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A clustered optimal ROC curve method
for family-based genetic risk prediction

CHENGYIN YE, JUN ZHU* AND QING LuU*

Risk prediction that capitalizes on emerging genetic find-
ings holds great promises for improving public health and
clinical care. Statistical methods for genetic risk prediction
research, and particularly for correlated data, are however
still lacking. To address this, we have developed a clustered
optimal ROC curve (CORC) method, in order to build pre-
dictive genetic tests using data from family-based genetic
research. For the proposed method, we have extended the
conventional optimal ROC curve method to handle multi-
ple genetic markers, taking sample correlation into consid-
eration, and implemented a forward selection algorithm to
allow for high-dimensional data and the capture of possible
epistasis. We have evaluated the CORC method using both
simulations and a real-data application, showing that the
method performed better than other existing methods un-
der various pedigree structures and underlying disease mod-
els. In the real-data application, we applied the method to
the large scale International Multi-Center ADHD Genetics
Project dataset and formed a predictive genetic test for con-
duct disorder. The test reached a low to medium classifica-
tion accuracy, with an AUC value of 0.6908.

KEYWORDS AND PHRASES: Clustered ROC curve, Predic-
tive genetic test, High-dimensional data, Genome-wide as-
sociation study.

1. INTRODUCTION

The completion of the Human Genome and International
HapMap Projects brought us a new tool for increasing our
understanding of common complex diseases, as well as an op-
portunity for early disease prediction and prevention [1]. By
combining multiple genetic risk variants from recent genetic
research, as well as existing clinical risk factors, predictive
genetic testing has considerable potential for accurate risk
assessment and for use in screenings and prevention [2]. If it
succeeds, predictive genetic testing would play an important
role in shifting the focus of medical care from intervention
to prevention [3], and could eventually lead to reduced mor-
bidity and mortality [2].

In previous research, predictive genetic tests have been
constructed not only with monogenetic disorders, such as
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Huntington’s disease [4], but also for complex diseases, such
as cardiovascular disease [5,6] and type 2 diabetes (T2D)
[7,8]. These have revealed that integrating dozens of com-
mon risk variants from genome-wide association studies
(GWAS) could form more accurate predictive genetic tests
for complex diseases [9,10]. In risk prediction research, a
genotype-score-based method has commonly been used to
assess an individual’s disease risk [5,8,10,11]. This genotype-
scoring method derives a global genotype risk score by
counting the number of risk alleles over multiple genes, and
then uses this global genotype risk score to predict an indi-
vidual’s disease risk. The genotype-scoring method is con-
venient and easy to interpret. However, it usually requires
assumptions of equal effect sizes. In order to address this
limitation, weighting approaches have been proposed that
would incorporate the estimated effect sizes as weights into
the genotype-scoring method [12]. The weighting approaches
relax the assumption of equal effect sizes. We would cau-
tion, however, that the empirical weighting processes could
introduce bias if there are variations across studies or insuf-
ficient information in previous studies for reliable parame-
ter estimation [13]. Moreover, the genotype-scoring method
assumes that all of the testing variants are disease-related
and are independent of each other. It is, therefore, subject
to low performance when non-causal genetic variants or in-
teractions are present.

Family-based design is one of the most popular study de-
signs in genetic research today. Data generated from these
studies are a valuable resource for genetic risk prediction re-
search. Using the existing methods, family-based risk predic-
tion research has been conducted to assess the combined ef-
fect of multiple risk variants in disease prediction. For exam-
ple, James B. Meigs et al. implemented a family-based geno-
type scoring method—a pooled logistic regression model
with generalized estimating equations (GS-GEE), fitted on
the global genotype risk score—to investigate a predictive
genetic test for T2D [7]. GS-GEE could be easily applied to
a large number of genetic risk variants, taking sample corre-
lations into consideration, which would make it suitable for
family-based risk prediction.

There is also a long history of investigating genetic pre-
diction in inbred plant and animal populations. Although
the focus here is on human genetics, many of the concepts
and approaches used within the context of animal and plant
breeding have the potential for applications in human ge-
netics. For example, penalized regression methods, such as
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the Bayesian Lasso method, have been proposed for predict-
ing quantitative traits in animal and plant breeding studies.
These methods commonly evaluate the predictive ability of
high-dimensional marker sets using pedigree data, and are,
therefore, strongly related to methods used in family-based
risk prediction [14,15]. The problem with both the Bayesian
Lasso and the GS-GEE methods is that they are not suit-
able for detecting interactions, particularly high order inter-
actions, on high-dimensional marker sets, and, thus, could
be subject to low performance when interactions exist.

We propose a nonparametric method—a clustered opti-
mal ROC curve method (CORC)—for family-based genetic
risk prediction research. The CORC method requires no as-
sumptions of equal effect size or independence, and thus
could have a more robust performance. It combines the
strength of the optimal ROC curve [16,17,18] and the clus-
tered ROC curve, and could theoretically form a test with
the highest classification accuracy for family data. Moreover,
the CORC method implements a computationally efficient
algorithm—the forward selection algorithm—for the vari-
able selection process, which makes the method feasible for
dealing with a large number of loci, taking possible inter-
actions into consideration. The proposed CORC method is
capable of handling arbitrary pedigree structures, and can
thus be used for family studies with different pedigree struc-
tures, including simple pedigrees with two generations, com-
plex pedigrees with several generations, or a mixture of dif-
ferent pedigrees. Through simulation studies and a real-data
application of conduct disorder (CD) disease, we compared
the proposed CORC method with both the GS-GEE and the
forward ROC curve methods, where predictive genetic tests
for CD were evaluated using data from the International
Multi-Center ADHD Genetics Project.

2. THE CORC METHOD

The ROC curve is widely used to measure a test’s overall
accuracy. It plots a test’s sensitivity vs. specificity by con-
tinually varying the threshold of the test results [19]. When
varying the likelihood ratios (LRs) of test results from the
largest to the smallest value, the ROC curve can attain its
optimality, resulting in an optimal ROC curve [20]. The test
formed by the optimal ROC curve has many ideal properties
at each point on the curve; e.g., for a fixed value of speci-
ficity (sensitivity), it has the highest sensitivity (specificity).
We have incorporated the concept of the optimal ROC into
our proposed CORC method.

We assume a total of M individuals from N families
(i.e., cluster), each with measurements of p predictors (e.g.,
SNPs) and a binary response (e.g., disease status). Let
Yi;j (yi; € S) denote the binary response of the jth individual
(j =1,2,...,m;) in the ith family (i = 1,2,...,N), which
has two possible values: S = 1 (e.g., disease) and S = 0
(e.g., non-disease). Using G7; = (gij1, gijo; - - -» ijp) (G} €
GY?), we denote the measurements of p predictors for the
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jth individual in the ith family, which belongs to one of
p-dimensional risk profiles, GY (t = 1,2,...,ps), where
GY? = (g1t,92¢,---,9pt). The conditional distributions of
GY,P(G%|S), can be calculated as

N s mi .
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Given the conditional probability, P(G%|S), we obtain the
LR of GY by using LR(GY) = P(GY|S =1)/P(GY|S = 0). If
samples in the study are independent, we then rank the in-
dividuals’ LRs from the largest to the smallest value and
plot the optimal ROC curve. The area under the ROC
curve (AUC), the most popular one-dimensional index of
the ROC curve, could be summarized to represent the over-
all test’s classification accuracy. However, this approach can-
not be used directly on family data since individuals from
the same family are related. To take the sample correlation
into account, we have incorporated a clustered ROC curve
method, originally proposed by Obuchowski [21]. For a par-
ticular family ¢, let LR*(G%,) denote the likelihood ratio
(LR) of the Ith affected individual (I = 1,...,a;) carrying
a p-dimensional risk profile, G, and let LR"(G%,) denote
that of the kth unaffected individual (k = 1,...,u;) carrying
a p-dimensional risk profile, G%,, where a; and w; represent
the total number of affected and unaffected individuals in

family i(a; + u; = m;), respectively. We then calculate the
clustered AUC,

N N a; uy
(2) AUC? = ALU DD 30D @(LRY(GY), LRH(GY,),
i=14'=11=1 k=1
where
N N
A= Zai, U= Z’U,i,
and

1.0 if LR*(G%) > LR*(G%,,)
0.5 if LR*(G?) = LR*(G%,,) .
0.0 if LR*(G) < LR*(G%,,)

P(LRY(GY), LR (GF)) =

Using the results in Obuchowski’s paper [21], we can esti-
mate the variance of the clustered AUC,
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N, (N,) is the total number of clusters having at least one
affected (unaffected) individual. By using normal approxi-
mation, we can derive the 95% confidence interval (CI) for
the clustered AUC,

var (AEC ),

(4) AUC?

+ Zo.025 X
ABCIC) + Zo.975 % \/ var (ABC?)]

Tests containing a large number of non-causal variants
tend to be unstable and less interpretable. In order to form
predictive genetic tests that are more robust and interpre-
tive, we extended the forward selection algorithm [22] to
perform model selection here in family studies. The forward
selection algorithm starts with a null model with no predic-
tors, and then gradually adds predictors into the prediction
model until the AUC reaches 1. In step one, we searched for
a predictor, p;, among all of the predictors, that would give

the highest AUC estimate (AUC'!), and formed the sim-
plest predictive genetic test, which was comprised of only
one predictor, p;. In step two, we searched for the second
predictor, po, which, together with p; and with their possi-

ble interaction, reached the highest AUC estimate (AUC 2).
While the procedure continued, the method added new pre-
dictors into the model and formed a series of models with in-
creasing classification accuracy: AUCL, AUC?, ... AUCT.
Adding more predictors makes the prediction models more
complicated, so they tend to overfit the data. In order to
identify the most parsimonious model with an appropri-
ate number of predictors, we conducted a clustered K-fold
cross-validation procedure. To perform the cross-validation
procedure, we first divided these N families into K sub-
sets. This could easily be done if the data contains fami-
lies with similar pedigree structures (e.g. all these families

are trios), but could be a challenge when families have dif-
ferent pedigree structures (e.g. a combination of trios and
multi-generational pedigrees). The principle is to evenly as-
sign similar types of pedigrees into different subsets and to
maintain the similarity among subsets. Given these K sub-
sets, we first used the K — 1 subsets as the training set
and applied the forward selection algorithm, constructing
a series of models. The remaining subset was then used as
the validation set, to estimate the predicted AUCs for each
of the models built in the training set. We repeated the
cross-validation process K times, with each of the K subsets
serving once as the validation dataset. The predicted AUC
values were averaged from models with the same number of
predlctors yielding a serles of averaged predicted AUC val-

ues, AUC e, Peds - AUC’C peq- The appropriate number of
predictors, p, was determlned to be the one with the high-
est averaged predicted AUC, and its corresponding model
was chosen as the final model. The implementation of the
CORC method is written in R and will soon be available on
our website: http://www.epi.msu.edu/faculty /lu/.

3. SIMULATION STUDIES

We investigated the CORC method through simulations,
and compared its performance with both the GS-GEE
method [7] and the forward ROC method [22] under var-
ious underlying disease models and pedigree structures. In
order to implement the GS-GEE method to build a pre-
dictive genetic test, we chose the un-weighted approach to
first summarize the number of risk alleles carried by each
individual into a genotype score, and then fit logistic regres-
sion models with generalized estimating equations on these
genotype scores. Due to a lack of powerful family-based risk
prediction tools, researchers may opt to use an alternative
population-based method. In this simulation, we also evalu-
ated the performance of a population-based method, the for-
ward ROC curve method, in a family-based risk prediction
study. The forward ROC curve method shares many features
with the CORC method, in that it takes interactions into
account and is applicable to high-dimensional data. How-
ever, because it is a population-based method, the forward
ROC curve method requires independent samples. For our
simulations, we randomly selected one individual from each
family and applied the forward ROC curve method.

3.1 Scenario |

We simulated three disease models, comprised of four
causal loci/environmental-factors and ten non-causal loci,
to investigate the performance of the CORC method, the
GS-GEE method and the forward ROC method. The allele
frequencies of the non-causal loci in all three of the dis-
ease models were generated randomly from a uniform dis-
tribution, ranging from 0.1 to 0.9. In the first model, four
independent disease-susceptibility loci were simulated under
additive modes of inheritance, with odds ratios of 1.60, 1.70,
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Table 1. Comparison of the CORC method, the GS-GEE method and the forward ROC method, under three different disease
models

Simulation Setting 1

Simulation Setting 2

Simulation Setting 3

Forward Forward Forward
CORC GS-GEE ROC CORC GS-GEE ROC CORC GS-GEE ROC
TrueAUC 0.6708 0.7337 0.6873
Mean 0.5999 0.5925 0.5523 0.6711 0.6175 0.5943 0.6357 0.5909 0.5698
Std 0.0423 0.0358 0.0723 0.0554 0.0449 0.0988 0.0432 0.0378 0.0766
MSE 0.0068 0.0074 0.0193 0.0070 0.0155 0.0292 0.0045 0.0107 0.0197

Notes: The data were simulated under disease models in which 1) no interaction; 2) a two-way interaction; and 3) a three-way
interaction existed. We summarized the mean, the standard deviation (std) and mean squared error (MSE) of the predicted AUC

from each of the three methods.

1.65 and 1.55, and risk allele frequencies of 0.35, 0.35, 0.40
and 0.30, respectively. The true AUC, calculated based on
these settings, was 0.6708. The second model was comprised
of two independent disease-susceptibility loci and two inter-
active loci with their two-way multiplicative interaction [23].
The two independent loci were simulated under additive and
dominant modes of inheritance, with odds ratios of 1.70 and
2.5, and risk allele frequencies of 0.35 and 0.25, respectively.
The two interactive loci were assumed to follow the additive
and recessive modes of inheritance, with marginal effects of
1.6 and 2.0, and risk allele frequencies of 0.4 and 0.3, respec-
tively. To introduce the interaction, we assumed that indi-
viduals carrying risk alleles in the two interactive loci had
a 2.5 times higher risk than the remaining individuals. The
true AUC value for this model is 0.7337. In the third model,
we introduced three disease-susceptibility loci and one two-
level environmental risk factor, with odds ratios of 1.5, 2.2,
1.8 and 1.6, and risk allele frequencies/exposure frequencies
of 0.4, 0.3, 0.3 and 0.45, respectively. The three disease-
susceptibility loci followed additive, recessive and dominant
modes of inheritance. We also introduced a three-way mul-
tiplicative interaction among the environmental risk factor,
the second and third loci, by assuming that individuals car-
rying the risk alleles of these two loci and exposed to the
environmental risk factor had a 2.2 times higher risk than
the remaining individuals. The true AUC calculated based
on this setting is 0.6873.

For each disease model, 1,000 replicates were generated,
each consisting of 400 nuclear families and 400 sib-ships
(Figure 1b). The nuclear family consisted of two parents
and two offspring, while the sib-ship consisted of four off-
spring without parents. In each replicate, we split the whole
sample into a training set and a validation set, with a ratio
of 2:1. We applied all three methods to the training set to
build a predictive genetic test, and then applied these tests
to the evaluation set to calculate the predicted AUCs.

The results from simulation I are summarized in Table 1.
In the first model, when the four disease-susceptibility loci
were assumed to be independent and had similar effect sizes,
our proposed CORC method attained a similar classifica-
tion accuracy to the GS-GEE method. Nevertheless, when
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Figure 1. The three pedigree settings in simulation scenario |l:
a. trios; b. a combination of nuclear families and sib-ships;
c. the three-generation pedigrees. The units with slashes are
missing individuals. The affection status of each individual
was simulated according to that individual’s genotypes.

the loci were associated with different effect-sizes and inter-
acted in the second and third models, the CORC method
performed better than the GS-GEE method. For instance,
when a two-way interaction was presented in the second
model, the CORC method attained a predicted AUC of
0.6711, an 8.68% accuracy increase over that of GS-GEE
(AUC=0.6175), and obtained an MSE of 0.0070, a 54.84%
improvement over that of GS-GEE (0.0155). With a three-
way interaction in the third model, the CORC method ob-
tained an MSE of 0.0045, a 57.94% improvement over that of
GS-GEE (0.0107). Due to the dramatic reduction in sample
size, the forward ROC method attained the lowest perfor-
mance, both in terms of the mean and MSE of the AUC
estimate, in all these three models.

3.2 Scenario Il

In simulation scenario II, we evaluated the performance
of the CORC method, the GS-GEE method and the forward
ROC method under three different pedigree settings. As we
had done with the second disease models of simulation I,



Table 2. Comparison of the CORC method, the GS-GEE method and the forward ROC method, under three different pedigree

structures

Pedigree Trios Simple Pedigrees Complex Pedigrees
Settings p & plex &

Forward Forward Forward
Test CORC GS-GEE ROC CORC GS-GEE ROC CORC GS-GEE ROC
Pedigree . . R 400 nuclears plus 400 sib-ships 300 3-generation pedigrees with
Size 1,000 Trios with 3 individuals each with 4 individuals each 12 individuals each
Mean 0.6663 0.6165 0.5999 0.6711 0.6175 0.5943 0.6779 0.6187 0.5505
Std 0.0553 0.0459 0.0878 0.0554 0.0449 0.0988 0.0484 0.0424 0.1490
MSE 0.0076 0.0158 0.0256 0.0070 0.0155 0.0292 0.0054 0.0150 0.0557

Notes: The pedigree settings are illustrated in Figure 1. In this table, we have summarized the mean, the standard deviation (std)
and mean square errors (MSE) of the predicted AUC from all three methods.

we simulated two independent disease-susceptibility loci and
two interaction loci. Among the three pedigree settings, the
first one used the same pedigree structure as in scenario
I, and the remaining two were made up of 1,000 trios and
300 three-generation pedigrees (Figure 1). The total sample
sizes for the three pedigree settings were 3,000, 3,200 and
3,600, respectively, and were comparable overall.

The results from simulation scenario II are summarized
in Table 2. In all three of the pedigree settings, tests built
by the proposed CORC method tended to be more robust
and accurate than those built by the GS-GEE method.
For instance, in the setting with three-generation pedigrees,
the CORC method reached a predicted AUC of 0.6779, a
9.57% increase over that of GS-GEE (0.6187). It also at-
tained an MSE of 0.0054, a 64% improvement over that of
GS-GEE (0.0150). As the pedigree structure became more
complex, tests built from both CORC and GS-GEE ob-
tained a slight increase in classification accuracy. However,
the CORC method tended to gain a greater increase than
GS-GEE. For instance, when the pedigree structure changed
from trios to a combination of nuclear families and sib-ships,
the predicted AUC mean of CORC attained an increase of
0.72%, from 0.6663 to 0.6711, which was greater than that
of GS-GEE (a 0.16% increase, from 0.6165 to 0.6175). Simi-
lar to simulation I, the forward ROC method had the lowest
performance in all three settings. When the pedigree struc-
ture became more complex, the test built by the forward
ROC method tended to be less accurate, with a predicted
AUC value decrease of 8.97%, from 0.5999 to 0.5505. This
decrease in classification accuracy can be explained by the
decreased sample size, from 1,000 in the trios setting to 300
in the three-generation setting.

4. DATA APPLICATION FOR CONDUCT
DISORDER

Conduct disorder (CD) is a disorder of childhood and
adolescence that involves chronic behavior problems, such as
defiant, impulsive, antisocial behavior, drug use and crimi-

nal activity. Using the proposed method and the two exist-
ing methods described earlier, we analyzed the large scale
International Multi-Center ADHD Genetics Project (IM-
AGE) dataset to evaluate predictive genetic tests for CD.
The IMAGE project, as part of the Genetics Analysis Infor-
mation Network (GAIN) initiative [24], is one of the largest
GWAS conducted to date, and is designed to investigate
the genetic causes of Attention-deficit/hyperactivity disor-
der (ADHD) and CD. The IMAGE study contains over nine
hundred parent-child trios, which were genotyped using the
Perlegen 600K SNP platform.

In this study, we assessed the combined effect of gender
[25] and 46 CD-associated loci from recent GWAS [24,26]
on predicting CD. Similarly, we split the entire CD dataset
into a training set and a validation set, with a 2:1 ratio. The
training set was used to build a predictive genetic test, and
the validation set was used to estimate the predicted clas-
sification accuracy of the test. Figure 2 plotted the ROC
curves of the CD test formed by these three methods. Con-
sistent with the simulation results, the CORC method at-
tained the highest classification accuracy among these three
methods. In the validation set, the CORC method obtained
a predicted AUC value of 0.6908, 19.14% higher than that
of GS-GEE (a predicted AUC of 0.5798) and 0.73% higher
than that of the forward ROC method (a predicted AUC
of 0.6858). We also calculated the 95% confidence intervals
(CIs) of the predicted AUC. The AUC estimate from the
CORC method had greater precision (CI: 0.6332-0.7484)
than those from the GS-GEE (CI: 0.5163-0.6433) and the
forward ROC methods (CI: 0.5860-0.7856). In this appli-
cation, the GS-GEE method had the lowest performance,
perhaps due to the violation of equal effect-sizes and inde-
pendence assumptions. Although the forward ROC method
attained higher classification accuracy than GS-GEE, we
noted that the forward ROC method obtained a wider CI
than both GS-GEE and CORC, mainly due to the reduced
sample size.

The predictive test built by the CORC method selected
gender, rs10492664, rs10797919 and rs1644305 as predic-
tors in the final model. Among these, rs10492664 is one
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Figure 2. The ROC curves of the CD test formed by the three methods. The left panel shows the ROC curves of the CD test
built on the training set. The ROC curves in the right panel were plotted by applying the built CD test to the validation set.

of the top five association signals in the previous GWAS
study [24] and rs10797919 is in a chromosomal region pre-
viously found to show linkage with drive-for-thinness and
obsessionality. Similar to CD, this disease can be regarded
as a dysregulation of serotonergic neurotransmission [27].

5. DISCUSSION

In this study, we introduced a clustered optimal ROC
curve method (CORC) for family-based risk prediction stud-
ies. The CORC method incorporates a clustered ROC curve
algorithm with no restriction on pedigree structures, and,
thus, can be applied to data with complex pedigree struc-
tures or a mixture of pedigree structures. As shown in the
simulation scenario II, the CORC method performs robustly
in different settings of pedigree structures. It has the same
advantages as the forward ROC method, such as having a
theoretically optimal performance and considering interac-
tions. However, as illustrated by our simulations and the real
data application, population-based risk prediction methods,
such as the forward ROC method, are subject to low per-
formance when there is family data, because they require
independent samples.

An existing method for family-based risk prediction re-
search, the GS-GEE method, requires assumptions—such as
independence among testing variants—and could be subject
to low performance if these assumptions fail. As illustrated
by simulation I, when the disease-susceptibility loci were in-
dependently associated with the disease outcome, the pro-
posed CORC method and the GS-GEE method performed
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similarly. However, as revealed in both the simulations and
the real data application, the classification accuracy of the
tests from the GS-GEE method was much lower than that
from the CORC method when interactions were presented.
Thus, the proposed CORC method is more suitable for the
risk prediction of complex diseases, which likely involves
multiple risk factors and interactions.

In a recent study, Wray et al. revealed that the maxi-
mum AUC value of a test was constrained by the disease’s
prevalence and heritability [28]. Given the estimated heri-
tability (~50%) and the cumulative prevalence (~9%) de-
rived from previous CD studies, we estimated that the AUC
value of CD could maximally reach 0.88 [28,29,30]. Recall
that the CD test from our study attained a predicted AUC of
0.6908, which is lower than this estimated maximum AUC,
and is unlikely to be immediately useful in clinical prac-
tice. This could be due to our study’s use of only a handful
of loci with significant marginal effects. Loci with small or
even no marginal effects may play important roles in dis-
ease pathways, and likely interact with other genetic vari-
ants to provide predictive values. Note that the proposed
method, which is similar to the forward ROC curve method,
can be applied to high-dimensional data. Following this ini-
tial study, one of the natural next steps is to conduct a risk
prediction study on a much larger number of risk factors,
including loci with small, or even no, marginal effects for
disease prediction.

When constructing prediction models based on high-
dimensional data, a large amount of computation time



will be required. In our previous study, we conducted a
population-based genome-wide risk prediction analysis on a
500K Wellcome Trust rheumatoid arthritis GWAS dataset,
comprised of approximately 5,000 individuals. The whole
genome-wide risk prediction analysis, including the cross-
validation process, took 43 hours on a high performance
workstation by using a C++ program we wrote. This C++
program can be modified for a family-based risk prediction
analysis. For a dataset with the same sample size, we antic-
ipate that a similar amount of time (i.e., approximately two
days) would be required for the whole genome-wide family-
based risk prediction of a 500K dataset.

The clinical utility of a predictive genetic test depends
on the nature of the disease, the availability of a prevention
method, and the cost of screening and surveillance measures
[31]. It has been shown elsewhere that some specific com-
binations of genetic variants have failed to make any sig-
nificant improvements in predicting cardiovascular disease
and multiple sclerosis [13,32]. Generally, for diseases with
a modest prevalence and sibling recurrence risk ()\g), ge-
netic prediction has less value for clinical practice. However,
it could still be of great value in making treatment deci-
sions. For some specific symptoms of CD, pharmacotherapy
(e.g., stimulants, anti-depressants, lithium and anticonvul-
sants) has become an adjunct treatment for this disease [33].
Thus, we expect that genetic tests predicting a subgroup of
patients who respond to a particular drug could have great
value for the development of more effective personalized pre-
vention and treatment methods.
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