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Stochastic deletion-insertion algorithm

to construct dense linkage maps

JIxtaNG WU*T, X1ANG-YANG Lou? AND MICHAEL GONDA*

In this study, we proposed a stochastic deletion-insertion
(SDI) algorithm for constructing large-scale linkage maps.
This SDI algorithm was compared with three published ap-
proximation approaches, the seriation (SER), neighbor map-
ping (NM), and unidirectional growth (UG) approaches, on
the basis of simulated Fy data with different population
sizes, missing genotype rates, and numbers of markers. Sim-
ulation results showed that the SDI method had a similar or
higher percentage of correct linkage orders than the other
three methods. This SDI algorithm was also applied to a
real dataset and compared with the other three methods.
The total linkage map distance (cM) obtained by the SDI
method (148.08 ¢cM) was smaller than the distance obtained
by SER (225.52 c¢M) and two published distances (150.11
c¢M and 150.38 ¢M). Since this SDI algorithm is stochas-
tic, a more accurate linkage order can be quickly obtained
by repeating this algorithm. Thus, this SDI method, which
combines the advantages of accuracy and speed, is an im-
portant addition to the current linkage mapping toolkit for
constructing improved linkage maps.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 60H30;
secondary 60E15.

KEYWORDS AND PHRASES: Linkage mapping, Stochastic
deletion-insertion algorithm.

1. INTRODUCTION

Molecular markers are essential for quantitative trait lo-
cus (QTL) mapping and gathering molecular genetic infor-
mation for the improvement of plant and animal species.
With the advance of technology, the number of loci exam-
ined in different chromosome regions is continuously grow-
ing, which has quickly increased the computational burden
for constructing high quality linkage maps. Thus, a linkage
mapping method with high accuracy and less computational
burden is needed for ordering a large number of loci.
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Marker ordering was once considered a special case of
the travelling salesman problem (TSP) [8], which is a classi-
cal non-deterministic polynomial-time (NP) complete prob-
lem [16, 11, 4]. There are two general types of approaches
to tackling this problem. The first approach performs ex-
haustive searches to find the global optimal marker order
solution. However, this approach is not practical when the
number of linked loci is large because n!/2 distinct orders
need to be evaluated for n linked loci. Even for just 10 loci
on one chromosome, there are 1,814,400 possible orders.
For many experiments, n might vary from dozens to sev-
eral hundreds. Thus, an exhaustive search is clearly com-
putationally prohibited when the number of loci is greater
than 30 [9, 10, 14]. The second approach uses approxima-
tion algorithms for determination of linkage order. These ap-
proximation algorithms for obtaining near-optimal marker
order solutions are more practical for large-scale linkage
mapping [8]. To date, several approximation algorithms for
determination of linkage order have been proposed (i.e.
[1, 13, 15, 7, 3, 2, 14, 12, 10]). All these linkage methods
are based on the biological assumption that the true order
of a set of linked loci has a minimum sum of adjacent recom-
bination frequencies (SARF) or a maximum sum of adjacent
LOD scores (SALOD).

Many approximation algorithms construct linkage maps
sequentially; these algorithms start with only two markers
and then add one of the remaining loci to the linkage map at
a time until all loci are mapped. The advantage of the ap-
proximation mapping approaches is speed. However, since
these algorithms are heuristic, the global optimal solution
may not be reached if a two-point recombination frequency
data set is not monotonic. Missing markers, crossover in-
terference, and small population sizes can cause data non-
monotonicity. An alternative approximation algorithm is the
evolutionary strategy (ES) algorithm [10], which starts with
an initial set of many random linkage orders and eventually
reaches an optimal linkage order through crossover and mu-
tant operators. Thus, the final linkage order and the speed
to reach this final solution greatly depend on the size of the
initial set of linkage orders and the operators chosen.

Though a linkage order achieved by approximation meth-
ods may not be the global optimal solution if a dataset is
not monotonic, a local linkage order and the global solution
would have similar linkage orders. It is unlikely that a lo-
cal linkage order obtained by an approximation method is
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Table 1. Four distinct linkage orders when a 4 marker
added to a partial linkage map with three markers

Four possible linkage orders

1: 4 — 1— 2 — 3
2: 1— 4 — 2 — 3
3: 1— 2 — 4 — 3
4: 1— 2 — 3 — 4

completely different from the global optimal solution, im-
plying a possibility that we can evolve a better/global order
solution from some local optimal ones. Such a linkage map-
ping algorithm will improve accuracy compared to existing
approximation methods while reducing the computational
intensity relative to the exhaustive search algorithm. In this
study, a stochastic deletion-insertion (SDI) algorithm, which
minimizes SARF or maximizes SALOD values, is proposed.
Various simulated Fo data were generated to evaluate the
performance of this approach with different population sizes,
numbers of markers, and missing genotype rates. A real data
set was also used to demonstrate the benefit of this SDI al-
gorithm.

2. SDI ALGORITHM

If an optimal solution for a partial linkage map [12] with
three loci has been determined, denoted 1 — 2 — 3, then
an optimal linkage order with a new locus 4 on the same
chromosome can be determined through comparing the four
possible orders (Table 1). Thus, the linkage order with the
locus 4 that minimizes the SARF or maximizes the SALOD
value should be the optimal solution conditioning on the
previous linkage order. This process can continue until all
unmapped loci n are added to the linkage map.

The SDI algorithm proceeds as follows:

e Step 1: Obtain the recombination frequency matrix for
all possible pairs of n loci on the same chromosome.
If multiple linkage groups are found, a criterion is re-
quired to separate the different loci into more than one
linkage group [17]. A corresponding distance matrix can
be converted from the recombination frequency matrix
using a mapping function (i.e., [5, 8]). Since the dis-
tance matrix and recombination frequency matrix used
for linkage mapping result in the same marker order,
without loss of generality, the recombination frequency
matrix will be used throughout this study.

e Step 2: Generate an initial linkage order Ly by using
seriation (SER) [1], unidirectional growth (UG) [12], or
neighbor mapping (NM) [3].

e Step 3: Deletion process:

— 3a: Generate a random number s (1 < s <n —1)

— 3b: Randomly select s loci from n loci in linkage
order Ly to form a new sub linkage group Ls with-
out changing the order of these s loci.
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e Step 4: Insertion process: Randomly select one of un-
mapped n — s loci and insert this locus into the linkage
map Lg with (s+ 1) possible positions. Thus a new op-
timal linkage order with (s + 1) loci can be determined
by comparing SARF. Repeat this process until all n— s
markers are mapped into Lg. If Ly is better than Lg,
then set Lg = L.

e Step 5: Repeat Steps 3 to 4 for NV times. As an alterna-
tive, one can use simulated annealing or other proper
approaches in this step.

e Step 6: Repeat Step 5 until no better solution is ob-
tained for a given number of consecutive times (we used
10 times in this study).

If a recombination fraction matrix is monotonic, then the
global optimal solution could be obtained at step 2. If the
recombination fraction matrix is not monotonic, the link-
age order obtained by the SDI method at each iteration
may be a local optimal solution. Since the process of this
deletion-insertion procedure is stochastic, the SDI method
has a higher probability of reaching the global optimal so-
lution by repeating Step 5. It should be noted that a little
larger N which depends on the number of markers, geno-
type missing rate, population size, etc., can be employed
(see Simulation Results for details) in Step 5 for a large
number of linked loci because a desirable solution may not
be reached due to possible immature convergence.

3. SIMULATION SCENARIOS

Since in reality, few real data sets are available with
known marker orders, computer simulations are an alterna-
tive method for evaluating the performance of this SDI al-
gorithm and several widely used approximation algorithms:
SER [1], NM [3], and UG [12]. In this study we simulated an
F5 population derived from a cross between two inbred lines
because F5 populations that have more segregated types are
a commonly used experimental design for linkage mapping
studies. To better demonstrate the performance of the SDI
algorithm, we carefully considered several factors that may
contribute to data non-monotonicity: distance among linked
loci, mapping population size, missing genotype rate, and re-
combination interference. To increase the possibility of gen-
erating a non-monotonic dataset, probability distributions
for distance between adjacent markers were set as follows:
P(1 < d(eM) < 5) = 0.70, P(5 < d(cM) < 10) = 0.15,
P(10 < d(cM) < 30) = 0.10, and P(30 < d(cM) <
40) = 0.05, with a uniform distribution within each of
the four ranges. Data were simulated with six popula-
tion sizes (N = 50,100, 150,200, 250, or 300), three num-
bers of co-dominant markers within the linkage group
(N = 10,20,0or 50), and three missing genotype rates
(0%, 10%, or 15%). We also considered the presence of re-
combination interference. For simplicity of generating re-
combination interference, the recombination interference co-
efficient was randomly selected from the four possible values:



1.0 (without inference), 0.0 (complete positive interference),
0.5 (partial positive interference), and 2.0 (negative interfer-
ence). The recombination frequency between any two mark-
ers was calculated by the Expectation-Maximization (EM)
algorithm [8]. The mean percentage of correct order (PCO)
value [8], a probability that a locus is ordered correctly, was
used to compare different mapping methods. All simulations
were repeated 200 times for each of these configurations with
a computer program in C++ written by the authors of this
paper. The significance of population size, marker number,
missing genotype rate, and linkage mapping algorithm on
PCO were estimated by one-way ANOVA by JMP 8.0 soft-
ware (SAS Institute, Inc., Cary, NC).

4. SIMULATION RESULTS

4.1 The impact of repetitions on PCO
values for the SDI method

Since an optimal linkage order obtained by the SDI ap-
proximation algorithm may be a local solution if a dataset
is not monotonic, iterating the SDI algorithm is neces-
sary to achieve a better solution. Therefore, it is help-
ful to determine the number of iterations sufficient to
achieve a high PCO. Though we conducted various simu-
lations for the impact of repetitions on PCO values, only
the PCO values for each of six numbers of linked loci
(10, 20, 50, 100, 200, and 500) from 1 to 100 repetitions over
20 simulated Fo data sets (10 with no missing rate and 10
with 10% missing rate, population size = 100) are reported
in Figure 1. Our simulated results suggested that the PCO
values remained stable after 20 repetitions (iterations) for
most cases with 200 or fewer linked loci (Figure 1). The PCO
values stabilized after only repeating 70 times for 500 linked
loci. For a few cases (population sample size 50 with miss-
ing genotype rate 15%), over 1,000 repetitions were needed
before the PCO values stabilized (data not shown). Thus,
the simulation results implied that this SDI algorithm could
reach a desirable solution with a light computational bur-
den. In our following simulations, five times (N = 5) in
step 5 were used and 10 consecutive times in step 6 were
employed until no better solution was obtained, thus there
were at least 55 iterations for each simulated data set.

4.2 Comparisons of PCO values among four
mapping algorithm approaches

The empirical PCO values for four approximation algo-
rithms (SER, NM, UG, and SDI) were calculated by com-
paring simulated data with results from each of the approxi-
mation algorithms (Tables 2 and 3). The PCO values for the
SDI algorithm were consistently equal to or higher than the
other three approximation algorithms (Table 2). In addition,
the SDI algorithm was robust for small population sizes and
maintained a high PCO (>90%) when the missing genotype
data rate was high (15%) and the population size was >100.
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Figure 1. The impact of repetitions on percentage of correct
order (PCO) over 20 Fy simulated data sets (10 data sets
with no missing data rate and 10 with 10% missing rates) for
each of six numbers of linked loci
(10, 20, 50, 100, 200, and 500).

Therefore, our results suggest that the SDI method was the
best among these four algorithms. On average, the NM al-
gorithm was the poorest among the four methods and was
sensitive to small population sizes, large marker numbers,
and high missing genotype rates. The other two algorithms
(SER and UG) performed nearly equally well in our simula-
tion study: PCOs were often higher than the NM but lower
than the SDI.

As expected, PCO increased with larger population sizes,
smaller number of markers, and lower missing genotype
rates (Table 2). When the missing genotype rate was 0%,
a desirable mapping power (>95%) could be achieved by
SER, UG, and SDI algorithms when population size was
>100. When the missing genotype rate was 10% or 15%,
a desirable mapping power (>95%) could be achieved for
SER, UG, and SDI when population size >200. The NM
algorithm required a population size >200 to consistently
achieve a PCO >95% when the missing genotype rate was
0%. When the missing genotype rate was 15%, the NM al-
gorithm did not achieve a PCO >95% under all simulated
situations.

Population size, linkage mapping algorithm, and miss-
ing genotype rate were significantly associated with PCO
(P < 0.05) (Table 3). Population size explained the largest
amount of variation in PCO (R? = 0.478) when estimat-
ing marker order with our simulated dataset. The PCO was
>95% when the population size was 150 or greater. Num-
ber of markers was not significantly associated with PCO
(P = 0.128), although the PCO decreased as the number
of markers increased (in general, as the number of mark-
ers increases, both the chance to cause non-monotonicity
of the recombination frequency matrix and the solution
space will increase, resulting in a higher probability to be
trapped by a local solution and thus a reduced PCO).
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Table 2. The percentage of correct orders (PCO, %) obtained by four algorithms for six population sizes (PS), three missing
genotype rates (MS, %) and different numbers of markers (MN) on one chromosome

MN PS SER! UG NM SDI

0% 10% 15% 0% 10% 15% 0% 10% 15% 0% 10% 15%

10 50 94.50 87.90 83.05 93.65 87.90 81.60 | 82.10  70.55  63.90 95.25 91.30 87.35
100 99.05 95.10 95.70 08.30  95.95 9430 | 89.95 81.25  79.00 99.25 96.90  97.80

150 98.60 97.70 97.00 08.40  97.05 97.10 | 94.05  88.05  83.00 98.80 98.00  97.35

200 99.90 99.55 99.00 99.90  99.50  99.30 | 96.70  90.35  89.45 99.90 99.75  99.50

250 99.50 99.35 99.45 99.40  99.55  99.00 | 98.00  93.00  90.70 99.70 99.55  99.50

300 | 100.00  98.90  100.00 | 99.20  99.15  99.10 | 98.30  92.55  92.35 100.00  99.75  99.65

20 50 92.77 83.25 78.57 03.53  81.40 81.33 | 8495 66.85  62.05 95.10 89.00  86.30
100 94.35 95.38 94.33 0423  94.85 9420 | 92.80  84.67  84.17 96.58 97.42  97.97

150 97.78 97.02 97.15 97.08  95.67 96.53 | 96.03  90.95  88.80 97.85 98.30  98.20

200 97.80 98.17 96.58 96.78  95.58  95.53 | 98.30  95.17  89.42 98.85 99.10  97.32

250 99.20 98.28 96.05 08.35 97.42 9453 | 98.63  96.10  91.95 99.25 98.42  96.63

300 99.30 98.90 97.97 97.90  98.08 97.65 | 98.72  96.15  94.63 99.30 98.90  98.58

50 50 89.49 76.52 67.09 88.50  78.20  71.06 | 8522  61.18  51.31 92.81 87.62  79.15
100 96.08 93.28 89.46 95.63  91.91  85.47 | 9520  81.17  72.44 96.45 96.66  93.65

150 98.57 97.52 94.77 95.17  96.60  90.50 | 98.30  92.38  83.70 98.75 99.21  96.17

200 98.88 97.03 98.14 97.00 9229 9527 | 9895 94.19  91.68 99.16 97.78  98.51

250 96.34 97.20 95.98 09498 9298 9293 | 9591 9530 91.96 96.84 97.21  96.34

300 98.90 98.63 97.29 96.83  96.66  94.13 | 98.94  98.07  93.65 99.02 98.67  97.79

L SER = seriation, UG = unidirectional growth, NM = neighbor mapping, and SDI = stochastic deletion-insertion.

Table 3. Effects of population size (PS), marker number
(MN), missing genotype rates (MS, %), and linkage mapping
algorithm (LMA) on percent correct order (PCO, %)*

Effect Level Mean PCO, F-ratio P-value  Adj R?
%
PS 40.35 <0.0001 0.478
50 81.73
100 92.53
150 95.50
200 95.90
250 96.82
300 97.88
MN 2.07 0.128 0.010
10 94.65
20 93.98
50 92.06
MS, % 9.61 0.0001 0.074
0 96.52
10 93.22
15 90.96
LMA? 13.98 <0.0001 0.153
NM 88.21
SDI 96.74
SER 95.15
UG 94.17

!F-ratios, P-values, and adjusted R? calculated individually for
each effect by one-way ANOVA.

2SER = seriation, UG = unidirectional growth, NM = neighbor
mapping, and SDI = stochastic deletion-insertion.
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The NM algorithm on average resulted in the lowest PCO
(88.21%). The SDI algorithm resulted in the highest PCO
(96.74%), although both SER and UG algorithms had PCOs
(95.15% and 94.17%, respectively) similar to the SDI.

5. A REAL DATASET

To evaluate the performance of the SDI algorithm, we ap-
plied SDI to a real dataset of 26 loci on barley chromosome I
from the North American Barley Genome Mapping project
(see Liu 1998, [8], p. 288). Though the number of linked loci
was 26, there are two reasons we chose this dataset: (1) the
recombination matrix was not monotonic because different
approximation methods generated different linkage orders
and (2) two different linkage orders have been published us-
ing this dataset [8, 12]. The linkage orders obtained by the
SER and SDI methods in this paper were compared to the
two published orders [8, 12]. The genetic distances presented
in this paper were calculated based on Haldane’s mapping
function [5], so the total distances listed in Table 4 for the
two published linkage orders are slightly different from the
published distances [8, 12]. Even though the different map-
ping functions may slightly result in different genetic dis-
tances, the marker orders from the different mapping func-
tions still remained the same. Results showed that the to-
tal distances obtained by the UG algorithm [12] and the
combination of Simulated Annealing (SA) and Branch and
Bound (BB) algorithms used by Liu [8] were very close to
each other (150.38 ¢cM vs 150.11 cM, respectively) (Table 4).
The SER algorithm generated the largest genetic distance
(225.52 cM), while the SDI algorithm generated the shortest



Table 4. Marker orders and their genetic distances (cM) obtained from different mapping algorithms

Liu® Tan & Fu SER SDI
Order Dist Order Dist Order Dist Order Dist
21 0.00 1 0.00 1 0.00 1 0.00
2 12.65 2 12.65 2 12.65 2 12.65
3 4.80 3 4.80 3 4.80 3 4.80
4 15.52 4 15.52 5 16.47 5 16.47
5 3.94 5 3.94 4 3.94 4 3.94
6 11.55 7 13.03 7 11.61 7 11.61
7 0.76 6 0.76 6 0.76 6 0.76
8 8.68 9 5.05 8 7.67 9 5.05
9 0.77 8 0.77 9 0.77 8 0.77
10 1.52 10 2.11 10 1.52 10 2.11
11 2.93 11 2.93 11 2.93 11 2.93
12 2.25 12 2.25 12 2.25 12 2.25
13 5.22 14 2.27 14 2.27 13 5.22
14 4.51 13 4.51 15 3.10 14 4.51
15 3.10 15 7.89 16 8.42 15 3.10
16 8.42 16 8.42 17 13.29 16 8.42
17 13.29 17 13.29 18 6.99 17 13.29
18 6.99 18 6.99 19 21.89 18 6.99
19 21.89 19 21.89 20 3.54 19 21.89
20 3.54 20 3.54 21 2.21 20 3.54
21 2.21 21 2.21 22 0.00 21 2.21
22 0.00 22 0.00 24 0.73 22 0.00
23 2.17 23 2.17 23 1.48 23 2.17
24 1.48 24 1.48 25 8.34 24 1.48
25 3.70 25 3.70 26 8.21 25 3.70
26 8.21 26 8.21 13 79.68 26 8.21
3 150.11 150.38 225.52 148.08

'Liu = the combination of Simulated Annealing (SA) and Branch and Bound (BB) algorithms, Tan & Fu = unidirectional growth

(UG), SER = seriation, and SDI = stochastic deletion-insertion.

2Marker codes for 1 ~ 26 and the linkage order were reported by Liu (1998); the linkage order obtained by the UG method was
reported by Tan and Fu (2006); and linkage orders by the other two methods were reported by this paper.
3The values in the bottom line represent the genetic distance obtained by Haldane’s function.

distance (148.08 ¢cM) by updating the linkage order obtained
by the SER method with a small number of iterations.

6. DISCUSSION

As pointed out earlier, the exhaustive search algorithm
can be applied to find the global optimal solution only when
the number of linked loci is small. The evolutionary strat-
egy (ES) algorithm can have the potential to find the cor-
rect linkage order but it is computationally intensive and
the final solution is dependent on many factors such as the
cross operator, mutation operator, and population size. On
the other hand, many approximation algorithms like NM,
SER, and UG have the advantage of speed but may not
find the global optimal linkage order when the data is non-
monotonic. If a two-point dataset for linkage mapping is
monotonic, all these approximation algorithms can reach
the global optimal linkage order. However, the recombina-
tion frequency matrix is calculated from a sample, which
could be influenced by many factors like sample size, linkage

distance among markers, presence of crossover interference,
and missing genotypes [9, 10].

Through partially updating linkage orders obtained by
approximation methods, the SDI algorithm successfully im-
proved mapping accuracy. The first advantage of this SDI
algorithm is the high power in recovering the true map.
Our simulations showed that the SDI method was the best
among four methods to resolve true linkage orders. The ap-
plication to an experimental data set [8] also showed that the
SDI method could find the linkage order with the shortest
linkage distance. The second advantage of the SDI method
is to balance the accuracy and computing speed well. Com-
pared to several approximate algorithms such as SER, UG
and UM, the SDI algorithm only takes a few additional iter-
ations and minor extra computational time to reach an im-
proved solution; however, it greatly reduces computational
intensity as compared to the exhaustive search algorithm.

Two significant differences exist between the SDI method
and other approximation methods. The first difference is
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that many approximation methods add one remaining lo-
cus onto one of two ends of a partial linkage order at each
step. Therefore, these methods are hill-climbing approaches.
The SDI method, however, allows an unmapped locus to be
added onto any position of a partial linkage order at each
step, increasing the chance of obtaining a more accurate
linkage map. The second difference is that previous approx-
imation methods can obtain only one solution; whereas, the
SDI algorithm generates more than one optimal solution,
leading to improved power for finding a more accurate so-
lution. In practice, researchers can choose the best linkage
order from several approximation methods as an initial or-
der. Then, the SDI algorithm can be employed to update
and improve this linkage order as more data are collected.
Therefore, this SDI algorithm should be an important sup-
plement to the current tools to improve linkage mapping
power.

Linkage power depends on estimates of recombination fre-
quencies. Many factors such as linkage distance, population
size, missing genotype rate, and crossover interference can
lead to biased estimation and thus cause non-monotonicity
of the recombination frequency matrix [9]. These four fac-
tors were considered in our simulation study to increase the
possibility of non-monotonic data. It appeared that the SDI
algorithm was robust to non-monotonic data in recovering
true linkage maps after a few iterations; however, we ob-
served that a large number of iterations (more than 1,000)
were needed to resolve true linkage orders for a few cases
(small population sizes and high missing genotype rates).
This observation suggests that a large N in step 5 will
be needed to achieve a more accurate linkage order for a
large number of linked loci in a small population with a
high missing genotype rate. We also observed that resolving
powers decreased when the number of iterations for the SDI
method increased in several cases where the populations size
was small (50) with high missing genotype rates (10% and
above). This result suggests that small population sizes and
high missing genotype rates should not be recommended
when constructing large-scale linkage maps.

The types of markers in an Fy population are re-
lated to the mapping power as well [6, 8, 17, 9]. Domi-
nant markers act differently under conditions of coupling-
phase and repulsion-phase. When all dominant markers
were in coupling-phase, the proportion of dominant and
co-dominant markers had little impact on mapping power
[9, 17]. However, the repulsion-phase dominant markers of-
ten caused biased estimations and thus low mapping power
[8, 17]. Hence, the direct use of minimum SARF or maxi-
mum SALOD values may not work efficiently when markers
are in repulsion-phase. Knapp et al. [6, 9] suggested that two
complimentary linkage orders, each including co-dominant
markers, can be constructed. An alternative methodology is
to use the SDI method to merge two complimentary maps
into one. Further investigation is needed to improve the ac-
curacy of marker order and estimating linkage distance.
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7. CONCLUSIONS

A stochastic deletion-insertion (SDI) algorithm for con-
structing large-scale linkage maps was proposed in this
study. The mapping power of this SDI algorithm was evalu-
ated along with three published approximation approaches:
SER, NM, UG, on the basis of simulated Fy data with dif-
ferent population sizes, missing genotype rates, and num-
bers of linked loci. Simulation results showed that the SDI
method had similar or higher PCO values than the other
three methods. The NM algorithm on average resulted in
the lowest PCO (88.21%). The SDI algorithm resulted in
the highest PCO (96.74%). Both SER and UG algorithms
had PCOs (95.15% and 94.17%, respectively) less than the
SDI. The SDI algorithm was also applied to a real dataset
and compared with the other three methods. The total
linkage map distance obtained by the SDI method was
smaller than the distance obtained by SER and two pub-
lished distances. Since this SDI algorithm is stochastic and
progressive-iterative, it increases the possibility to obtain a
more accurate linkage order. Thus, this SDI method, which
combines the advantages of accuracy and speed, is an im-
portant addition to the current linkage mapping toolkit for
constructing dense linkage maps.

ACKNOWLEDGEMENTS

The authors would like to thank the two reviewers for
their helpful comments that have helped improve this paper.
We are also grateful to Krishna Bondalapati for her great
help reformatting this paper.

Received 1 June 2010

REFERENCES

[1] Buetow, K. H. and CHAKRAVARTI, A. (1987). Multipoint gene
mapping using seriation. I. General methods. American Journal
of Human Genetics 41 180—188.

[2] CRANE, C. F. and CRANE, Y. M. (2005). A nearest-neighboring-
end algorithm for genetic mapping. Bioinformatics 21 1579-1591.

[3] ErLis, T. H. N. (1997). Neighbour mapping as a method for or-
dering genetic markers. Genetical Research 69 35-43.

[4] FaLk, C. T. (1992). Preliminary ordering of multiple linked loci
using pairwise linkage data. Genetic Epidemiology 9 367-375.

[5] HALDANE, J. B. S. (1919). The combination of linkage values and
the calculation of distances between the loci of linked factors.
Journal of Genetics 8 299-309.

[6] KNaPP, S. J., HoLLowAy, J. L., BRIDGES, W. C. and Liu, B. H.
(1995). Mapping dominant markers using F2 mating. Theoretical
and Applied Genetics 91 74-81.

[7] LaTHROP, G. M., LALOUEL, J. M., JULIER, C. and OTT, J. (1985).
Multilocus linkage analysis in humans: detection of linkage and es-
timation of recombination. American Journal of Human Genetics
37 482-498.

[8] Liu, B. (1998). Statistical Genomics: Linkage, Mapping, and
QTL Analysis. CRC Press LLC.

[9] MESTER, D. I., RoNIN, Y., Hu, Y., PENG, J., NEvVO, E. and Ko-
ROL, A. (2003a). Efficient multipoint mapping: making use of
dominant repulsion-phase markers. Theoretical Applied Genetics
107 1102-1112.



(10]

(11]

(12]

13]

14]

(15]
(16]

(17]

MESTER, D. I., RoNIN, Y., MLINKOV, D., NEVO, E. and KOROL, A.
(2003b). Constructing large scale genetic maps using an evolution-
ary strategy algorithm. Genetics 165 2269-2282.

OLSoN, J. M. and BOEHNKE, M. (1990). Monte Carlo comparison
of preliminary methods for ordering multiple genetic loci. Amer-
ican Journal of Human Genetics 47 470-482.

TAN, Y. and Fu, Y. (2006). A novel method for estimating linkage
maps. Genetics 173 2383-2390.

THOMPSON, E. (1984). Information gain in joint linkage analysis.
IMA Journal of Mathematics Applied in Medicine and Biology 1
31-49.

VAN Os, H., StaMm, P., Visser, R. G. F. and VAN Eck, H. J.
(2005). RECORD: a novel method for ordering loci on a genetic
linkage map. Theoretical and Applied Genetics 112 30-40.
WEEKS, D. and LANGE, K. (1987). Preliminary ranking proce-
dures for multilocus ordering. Genomics 1 236—242.

WILSON SR, M. (1988). A major simplification in the preliminary
ordering of linked loci. Genetic Epidemiology 5 75-80.

Wu, J., JENKINS, J., Zuu, J., McCARTY, J. and WATSON, C.
(2003). Monte Carlo simulations on marker grouping and order-
ing. Theoretical and Applied Genetics 107 568-573.

Jixiang Wu

Plant Science Department

South Dakota State University

Box 2140C, Brookings

SD 57007

USA

E-mail address: jixiang.wu@sdstate.edu

Xiang-Yang Lou

Section on Statistical Genetics
Department of Biostatistics

University of Alabama at Birmingham
Royals Public Health Building, Suite 414
1665 University Boulevard

Birmingham

Alabama 35294

USA

E-mail address: XLou®@ms . soph.uab.edu

Michael Gonda

Animal and Range Science Department
South Dakota State University

Box 2170, Brookings

SD 57007

USA

E-mail address: michael.gonda@sdstate.edu

Stochastic deletion-insertion algorithm for linkage mapping 387


mailto:jixiang.wu@sdstate.edu
mailto:XLou@ms.soph.uab.edu
mailto:michael.gonda@sdstate.edu

	Introduction
	SDI algorithm
	Simulation scenarios
	Simulation results
	The impact of repetitions on PCO values for the SDI method
	Comparisons of PCO values among four mapping algorithm approaches

	A real dataset
	Discussion
	Conclusions
	Acknowledgements
	References
	Authors' addresses

