tab. 5, Fig. 8 and Fig. 9, we can find that
both Motif-All and SP can discover all true phosphoryla-
tion motifs since their power value is always 1 through-
out all 10 data sets. However, their false discovery rates
are higher. In average, 72.6% of motifs reported by Motif-
All and 79% of motifs found by SP are false positives.
Since it is very expensive and time-consuming to per-
form biological validation on reported phosphorylation mo-
tifs, too many false positives will lead to an unnecessary
cost. From this perspective, the performances of Motif-
All and SP are not so satisfactory. In contrast, AMEP
has lower FDR compared with Motif-All and SP and its
power almost equals 1. And MAEMP achieves a power
as high as 0.863 at the FDR of 0.174. Furthermore,
we have observed that true motifs MAMEP leaves out
mostly have lower significance. In other words, MAMEP

ILet M be the set of reported phosphorylation motifs, T' be the true
ones and F be the false ones so that M = T'U F. Let 1" be the set
of true phosphorylation motifs planted in the simulated data. Then
power is computed as |T'|/|T'| and false discovery rate is computed as
|£1/1M].
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Table 5. Performance comparison of different methods in terms of both power and false discovery rate. Here we perform 1,000
permutations for each permutation method on ten simulated datasets

Data Power False Discovery Rate
Motif-All SP AMEP MAMEP Motif-All SP AMEP MAMEP
Data_1 1 1 1 0.875 0.556 0.652 0.5 0
Data_2 1 1 0.875 0.875 0.724 0.795 0.5 0.222
Data_3 1 1 1 1 0.742 0.805 0.619 0.333
Data_4 1 1 1 0.75 0.771 0.814 0.652 0
Data_5 1 1 1 1 0.724 0.795 0.5 0
Data_6 1 1 1 0.875 0.714 0.789 0.619 0.125
Data 7 1 1 1 0.75 0.742 0.771 0.619 0.143
Data_-8 1 1 1 0.625 0.758 0.833 0.579 0.286
Data_9 1 1 1 1 0.742 0.814 0.667 0.333
Data_-10 1 1 1 0.875 0.784 0.83 0.5 0.3
Ave 1 1 0.988 0.863 0.726 0.79 0.576 0.174
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Figure 8. Power of Motif-All, SP, AMEP and MAMEP on the
simulated data.

retains true motifs which are the most statistically signif-
icant.

According to different goals, AMEP and MAMEP can
both be very useful: if we don’t want to leave out true mo-
tifs and don’t care so much about the cost, AMEP is a better
choice; however, if we aim at discovering most of the signif-
icant motifs at a lower validation cost, MAMEP is strongly
recommended.

5. CONCLUSION

We introduce three permutation methods, namely, SP,
AMEP and MAMEP for significance testing of phosphory-
lation motifs. Both the experimental results on real data
and simulated data show that our methods are powerful in
separating true phosphorylation motifs from false ones.
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Figure 9. False discovery rate of Motif-All, SP, AMEP and
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MAMEP on the simulated data.
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