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Spectral library searching for peptide

identification in proteomics

HENRY LAM

Spectral library searching is an emerging approach in
peptide identification from tandem mass (MS/MS) spectra,
a critical step in proteomic data analysis. Tandem mass
spectrometry is the process by which peptides are frag-
mented by high energy in a mass spectrometer. The tan-
dem mass spectra thus collected record the mass-to-charge
ratios and abundance of the resulting fragments, and can be
used to deduce the peptide sequence. Conceptually, spectral
library searching is based on the premise that the fragmen-
tation pattern of a peptide can be viewed as a reproducible
fingerprint of that peptide, such that unknown spectra ac-
quired under the same conditions can be identified by spec-
tral matching. In practice, a spectral library is first metic-
ulously compiled from a large collection of previously ob-
served and identified MS/MS spectra, usually obtained from
real proteomics experiments of complex mixtures. Then,
a query spectrum is identified by spectral matching using
recently-developed spectral search engines. A key compo-
nent of this method is a similarity scoring function that nu-
merically defines the similarity between two spectra. In addi-
tion to the similarity score, various methods exist to evaluate
the statistical significance of the match, and hence the iden-
tification accuracy. This review aims to introduce statisti-
cians, especially those unfamiliar with proteomics data anal-
ysis to this rapidly evolving field, and to provide a high-level
description of the underlying algorithms and the outstand-
ing challenges.

KEYWORDS AND PHRASES: Spectral libraries, Spectral
searching, Proteomics, Mass spectrometry.

1. INTRODUCTION

Proteomics is the systematic study of the proteome,
which is defined as the set of all proteins and their many
isoforms in a biological system. A primary goal of pro-
teomics, therefore, is the confident, high-throughput, and
system-wide identification and quantification of all proteins
in a biological sample. For the past 20 years, thanks to con-
verging advances in genome sequencing, mass spectrome-
try, high-speed parallel computing, as well as in data analy-
sis methodology, a variety of mass spectrometry-based pro-
teomics technologies have become increasingly powerful and

accessible to life science researchers. It is now possible to
identify and quantify thousands of proteins, down to fem-
tomolar concentrations, in moderate-scale proteomic exper-
iments using the liquid chromatography—mass spectrometry
(LC-MS) platform. This technology has empowered biolo-
gists to ask questions that cannot be addressed by tradi-
tional molecular biology techniques.

Among the many proposed experimental workflows, the
most popular and well-developed method has been the
“bottom—up” approach of shotgun proteomics. In shot-
gun proteomics, proteins are first enzymatically digested
into shorter peptides, typically 5-30 amino acid residues in
length, which are more amenable to LC-MS analysis. The
peptide mixture is then optionally fractionated, before in-
jection into a reverse-phase liquid chromatography column
coupled to the mass spectrometer through an ion source.
The ion source either applies a strong electric field to ionize
the peptides in the case of electrospray ionization (ESI),
or employs a laser to energize the peptides to the point
of ionization, in the case of matrix-assisted laser desorp-
tion ionization (MALDI). In the mass spectrometer, peptide
ions are first separated based on their mass-to-charge ratios.
Then, selected ions are then isolated and fragmented to yield
characteristic fragmentation patterns, a process termed tan-
dem mass spectrometry (MS/MS). The fragmentation can
be done by high-energy collision with inert gas molecules
(collision induced dissociation, CID) or more recently by
a gas-phase reaction triggered by electron transfer (electron
transfer dissociation, ETD). The resulting fragments are de-
tected and recorded in MS/MS spectra., which were then
used to deduce the peptide sequence, usually by computa-
tional methods [1, 5, 22, 25].

To set the stage for our discussion of spectral library
searching, it is perhaps useful to explain briefly the process
of inferring sequence information from peptide fragmenta-
tion patterns. An illustrative example is shown in Figure 1,
a typical CID spectrum from the peptide VEDALSATR
(charge +2). In CID fragmentation, the amide bonds (be-
tween the carbonyl carbon and the amine nitrogen) along
the backbone are the primary cleavage sites, producing b
ions on the N-terminal side and y ions on the C-terminal side
(Figure 1). The frequency of bond breaking events is how-
ever not evenly distributed along the length of the peptide,
due to variation in bond strengths and other factors. For
example, the y7 ion (the fragment DALSATR) is about 20
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Figure 1. Assigning a tandem mass spectrum to its peptide
sequence. The spectrum from the peptide VEDALSATR
(charge 2) is shown. Two fragment ladders, the y ions (the
fragments that contain the C-terminus, black solid arrows),
and the b ions (the fragments that contain the N-terminus,
green dashed arrows (color online)) are apparent; the
corresponding fragment ion peaks are labeled (y1, b7, etc.).
The distance between two peaks in a ladder should
correspond to the mass of an amino acid. Note the variety of
peak intensities and the presence of non-b,y ions (those
without a peak label).

times more abundant than the y8 ion (the fragment EDAL-
SATR). In addition, other fragmentation events, such as loss
of neutral molecules like water and ammonia from the amino
acid side-chains, as well as many secondary fragmentation
events (i.e., fragmentation of fragments) will also occur to
some extent, also in a somewhat sequence-specific manner.
Therefore, the resulting MS/MS spectrum can contain hun-
dreds of fragment ion peaks, of intensity spanning orders of
magnitude, even for a short peptide. Fortunately, in most
cases the canonical fragment ions (b and y ions) dominate
the spectrum, as in Figure 1, and can be enriched to a large
extent by simple intensity-based filters. The locations of
these peaks in the spectrum can then be compared against
theoretically calculated m/z values of these fragments for
candidate peptide sequences, whether manually or compu-
tationally, to find the best match.

This last step of computationally assigning MS/MS spec-
tra to their peptide identifications is often the rate-limiting
step of the whole proteomics experiment, and has received
well-deserved attention in the past decade. In the early days
of proteomics, when data volume is much smaller, it was
feasible to interpret tandem mass spectra, or at least to
verify identification made by the computer, manually. But
since then, rapid advances in instrumentation have necessi-
tated the development of computational methods for this
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purpose. The most commonly used method is called se-
quence (database) searching [2, 8, 10, 17, 21], so named
because a protein sequence database is used to define the
“search space,” namely, all putative peptide candidates.
Nowadays, protein sequence databases of many model or-
ganisms are compiled from genome sequences by applica-
tion of gene prediction methods, and as such roughly de-
fine all possible peptides that can be derived from that
organism. Given this information, the sequence search en-
gine then attempts to predict the theoretical fragmentation
pattern of each candidate peptide, and compare the exper-
imental observed spectra to these theoretical spectra for
the best match. Apart from the m/z values of the canon-
ical fragment ions (b and y ions), however, few details of
the MS/MS spectrum are readily predictable from the se-
quence in practice. So sequence search engines typically as-
sume that all canonical fragments are present at equal in-
tensity in the theoretical spectra. As explained above, this
fails to capture the observed richness of empirical spectra,
in which peak intensities often differ by orders of magni-
tude, and uncommon peaks due to secondary or side-chain
cleavages abound. Therefore peptide-to-spectrum similarity
scoring in sequence searching is not optimal, contributing
to diminished sensitivity and an inability to identify lower-
quality spectra. Moreover, because of the vast search space,
sequence searching is also painfully slow and often requires
expensive computational infrastructure [20].

Recently, an alternative approach, spectral (library)
searching, which promises to address these shortcomings of
sequence searching, has drawn increasing interest. Spectral
searching, however, is not a novel concept. For decades, an-
alytical chemists have gathered reference mass spectra of
small molecules, compiled them into a searchable library,
and used spectral matching as a means to identify mass
spectra from unknown analytes [4, 19]. In 1998, it was first
suggested the same approach can be used in proteomics to
identify peptide MS/MS spectra [27]. Faced with the diffi-
culty of obtaining enough data to compile spectral libraries,
the idea failed to catch on until recently, when several tech-
nological advances converge to produce an explosion of pro-
teomic data. The development of LC/MS platforms that can
handle complex protein samples, the advent of the modern
mass spectrometer of much improved throughput, the mat-
uration of proteomic data analysis methods, the standard-
ization of data formats and the emergence of public data
repositories all contribute to making it feasible to compile
spectral libraries of peptides. In fact, the National Institute
of Standards and Technology of the United States began in
2006 to extend their mass spectral library, previously con-
sisting of small molecules, to include peptides. Parallel to
this development is the advent of spectral search engines de-
signed to utilize spectral libraries for peptide identification
[3, 9, 15]. Table 1 lists some useful websites for obtaining
spectral libraries and spectral search engines developed in
the past few years.



Table 1. Useful websites for spectral library building and searching tools, adapted from Ref. [13]

NISTMS Search

Software and library download, instructions
e http://peptide.nist.gov/

X!Hunter

Software download

e ftp://ftp.thegpm.org/projects/xhunter/binaries
Library download

e ftp://ftp.thegpm.org/projects/xhunter/libs
Web client to X!Hunter on remote server

e http://xhunter.thegpm.org/

Bibliospec

Software download

e http://depts.washington.edu/uwcdc/express-licenses/assets/bibliospec/
Library download and instructions

e http://proteome.gs.washington.edu/software/bibliospec/documentation/

SpectraST Software download

e http://sourceforge.net/projects/sashimi/files/ (SpectraST is part of Trans Proteomic Pipeline)

Library download

e http://www.peptideatlas/speclib/

e http://peptide.nist.gov/
Instructions

e http://tools.proteomecenter.org/wiki/index.php?title=SpectraST
Web client to SpectraST on remote server
e http://www.peptideatlas.org/spectrast/

Spectral library searching differs from sequence database
searching in several ways. The most important of these are:
(1) the use of experimental, as opposed to theoretical, spec-
tra to match query spectra, and (2) a much reduced search
space focused on known segments of the proteome. Both
factors are cited as reasons for the improved performance of
spectral searching. Experimental evidence of this improve-
ment was amply provided in the literature and will not be
repeated here [3, 9, 15, 28].

Spectral searching compares experimental spectra to ex-
perimental spectra, whereas sequence searching compares
experimental spectra to theoretical spectra. As discussed
above, the theoretical spectra considered in sequence search-
ing are simplistic and do not resemble the experimental spec-
tra that they are supposed to match. In contrast, armed with
previously observed experimental spectra, spectral search-
ing can take full advantage of all spectral features, includ-
ing actual peak intensities, neutral losses from fragments,
and various uncommon or even uncharacterized fragments,
to determine the best match (Figure 2). As a result, the
similarity scoring of spectral searching is more precise, and
in principle should provide better discrimination between
good and bad matches. A recent publication attempted to
isolate this effect, and showed that the use of real refer-
ence spectrum for matching seemed to play a major role in
the improved sensitivity of spectral searching, and that the
peak intensities and non-canonical ions, information that
is ignored by sequence searching, are both important con-
tributors. It further demonstrated that spectral searching
outperforms sequence searching to a greater extent when
the query spectra are of lower quality, lending credence to
the belief that spectral searching should be more effective in

identifying biologically interesting low-abundance peptides,
whose acquired spectra should have lower signal-to-noise ra-
tios [28].

Spectral searching also benefits from a much reduced
search space; it has fewer candidates to consider. By def-
inition, spectral libraries only consist of previously ob-
served and identified peptide ions of a proteome, whereas
a sequence search engine considers all putative pep-
tide sequences derivable from the corresponding sequence
database. It is well known that most of these putative pep-
tides are never observed in practice. Therefore, with typical
search parameters, the search space of spectral searching
can be several orders of magnitude smaller than sequence
searching. This leads to a considerable saving in the run-
ning time required per query. In addition, one also expects
the reduction of search space should also ameliorate the so-
called “distraction effect,” leading to improved sensitivity,
although the extent of this improvement remains controver-
sial and poorly understood.

In terms of limitations, given the aforementioned narrow-
ing of search space, it is obvious that spectral searching can
only be applied to situations where discovery of novel pep-
tides or proteins is not the goal. Fortunately, more and more
opportunities of scientific discovery lie in understanding how
the known segments of the proteome change with time and
circumstances, and how they interact to produce the bio-
logical function. Accordingly, in proteomics, there is a shift-
ing emphasis from discovery-oriented endeavors to targeted
and quantitative proteomics in which one is merely inter-
ested in studying known and previously observed peptides
[6, 12]. Spectral searching is well suited to this type of work-
flows, especially when working in tandem with traditional
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Figure 2. An example of peptide identification by spectral searching. The top spectrum is the consensus library spectrum of
the peptide ion AVGSLTFDENYNLLDTSGVAK (+2). The bottom spectrum (upside down) is a query spectrum identified
confidently by SpectraST. Note how spectral searching makes use of the reproducibility of peak intensities and non-b,y ions
(those without peak labels) for a more global and precise similarity scoring, allowing it to tolerate occasional unmatched
features. Adapted from Ref. [15].

discovery-based methods. For example, sequence searching
can be employed first on a reference sample to construct
a spectral library, followed by quick and sensitive spectral
searching to find the same peptides in many parallel ex-
periments. This would be ideal for large-scale quantitative
proteomic experiments with many samples and replicates,
such as a time series experiment, or a clinical study involv-
ing many subjects.

2. SPECTRAL LIBRARY SEARCHING
ALGORITHMS

Several spectral search engines designed for proteomics
applications have been developed in the past 5 years. Here
we focus on the traditional, more well-established tools that
perform straightforward spectral matching; newer methods
that use libraries for peptide identification in some other
ways are outside the scope of this review. For a more in-
depth discussion on the usability and surrounding informat-
ics support of these tools, the reader is referred to Ref. [13].
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Conceptually, the premise of spectral library searching is
very simple: that the fragmentation pattern of a molecule
under some fixed conditions is a reproducible fingerprint of
that molecule, such that unknown spectra acquired under
the same conditions can be identified by spectral matching.
In actual practice, spectra will inevitably contain experi-
mental artifacts (e.g., random noise and signals from con-
taminants), or the fragmentation conditions might not be
exactly the same. But very much like fingerprinting in foren-
sic science, imperfect matches do not necessarily preclude
correct identification, because the fingerprint typically con-
tains far more information than is necessary to distinguish a
significant match from a spurious one. The challenge there-
fore lies in developing spectral matching algorithms that
uses that information properly to minimize false matches,
but retains the robustness and flexibility to accommodate
imperfect, but true matches.

A summarized work-flow of spectral library searching is
illustrated in Figure 3. For any query spectrum, the search
engine can first make use of the m/z value of the intact
peptide ion (called the precursor), measured by the mass
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Figure 3. Work-flow of spectral searching, from the retrieval of candidates from the spectral library to statistical validation of
putative identifications.

spectrometer before tandem mass spectrometry, to select
candidates from the spectral library. Then each candidate
spectrum is compared to the query spectrum after some pre-
processing, to yield a similarity score. The top scoring (most
similar) candidate is taken to be the putative identification
of the query spectrum. The same process is repeated for
each query MS/MS spectrum acquired in the experiment.
With respect to the most important step of similarity
scoring, the aforementioned engines generally share the same
approach, but differ slightly in the details. The first step in
determining the similarity of two spectra is to employ var-
ious heuristics to de-noise the spectra. While more sophis-
ticated methods based on signal processing techniques are
available, in practice they are too complex to implement and
usually not worth the computational cost. Instead, arbitrary
thresholding based on the absolute intensity or relative in-
tensity, or limiting a spectrum to only a fixed number of
most intense peaks (in the entire spectrum or within sliding
m/z windows), are typical methods. The logic behind this
approach is simple: one expects that the majority of infor-
mation of a reference spectrum is captured in the handful of
most intense peaks, and that there should be a limited num-
ber of prominent fragment ions for any given peptide under
typical fragmentation conditions. However, it has also been
shown that oversimplification of spectra will hurt the dis-

crimination power [16], and that minor ions such as fragment
neutral losses indeed carry information that helps boost the
sensitivity of spectral searching [28].

The second step of similarity scoring involves the coarse-
graining and vectorization of the spectra. Namely, the entire
m/z range is subdivided into a predefined number of “bins,”
and the peak lists are converted to a high-dimensional vec-
tor, with each of the elements being the summed intensity
within one bin. The bin width can be chosen to reflect the
mass resolution of the instrument; with typical ion trap in-
struments a bin width of 1 Da/e is customary. This pro-
cess of “binning” converts peak lists of different lengths into
equal-size vectors, so that they can be easily compared. In
addition, various experimental artifacts such as imperfect
mass accuracy and peak splitting are partially dealt with
by this simple coarse-graining, at the expense of some loss
in discrimination.

The third and perhaps most important step is similar-
ity scoring. The scoring function then takes these vectors
of spectra as input, and computes a quantity that reflects
how similar the two vectors are. There are numerous ways to
define the similarity of two vectors, but historically, for the
purpose of mass spectrum comparison, two types of mea-
sures are commonly used [24]. On one extreme is the shared
peak count, i.e. the number of peaks that are found in both
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of the spectra to be compared, divided by some normaliza-
tion factor, and sometimes further adjusted to properly ac-
count for a calculated probability of a random peak match.
This function, however, does not take into account of the
peak intensity at all, which somewhat defeats the purpose
of spectral library searching. In fact, this scoring function
is commonly used in sequence search engines, for which the
theoretical spectra do not have well-predicted peak intensi-
ties. On the other extreme is the dot product, which sim-
ply measures the cosine of the angle subtended by the two
vectors in high-dimensional space. (A dot product of one in-
dicates overlapping vectors, whereas a dot product of zero
indicates orthogonal vectors.) A matching peak that is twice
as intense will contribute 4 times as much to the dot product,
as the intensities from either spectrum are multiplied. As
such, the dot product weighs the peak intensity heavily, and
can be prone to error when there are dominating peaks or
when the peak intensities have low reproducibility for some
reason. Existing spectral search engines therefore adopt a
sensible approach that strikes a balance between these two
extremes, to accommodate different spectral shapes and to
anticipate some noisy fluctuations in the peak intensities.
There was also a proposal to quantify the variability of in-
dividual peaks and use such information to weigh matched
intensity, in a hidden-Markov model-based matching algo-
rithm [26].

It is worth noting that the spectral matching algorithms
discussed above are still evolving and may not be optimal.
In fact, the best solution may be different for different types
of query data and for libraries constructed in different man-
ners. Despite the empirical success of these algorithms, there
remains a lack of a theoretical framework for systematically
studying aspects of these algorithms, due partly in our poor
understanding of the fragmentation patterns of peptides and
the nature of noise in tandem mass spectra. This will likely
remain fertile ground of research in the near future.

3. STATISTICAL VALIDATION OF
SPECTRAL SEARCH RESULTS

As with the traditional method of sequence database
searching, the spectral search engine considers all candi-
dates within a certain precursor m/z window for each query
spectrum, and returns the top scoring (most similar) match
among the candidates, along with some numerical measure
of how good the match is. A particular problem in pro-
teomics is that many query spectra are not identifiable in
the first place, due to a myriad of reasons. Some spectra
simply originate from pure noise or non-peptides. More fre-
quently, the correct answer is not in the sequence database
or spectral library searched for, and thus it is impossible for
any search engine to reach the correct answer. Therefore,
the top scoring match for any query spectrum is not neces-
sarily the correct answer, even assuming that search engine
is perfect. Put differently, one must entertain the possibility
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that none of the candidates is actually the correct answer.
In proteomics, it is therefore essential that a follow-up step
of statistical validation be undertaken to decide whether to
accept each of the identifications returned by the search en-
gine. To guide this decision, the false discovery rate among
the accepted identifications needs to be estimated. While
manual validation, which involves actually examining the
spectra in light of the purported identification to see if the
peaks are well explained, is possible and sometimes neces-
sary for a small number of identifications deemed critical for
the biological questions asked, it is impractical on a large
scale. Therefore automatic statistical validation is usually
practiced, using a variety of approaches and software tools
11, 18].

While this topic of statistical validation will be covered
in details elsewhere in this special issue, there are several
points pertaining to statistical validation that are unique
in the case of spectral searching. The first issue is a lack
of a reliable model for the null score distribution, i.e., that
of random (and hence incorrect) matches In both sequence
and spectral searching, the search engine will typically pro-
vide not only the measure of similarity, such as the dot
product, and but also additional scores that help establish
the statistical significance of the match. For instance, some
search engines report the difference in similarity score be-
tween the top match and the runner-up, while some report
a p-value-like score that quantifies the probability that the
top match is a random event, calculated by assuming a cer-
tain parametric score distribution of the incorrect matches.
However, in the case of spectral searching, because of the
complexity of real spectra, it is difficult to formulate the
peak matching process in combinatoric terms. (This is pos-
sible in the case of sequence searching, which largely ignores
the intensity dimension and assumes simplistic fragmen-
tation patterns.) Therefore an empirical approach is per-
haps more suitable for spectral searching at this point, al-
though with accumulating data and knowledge about pep-
tide fragmentation, a theoretical model may yet be feasi-
ble. However, even if one adopts an empirical approach, due
to its reduced search space, each query spectrum may only
be matched against dozens of candidates, and occasionally
insufficient sampling of the background score distribution
becomes an issue [13]. A usable but imperfect alternative
is to adopt a parametric mixture modeling approach, ex-
emplified by the statistical validation tool PeptideProphet.
In this method, limited training data is used to determine
the shapes of the score distributions of incorrect and cor-
rect identifications, in the form of common statistical dis-
tributions. The parameters of these distributions are ob-
tained by fitting to the observed score histogram by the
expectation-maximization algorithm. In the early days of
SpectraST, for example, it was assumed that the incorrect
score distribution conforms to a gamma distribution and
the correct score distribution is approximated by a normal
distribution, for the purpose of PeptideProphet modeling.



This assumption however is entirely empirically driven and
based upon the observation of the behavior of a few small
training datasets, and since then it was found to cause an
overestimation of the error rates when more generally ap-
plied [14].

Second, the popular non-parametric approach of decoy
counting is not as easily applied to spectral searching than
to sequence searching. This empirical approach involves in-
troducing known wrong answers to the search space, and
uses the number of matches to these “decoys” to estimate
the frequency of errors made by search engines, under the
assumption that incorrect matches are equally likely to hit
real and decoy candidates. In sequence searching, decoys are
generated by reversing or shuffling real protein sequences
[7]. This works because sequence searching makes no as-
sumption about the finer details of peptide fragmentation,
but rather relies only on the m/z values of canonical frag-
ments, which are accurately determined from the sequence
alone. In spectral searching, however, decoys must take the
form of spectra that should necessarily generate wrong an-
swers when matched, but are realistic enough to mimic the
features of real spectra. For instance, spectra of random-
ized peaks will not act as effective decoys because they have
a much lower chance of matching real spectra due to un-
realistic peak-to-peak distances and intensity profiles, vio-
lating the assumption of decoy counting. At present, two
solutions have been in use: one might use the spectral li-
brary of a different organism as decoys, or more generally,
one can create artificial decoy spectra for this purpose using
the spectral search engine SpectraST. SpectraST attempts
to retain peptide-like features in a spectrum by using a
real spectrum as a template and re-positioning explainable
peaks to match a decoy (e.g. shuffled) sequence. The unex-
plained peaks in the template are also kept so as to mimic
the noise level in real reference spectra. This method was
shown to satisfy the aforementioned assumption for decoy
counting [14].

Another complication in terms of statistical validation of
spectral search results is the potential for error propagation
and non-specific matches. In proteomics, the library spec-
tra are generated from real data of complex mixtures, and
identified by imperfect computational methods, such as se-
quence searching. The library spectra cannot be viewed as
true gold standards themselves, and will be associated with
their own error rates, however low those might be. In other
words a small fraction of library spectra may be tagged with
incorrect peptide identifications, and any spectral match to
these spectra will always yield a wrong identification even
when the similarity score is extremely high. Another related
problem is that some library spectra, while correctly iden-
tified, might contain strong signals from a contaminating
species. It is possible that a high-scoring spectral match
can be found chiefly due to matching these contaminant
peaks, rather than peaks that originate from the peptide
with which the library spectrum is identified [16]. For many

technical reasons, it is difficult for the library builder to
eliminate completely these two types of questionable spec-
tra from the library. Therefore an effective statistical valida-
tion approach must deal with this type of errors, which are
unique to spectral searching. One approach that has been
taken involves associating each library spectrum with some
probability of identification accuracy, which will be multi-
plied by the probability of finding the true spectral match to
yield the final identification probability. In other words, one
assumes that the correct identification of the library spec-
trum, and the correct matching of this spectrum to a query
spectrum are independent events [15].

Finally, at least in their present nascent state, spectral
libraries are still very far from covering all of the pro-
teome expected to be seen by mass spectrometry. Sequence
databases, on the other hand, are much closer to complete
proteome coverage, at least if one considers only unmodified
peptides, thanks in large part to our ability to sequence the
whole genome of an organism. Therefore for any given query
spectrum, there is a much higher chance that the correct an-
swer is not in the spectral library, than that the correct an-
swer is not in a sequence database, although it must be said
that incomplete proteome coverage also applies to sequence
searching due to unconsidered post-translational modifica-
tions. However it remains unclear how the search space con-
sideration should be factored into the statistical validation
of search results. In the case of spectral searching, to obtain
more insight into this issue, it might make sense to sepa-
rate the identification probability explicitly into two terms,
one that estimates the likelihood that the correct answer is
in the library, and one that estimates the likelihood that
the match is correct, given that the correct answer is in the
library. This has been attempted for spectral searching of
small molecules [23], but is much more difficult technically
to apply in proteomics.

4. CONCLUDING REMARKS

The purpose of this review is to introduce the readers to
the promise and pressing challenges in the area of spectral
library searching in proteomics, in particular in topics that
should be of interest to statisticians. It is worth stressing
that spectral searching in proteomics is merely 5 years old
and many important problems remain unsolved, many of
which are statistical in nature. Existing methods are largely
developed through trial-and-error, proven to work — often
brilliantly — by experiments, but were often not systemati-
cally studied or optimized. It is therefore no accident that
this review describes more open questions than known an-
swers. To summarize, there is now an urgent need to formu-
late the processes of spectral matching and spectral library
searching in statistical terms, so as to establish a theoreti-
cal framework for the rational design of better algorithms.
For the problem of spectral matching, much work remains
to be done to understand the variability of peptide fragmen-
tation patterns, and to extract information more effectively
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from the MS/MS spectrum. A model for the noise that is
inherent in the process is perhaps needed. With the accu-
mulation of proteomics data in the public sphere, there is
no shortage of training data for model development. For the
problem of statistical validation of search results, the pri-
mary need is in an accurate and robust model for incorrect
spectral matches. The hope is that, if nothing else, this re-
view will serve to pique the interest of more accomplished
statisticians and to invite them to tackle these interesting
problems.
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