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Genome-wide association (GWA) studies, where hun-
dreds of thousands of single-nucleotide polymorphisms
(SNPs) are tested simultaneously, are becoming popular
for identifying disease loci for common diseases. Most com-
monly, a GWA study involves two stages: the first stage
includes testing the association between all SNPs and the
disease and the second stage includes replication of SNPs
selected from the first stage to validate associations in an
independent sample. The first stage is considered to be more
fundamental since the second stage is contingent on the re-
sults of the first stage. Selection of SNPs from stage one for
genotyping in stage two is typically based on an arbitrary
threshold or controlling type I errors. These strategies can
be inefficient and have the potential to exclude genotyping
of disease-associated SNPs in stage two. We propose an ap-
proach for selecting top SNPs that uses a strategy based on
the false-negative rate (FNR). Using the FNR approach, we
proposed the number of SNPs that should be selected based
on the observed p-values and a pre-specified multi-testing
power in the first stage. We applied our method to simu-
lated data and a GWA study of glioma (a rare form of brain
tumor) data. Results from simulation and the glioma GWA
indicate that the proposed approach provides an FNR-based
way to select SNPs using pre-specified power.

AMS 2000 subject classifications: Primary 60K35,
60K35; secondary 60K35.
Keywords and phrases: False negative rate, Single-
nucleotide polymorphism, Two-stage genome-wide associa-
tion study.

1. INTRODUCTION

Genome-wide association (GWA) studies have been
shown to be a powerful approach to identify common vari-
ants for many complex diseases [1, 6, 9, 13, 22]. GWA stud-
ies are designed to identify common, low-penetrance disease
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alleles without prior knowledge of their location and func-
tion [9]. Over the past few years, GWA studies have been
applied to many different complex diseases and have iden-
tified a large number of genetic variants, such as those as-
sociated with coronary heart disease [6, 12, 19, 23], type 2
diabetes [25, 27, 30, 38], lung cancer [2, 15, 35], prostate
cancer [10, 34], colorectal cancer [14, 36], melanoma [4], and
glioma [28, 37].

In a GWA study typically hundreds of thousands of
single-nucleotide polymorphisms (SNPs), which are the
most common form of genetic variants, are genotyped us-
ing high-throughput technologies. Such analyses are costly
and time consuming. Also, the large number of tests per-
formed leads to a high proportion of false-positives. Most
GWA studies are therefore based on multistage designs, in
order to reduce the number of false-positive results, mini-
mize the amount of genotyping performed, and retain power
[13, 29]. Generally, for multistage designs, the investigator
performs a genome-wide scan on an initial group of case and
control participants and then replicates a much smaller num-
ber of associated SNPs in a second or third group of cases
and controls. For example, in a type 2 diabetes study, Sladek
et al. [30] selected 57 SNPs from the first-stage analyses,
tested these SNPs in an independent sample of 2,617 cases
and 2,894 controls in the second stage, and finally confirmed
association with 8 SNPs using the combined results from the
two stages. In a glioma study, 34 SNPs were prioritized as
showing significant associations in the first stage. The in-
vestigators then conducted a replication study of these 34
SNPs in three case-control series that included 5,498 indi-
viduals in the second stage, and confirmed the association
with 14 SNPs [28]. In a lung cancer study, Amos et al. [2] se-
lected the top 10 SNPs from the first-stage analyses, tested
these SNPs in an additional sample of 711 cases and 632
controls from Texas and 2,013 cases and 3,062 controls from
the United Kingdom in the second stage, and confirmed 2
SNPs associated with the risk of lung cancer.

In GWA studies, investigators typically choose the top
SNPs in the first stage and then test the selected SNPs for
replication in an independent sample in the second stage.
Therefore, in the first stage of a GWA study, the investiga-
tors hope to include disease-associated SNPs in the set of
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SNPs that are to be replicated. So, it is important to de-
cide the number of top SNPs to select in the first stage. If
more SNPs are selected in the first stage, more genotyping
is required in the second stage; if fewer SNPs are selected in
the first stage, some of the SNPs that are potentially causal
might not be included for replication in the second stage.
Mostly, in the first stage of current GWA studies, investi-
gators select top SNPs for replication based on an arbitrary
cutoff p-value (e.g. p-value ≤ 10−5 as in the glioma GWA
study [28]) or an arbitrarily fixed number of SNPs (e.g. 10
top SNPs as in the lung cancer GWA study [2]). If the in-
vestigators are selecting a very large number of SNPs (e.g.
top 1,000 SNPs) or a very liberal significance level (e.g. p-
value ≤ 10−2), they might include more disease-associated
SNPs for replication. However, such strategies would re-
quire a large number of SNPs to be genotyped. Moreover,
it may not be necessary to select such a large number of
top SNPs. The alternative is to select the top SNPs us-
ing the approaches based on controlling type I errors in the
stage one, such as the Bonferroni correction or Benjamini-
Hochberg False Discovery Rate (BH-FDR) approach. These
approaches can control the type I error very well, but are
usually very conservative, and might exclude the potentially
interesting (disease-associated) SNPs from the analysis of
second stage. Therefore, instead of using arbitrary thresh-
olds or using the criterion based on controlling the type I
errors, the purpose of this paper is to propose a selection
criterion for the first stage of GWA studies based on the
power of the multiple testing.

In this paper, we propose an approach for selecting top
SNPs from the first stage by using the false-negative rate
(FNR). FNR is a measure of the type II error rate for mul-
tiple testing, which is defined as the expected proportion
of falsely not-rejected hypotheses among all alternative hy-
potheses [20, 21]. Delongchamp et al. [7] called the same
quantity the Fraction of Genes Not Selected in their study.
This is the definition of FNR that we will use throughout
our paper. It should be noted that some other investiga-
tors have defined FNR differently [11, 24, 33]. Genovese and
Wasserman [11] defined the False Nondiscovery Rate as the
proportion of non-rejections that are incorrect. This was also
referred to as the False Negative Rate by Sarkar [24] and the
Miss Rate by Taylor et al. [33].

Using the proposed FNR approach, we selected SNPs on
the basis of observed p-values and pre-specified multi-testing
powers, which is also defined as (1 − false-negative rate), in
the first stage of a GWA study. To test the performance of
the FNR-based SNP selection approach, we performed sim-
ulation studies under different scenarios. We compared our
FNR-based approach to the fixed p-value cutoff approach,
fixed number of SNPs cutoff approach, Bonferroni correc-
tion and BH-FDR approach. We also applied the proposed
approach to the analysis of SNP genotype data from 1,247
glioma patients and 2,232 controls. Our results from the sim-
ulation and real data analyses show that the proposed ap-

Table 1. Description of the outcomes of m multiple tests,
where m is the total number of statistical tests, m0 is the

number of true null hypotheses, m1 is the number of
alternative hypotheses, and r is the total number of

hypotheses rejected at a significance level α

True hypothesis Non-significant Significant Total

Null m0 − r0 r0 m0

Alternative m1 − r1 r1 m1

Total m − r r m

proach provides an FNR-based criterion to select top SNPs
in the first stage, while attaining adequate power.

2. METHODS AND MATERIALS

2.1 Statistical methods

In our study, we considered a GWA study with m SNPs.
The null hypothesis was no association between a SNP and
the phenotype of interest, and the alternative hypothesis
was that there is an association. Let m0 denote the number
of true null hypotheses and m1 denote the number of alter-
native hypotheses, where m1 = m − m0. Therefore, in the
GWA study, we had m1 disease-associated SNPs and m0

unassociated SNPs. We performed logistic regression analy-
sis for each SNP and obtained a p-value for each SNP using
Wald’s test. Table 1 shows the outcomes of these m multiple
tests at a specified significance level α.

From Table 1, we can see that, statistically, there are two
groups of SNPs based on a given significance level: the SNPs
whose estimated effects are declared significantly different
than zero (r) and those declared not to be significantly dif-
ferent than zero (m−r). The SNPs that were significant can
be further classified into two groups: one group is from the
true null hypotheses (r0), in which the SNPs were selected
as a consequence of type I error; the other group is from
the true alternative hypotheses (r1), in which the SNPs are
true positives. Given m0 true null hypotheses and a nominal
significance level of α, statistically, r0 = α×m0 tests would
show a false significant association (false positive, type I er-
ror) between the SNPs and the phenotype of interest, and
m0 − r0 tests would show no significant association between
the SNPs and the phenotype (true negative). Among all the
m1 true alternative hypotheses, m1 − r1 tests would show
no association between the SNPs and the phenotype (false
negative, type II error), and r1 = r − r0 = r − α × m0 tests
would indicate a significant association (true positive).

In this paper, we proposed an approach to select top
SNPs in the first stage of a GWA study using a strategy
based on FNR. FNR, as defined in this paper, is a measure
of the type II error rate for multiple tests, or the expected
proportion of falsely not-rejected hypotheses among all al-
ternative hypotheses [20, 21]. In our study, FNR is defined
as the proportion of SNPs that are associated with the dis-
ease of interest but not selected in the first stage of the GWA
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study. By using a strategy based on FNR, we can obtain the
number of SNPs that should be selected given a pre-specified
overall study power based on performing m tests.

To begin with, assume that m0 is known (we will describe
how to estimate this value later). At a given significance level
α, we can evaluate the power of m independent multiple
tests by using the formula:

power = 1 − β = 1 − m1 − r1

m1

= 1 − m − m0 − (r − α × m0)
m − m0

=
r − α × m0

m − m0
,

where m is the total number of SNPs, m0 is the number of
true unassociated SNPs, r is the number of SNPs rejected
at a significance level α, m1 is the number of true disease-
associated SNPs, and r1 is the number of true disease-
associated SNPs found significant in the analysis. Therefore,
β is the type II error rate and 1 −β is the study power.

Using the above formula, if the power of multiple testing
is specified, the number of SNPs to be selected from among
all true disease-associated SNPs to achieve this power can
be derived. Let p1, . . . , pm be the p-values of the m SNPs,
and denote p(1) ≤ p(2) ≤ · · · ≤ p(k) ≤ · · · ≤ p(m) as the
ranked p-values, so p(k) is the kth smallest p-value. If the
top k SNPs with the lowest p-values are selected at the
significance level α, then there are k SNPs with p-values less
than the significance level α. For our purpose, we therefore
substitute p(k) for α and k for r in the above formula, and
then the power of multiple tests is given by:

power = 1 − β = 1 − m1 − r1

m1

= 1 −
m − m0 − (k − p(k) × m0)

m − m0

=
r − p(k) × m0

m − m0
,

where p(k) is the kth-order of p-value. From this formula, m
is known and m0 can be estimated (see below). The power
is a function of k, and to calculate the number k, we started
with k = 1 and stopped when for the first time, the power
value in above formula was greater than or equal to the pre-
specified power. Therefore, if the power is pre-specified, the
ranking value k, which is the number of SNPs selected, can
be obtained based on the observed p-values.

As we discussed previously, to compute the number of
SNPs selected, or k, we need to estimate m0, denoted by m̂0,
the number of true null hypotheses [3, 26, 31]. In our study,
we employed three different methods to estimate the value of
m0. The first method we used was the adaptive linear step-
up procedure [3, 31, 32]. For this approach, m̂0 was com-
puted as (m−r(λ))/(1−λ), where λ was a tuning parameter

for the p-values between the null and alternative hypothe-
ses and r(λ) was the number of p-values less than or equal
to the parameter λ. It has been shown that, the estima-
tor m̂0 is unbiased if all p-values were from null hypotheses
(i.e. from uniform (0, 1) distribution) [5, 32]. However, when
both null and alternative p-values are included, the estimate
of m̂0 tends to be overestimated. When λ approaches 0, the
bias of the estimate gets larger and the estimate is too con-
servative; while when λ approaches 1, the bias gets smaller
but the variance of this estimate gets larger. Therefore, se-
lecting an appropriate λ is significant in efficiently estimat-
ing m̂0. In general, a bootstrapping procedure is suggested
to obtain the optimal λ. However, in Storey’s paper [31],
he also suggested that when the proportion of true alterna-
tive hypotheses is very small among all hypotheses, the best
λ should be close to 0. This is indeed the case in the GWA
studies, where the proportion of the disease-associated SNPs
is likely to be small. Therefore, in this paper, we used differ-
ent values of λ, such as 10−5, 5×10−5, 10−4, and 10−3. The
second method is referred to as the two-stage linear step-up
procedure [3]. For this method, we used a modified signifi-
cance level α′ = α/(1+α), where α is the nominal statistical
significance level. We then evaluated the number of hypothe-
ses rejected by r = max{k : p(k) ≤ α′ × k

m , k = 1, . . . ,m},
and m̂0 was estimated as m − r. The last approach is the
adaptive Benjamini-Hochberg procedure [3]. In this proce-
dure, m0(k) = (m+1−k)/(1−p(k)) is defined as a function
of ranked p-values and corresponding ranks. The procedure
started with k = 2 and stopped at the smallest k value for
which m0(k) > m0(k − 1). The estimated m̂0 is the mini-
mum of (m0(k), m), rounding up to the next highest inte-
ger. In the simulation study, we found that the two-stage
and the adaptive Banjamini-Hochberg approaches were rel-
atively low powered and the adaptive linear step-up proce-
dure was more robust than the other two methods; therefore,
we only report results using this procedure in the paper.

2.2 Simulation study

In order to investigate the performance of the FNR-
based approach for selection of top SNPs in the first stage
of a GWA study, we applied forward-time simulation soft-
ware (genomeSIM) to simulate large-scale genomic data
in a population [8]. The specific parameters used for sim-
ulation are detailed in Table S1 in the Supplementary
Material (http://www.intlpress.com/SII/p/2011/4-2/SII-4-
2-bondy-supplement.zip). We simulated 100 replicates, each
with 4,000 individuals and 500,000 SNPs for each individual.

We used a logistic regression model to simulate the case-
control status. We studied five different models using dif-
ferent numbers of causal SNPs (5, 10, 15, 20, and 25 causal
SNPs). For simplicity, we also assumed that the causal SNPs
were independent (i.e., no linkage disequilibrium among
causal SNPs). Within each model, we defined a range of
odds ratios (ORs) for the causal SNPs. The ORs used for
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Table 2. Parameters for the five simulation models. Different
numbers of causal SNPs with a range of OR values were

employed for different models. The corresponding heritability
for each model is given as the expected squared residual of

the observed and predicted disease status

Odds ratios Herit-
Model # 1.2 1.3 1.4 1.5 1.6 1.7 1.8 ability

1 5 1 1 1 1 1 0 0 6.7%
2 10 2 2 2 1 1 1 1 14.2%
3 15 3 2 2 2 2 2 2 20.5%
4 20 3 3 3 3 3 3 2 25.2%
5 25 4 4 4 4 3 3 3 28.2%

#: number of causal SNPs

simulating case-control status are listed in Table 2. For ex-
ample, for Model 4, we assumed that there were 20 causal
SNPs associated with the disease: 3 SNPs with OR = 1.2, 3
SNPs with OR = 1.3, 3 SNPs with OR = 1.4, 3 SNPs with
OR = 1.5, 3 SNPs with OR = 1.6, 3 SNPs with OR = 1.7,
and 2 SNPs with OR = 1.8. We further denote Yj = {0, 1},
j = 1, . . . ,M , as the outcome variables of case-control sta-
tus of M individuals in the study, with 0 representing the
individuals in the control group and 1 representing the in-
dividuals in the case group. So the logistic regression model
is defined below:

Logit(p(Yj = 1)) = β0 +
n∑

i=1

βiXij ,

where Xij(i = 1, . . . , n, j = 1, . . . , M) represent the cat-
egorical random variable for each individual with respect
to the value of the three genotypes {0, 1, 2} for n causal
SNPs. βi(i = 1, . . . , n) were the logistic regression coeffi-
cients, which are equal to Log(ORs). For each model, using
specific intercept coefficient β0, we randomly selected 1,000
cases and 1,000 controls from the 4,000 individuals for each
replicate. In our study, we coded the genotypes as an addi-
tive model. The FNR approach is, however, not limited to
the additive model and can readily be applied to the dom-
inant or recessive models using appropriate genotype cod-
ing. The heritability associated with the simulated models
was calculated using the expected squared residual between
the observed and the predicted disease status [16–18]. The
values of heritability are listed in Table 2. For example, for
Model 2, the 10 causal SNPs explained 14.2% of the residual
variance. In this study, we performed the statistical analyses
using R (v 2.8) and Matlab (v R2007a).

3. RESULTS

Table 3 shows the numbers of SNPs that should be se-
lected by the five models using the FNR approach given dif-
ferent pre-specified multi-testing powers. The results were

also based on the following parameters: λ = 10−5, 5 ×
10−5, 10−4, and 10−3. We reported the median numbers of
SNPs selected, as well as the 1st and the 3rd quartile (Q1

and Q3) numbers of SNPs selected, based on 100 replicates.
Each replicate included 1,000 cases and 1,000 controls. The
results of the FNR approach are also reported according to
the pre-specified multi-testing powers of 50%, 60%, 70%,
80%, and 90%.

Table 3 shows that to achieve higher power, more SNPs
need to be selected as expected. For example, in Model 4, for
λ = 10−4, to achieve the pre-specified multi-testing power of
50%, the median number of SNPs selected was 48, and the
Q1 and Q3 numbers were 38 and 54, respectively; to achieve
the pre-specified power of 60%, the median number of SNPs
selected was 62; to achieve the pre-specified power of 70%,
the median number of SNPs selected was 75; to achieve the
pre-specified power of 80%, the median number of SNPs
selected was 92; and to achieve the pre-specified power of
90%, the median number of SNPs selected was 111. Similar
trends were observed for other models.

In most cases, when the number of causal SNPs increased,
the number of SNPs selected also increased, given the same
parameter value (Table 3). For example, given λ = 10−4,
to achieve the pre-specified multi-testing power of 80% in
Model 1, when there were 5 causal SNPs, we needed to select
28 top SNPs using the FNR approach. When the numbers of
causal SNPs were 10, 15, and 20, we needed to select the top
46, 70, and 92 SNPs, respectively, to achieve the same power.
However, using the same parameter in Model 5, where the
number of causal SNPs was 25, to achieve 80% pre-specified
power, we only needed to select 81 SNPs. This result could
be due to variations in the ORs that were used in different
simulation scenarios. Furthermore, as shown in Table 3, we
also found that the number of SNPs selected increased as
the parameter λ value increased, which is expected because
the number of alternative hypotheses increases in propor-
tion to the value of λ. For example, in Model 4, to achieve
the pre-specified power of 80%, we needed to select the top
33 SNPs using our FNR approach when λ = 10−5. When
the parameter λ values were 5 × 10−5, 10−4, and 10−3, we
needed to select the top 63, 92, and 456 SNPs, respectively,
to achieve the same power based on the median of 100 repli-
cates. The large difference between the number of top SNPs
selected using λ = 10−4 and λ = 10−3 could be due to the
non-uniform property of the distribution of p-values.

We also evaluated the number of top SNPs selected us-
ing the traditional approaches for comparison: Bonferroni
correction, BH-FDR approach, and fixed p-value cutoff (see
Table 4). As expected, the approaches based on controlling
type I errors are very conservative. For example, in Model
1, there were 5 causal SNPs in the model, but only 3 top
SNPs were selected using Bonferroni correction, and 4 top
SNPs were selected using BH-FDR approach, at a genome-
wide 5% level of significance. More interestingly, we observed
that the numbers of top SNPs selected using the type I
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Table 3. The median (Q1 −Q3)∗ numbers of SNPs selected in the first stage of a two-stage GWA study using the FNR-based
approach for the five simulation models, given pre-specified multi-testing powers (50%, 60%, 70%, 80% and 90%) and

different parameter λ values (10−5, 5 × 10−5, 10−4, and 10−3), based on 100 replicates

Model Parameter Pre-specified multi-testing powers
(#) values 50% 60% 70% 80% 90%

λ = 10−5 3(2 − 5) 4(2 − 6) 5(3 − 7) 6(4 − 9) 8(4 − 11)
1 λ = 5 × 10−5 5(1 − 10) 7(1 − 14) 9(2 − 19) 12(2 − 25) 15(2 − 30)

(5) λ = 10−4 10(2 − 20) 16(3 − 30) 21(3 − 39) 28(4 − 46) 36(4 − 54)
λ = 10−3 130(1 − 254) 180(1 − 314) 223(1 − 379) 284(1 − 418) 335(1 − 464)

λ = 10−5 7(4 − 8) 8(5 − 11) 10(7 − 13) 12(8 − 16) 14(9 − 18)
2 λ = 5 × 10−5 11(8 − 17) 16(11 − 22) 22(15 − 28) 27(18 − 36) 35(21 − 43)

(10) λ = 10−4 19(11 − 26) 25(15 − 35) 34(19 − 43) 46(26 − 55) 56(38 − 66)
λ = 10−3 172(85 − 246) 246(138 − 317) 314(187 − 378) 395(228 − 465) 476(273 − 525)

λ = 10−5 12(10 − 15) 15(13 − 19) 18(15 − 22) 21(18 − 26) 25(21 − 30)
3 λ = 5 × 10−5 24(18 − 29) 31(24 − 37) 39(31 − 45) 46(38 − 55) 56(46 − 64)

(15) λ = 10−4 35(27 − 41) 45(36 − 53) 58(47 − 68) 70(61 − 83) 86(74 − 100)
λ = 10−3 194(147 − 229) 272(204 − 314) 349(280 − 412) 430(372 − 491) 535(461 − 581)

λ = 10−5 19(16 − 23) 24(20 − 28) 28(24 − 33) 33(28 − 39) 38(33 − 44)
4 λ = 5 × 10−5 34(30 − 39) 43(36 − 50) 52(45 − 60) 63(54 − 71) 73(64 − 84)

(20) λ = 10−4 48(38 − 54) 62(50 − 68) 75(63 − 86) 92(78 − 103) 111(95 − 124)
λ = 10−3 193(159 − 228) 272(215 − 312) 355(304 − 419) 456(392 − 523) 573(506 − 628)

λ = 10−5 15(11 − 17) 18(14 − 22) 21(17 − 25) 25(20 − 29) 29(23 − 34)
5 λ = 5 × 10−5 28(22 − 32) 36(29 − 40) 44(37 − 49) 54(44 − 60) 63(54 − 71)

(25) λ = 10−4 40(32 − 47) 52(44 − 61) 65(54 − 76) 81(65 − 91) 94(83 − 108)
λ = 10−3 212(170 − 257) 288(228 − 339) 379(311 − 428) 461(399 − 528) 566(508 − 627)

#: number of causal SNPs
*Q1: 1st quartile Q3: 3rd quartile
λ: parameter used for estimating number of null hypotheses

Table 4. The median (Q1 − Q3)∗ numbers of SNPs selected
in the first stage of a two-stage GWA study using the

traditional approach, including Bonferroni correction and
BH-FDR at 5% genome-wide significance level, and a fixed

p-value cutoff 10−5, for the five simulation models

Model
(#) Approaches # of Selection

1 Bonferroni correction 3(3 − 4)
(5) BH-FDR 4(3 − 5)

Fixed p = 10−5 12(9 − 14)

2 Bonferroni correction 6(5 − 7)
(10) BH-FDR 9(7 − 11)

Fixed p = 10−5 18(14 − 22)

3 Bonferroni correction 11(9 − 12)
(15) BH-FDR 18(14 − 23)

Fixed p = 10−5 30(26 − 36)

4 Bonferroni correction 14(12 − 16)
(20) BH-FDR 29(22 − 37)

Fixed p = 10−5 44(38 − 51)

5 Bonferroni correction 11(9 − 12)
(25) BH-FDR 21(16 − 25)

Fixed p = 10−5 34(28 − 40)

#: number of causal SNPs
*Q1: 1st quartile Q3: 3rd quartile
p: p-value cutoff

error-based approaches are similar to those obtained using
our FNR-based approach with a stringent parameter value
λ = 10−5: the results from Bonferroni correction are similar
to those obtained from our approach with pre-specified mul-
tiple testing power of 50%, and the results from BH-FDR are
similar to those from our approach with pre-specified multi-
ple testing power of 60% ∼ 70%. For the traditional p-value
cutoff of p-value < 10−5, it is expected that in most cases,
the number of top SNPs selected increases as the number
of causal SNPs increases. For example, in Model 1, where
there were 5 causal SNPs, 12 SNPs (Q1 = 9 and Q3 = 14)
had p-values less than the specified threshold, based on the
median of 100 replicates. The numbers of top SNPs selected
were 18, 30, and 44 when the numbers of causal SNPs were
10, 15, and 20, respectively. In Model 5, when there were
25 causal SNPs, 34 top SNPs were selected, which could
be due to variations in ORs in the different models. Many
GWA studies select arbitrary numbers of top SNPs in stage
one, so we also employed a fixed number of SNPs cutoff for
each model, including selections of 10, 20, and 30 top SNPs,
which are concordant with the commonly used cutoffs in
current GWA studies. Obviously, for all the traditional ap-
proaches discussed here, for each model, there is only one
number of top SNPs selected in this situation, since no false
negative rate will be attached to these approaches.
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Table 5. Comparison of the median numbers of causal SNPs selected for different pre-specified odds ratios for the five
simulation models using the FNR-based approach (given pre-specified power 80%) with traditional approaches

Model Parameter Odds ratios
(#) Approaches values 1.8 1.7 1.6 1.5 1.4 1.3 1.2

Bonferroni correction 0a/0b 0/0 1/1 1/1 1/1 0/1 0/1
BH-FDR 0/0 0/0 1/1 1/1 1/1 0/1 0/1

1 Fixed p-value cutoff p = 10−5 0/0 0/0 1/1 1/1 1/1 0/1 0/1
(5) 10 0/0 0/0 1/1 1/1 1/1 0/1 0/1

Fixed number cutoff 20 0/0 0/0 1/1 1/1 1/1 0/1 0/1
30 0/0 0/0 1/1 1/1 1/1 1/1 0/1

λ = 10−5 0/0 0/0 1/1 1/1 1/1 0/1 0/1
FNR-based λ = 5 × 10−5 0/0 0/0 1/1 1/1 1/1 0/1 0/1

λ = 10−4 0/0 0/0 1/1 1/1 1/1 0/1 0/1
λ = 10−3 0/0 0/0 1/1 1/1 1/1 1/1 0/1

Bonferroni correction 1/1 1/1 1/1 1/1 0/2 0/2 0/2
BH-FDR 1/1 1/1 1/1 1/1 1/2 1/2 0/2

2 Fixed p-value cutoff p = 10−5 1/1 1/1 1/1 1/1 1/2 1/2 0/2
(10) 10 1/1 1/1 1/1 1/1 1/2 1/2 0/2

Fixed number cutoff 20 1/1 1/1 1/1 1/1 1/2 1/2 0/2
30 1/1 1/1 1/1 1/1 2/2 1/2 0/2

λ = 10−5 1/1 1/1 1/1 1/1 1/2 1/2 0/2
FNR-based λ = 5 × 10−5 1/1 1/1 1/1 1/1 1/2 1/2 0/2

λ = 10−4 1/1 1/1 1/1 1/1 2/2 1/2 0/2
λ = 10−3 1/1 1/1 1/1 1/1 2/2 2/2 0/2

Bonferroni correction 1/2 2/2 2/2 1/2 1/2 0/2 0/3
BH-FDR 2/2 2/2 2/2 2/2 2/2 0/2 0/3

3 Fixed p-value cutoff p = 10−5 2/2 2/2 2/2 2/2 2/2 0/2 0/3
(15) 10 1/2 2/2 2/2 1/2 1/2 0/2 0/3

Fixed number cutoff 20 2/2 2/2 2/2 2/2 2/2 0/2 0/3
30 2/2 2/2 2/2 2/2 2/2 0/2 0/3

λ = 10−5 2/2 2/2 2/2 2/2 2/2 0/2 0/3
FNR-based λ = 5 × 10−5 2/2 2/2 2/2 2/2 2/2 0/2 0/3

λ = 10−4 2/2 2/2 2/2 2/2 2/2 1/2 0/3
λ = 10−3 2/2 2/2 2/2 2/2 2/2 1/2 0/3

Bonferroni correction 2/2 3/3 2/3 3/3 1/3 0/2 0/3
BH-FDR 2/2 3/3 2/3 3/3 1/3 0/2 0/3

4 Fixed p-value cutoff p = 10−5 2/2 3/3 2/3 3/3 2/3 0/2 0/3
(20) 10 2/2 2/3 2/3 2/3 1/3 0/2 0/3

Fixed number cutoff 20 2/2 3/3 2/3 3/3 1/3 0/2 0/3
30 2/2 3/3 2/3 3/3 1/3 0/2 0/3

λ = 10−5 2/2 3/3 2/3 3/3 1/3 0/2 0/3
FNR-based λ = 5 × 10−5 2/2 3/3 2/3 3/3 2/3 0/2 0/3

λ = 10−4 2/2 3/3 2/3 3/3 2/3 0/2 0/3
λ = 10−3 2/2 3/3 3/3 3/3 2/3 2/2 0/3

Bonferroni correction 3/3 2/3 1/3 2/4 0/4 0/4 0/4
BH-FDR 3/3 2/3 2/3 3/4 0/4 0/4 0/4

5 Fixed p-value cutoff p = 10−5 3/3 3/3 2/3 3/4 4/4 1/4 0/4
(25) 10 3/3 2/3 1/3 1/4 0/4 0/4 0/4

Fixed number cutoff 20 3/3 2/3 2/3 3/4 1/4 0/4 0/4
30 3/3 3/3 2/3 3/4 3/4 1/4 0/4

λ = 10−5 3/3 3/3 2/3 3/4 2/4 1/4 0/4
FNR-based λ = 5 × 10−5 3/3 3/3 3/3 3/4 4/4 1/4 0/4

λ = 10−4 3/3 3/3 3/3 3/4 4/4 1/4 0/4
λ = 10−3 3/3 3/3 3/3 4/4 4/4 2/4 0/4

#: number of causal SNPs
a Denotes how many causal SNPs were selected
b Denotes how many causal SNPs in total in the models
p: p-value cutoff
λ: parameter used for estimating number of null hypotheses
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Table 6. The median type I error probabilities and median observed powers of the FNR-based approach in stage one analysis
for the five simulation models, given pre-specified multi-testing powers (50%, 60%, 70%, 80% and 90%) and different

parameter λ values (10−5, 5 × 10−5, 10−4, and 10−3), based on 100 replicates

Pre-specified multi-testing powers
50% 60% 70% 80% 90%

Model Parameter Type I Observed Type I Observed Type I Observed Type I Observed Type I Observed
(#) values errors powers errors powers errors powers errors powers errors powers

λ = 10−5 0 0.60 2.00E-6 0.60 4.00E-6 0.60 6.00E-6 0.60 1.00E-5 0.60
1 λ = 5 × 10−5 6.00E-6 0.60 8.00E-6 0.60 1.20E-5 0.60 1.60E-5 0.60 2.20E-5 0.60

(5) λ = 10−4 1.50E-5 0.60 2.40E-5 0.60 3.50E-5 0.60 4.90E-5 0.60 6.20E-5 0.60
λ = 10−3 2.51E-4 0.80 3.51E-4 0.80 4.37E-4 0.80 5.61E-4 0.80 6.60E-4 0.80

λ = 10−5 4.00E-6 0.50 6.00E-6 0.50 8.00E-6 0.50 1.20E-5 0.60 1.60E-5 0.60
2 λ = 5 × 10−5 1.20E-5 0.50 1.90E-5 0.60 3.20E-5 0.60 4.20E-5 0.60 5.60E-5 0.60

(10) λ = 10−4 2.50E-5 0.60 3.60E-5 0.60 5.50E-5 0.70 7.80E-5 0.70 9.80E-5 0.70
λ = 10−3 3.31E-4 0.70 4.76E-4 0.80 6.11E-4 0.80 7.75E-4 0.80 9.38E-4 0.80

λ = 10−5 8.00E-6 0.53 1.20E-5 0.60 1.80E-5 0.60 2.40E-5 0.60 3.10E-5 0.60
3 λ = 5 × 10−5 2.80E-5 0.60 4.20E-5 0.67 5.70E-5 0.67 7.10E-5 0.67 9.10E-5 0.67

(15) λ = 10−4 5.10E-5 0.67 7.10E-5 0.67 9.50E-5 0.67 1.20E-4 0.67 1.49E-4 0.67
λ = 10−3 3.65E-4 0.73 5.21E-4 0.73 6.77E-4 0.73 8.40E-4 0.73 1.05E-3 0.73

λ = 10−5 1.70E-5 0.55 2.40E-5 0.55 3.30E-5 0.55 4.20E-5 0.60 5.20E-5 0.60
4 λ = 5 × 10−5 4.50E-5 0.60 6.20E-5 0.60 7.90E-5 0.65 1.00E-4 0.65 1.21E-4 0.65

(20) λ = 10−4 7.20E-5 0.60 9.70E-5 0.65 1.25E-4 0.65 1.56E-4 0.65 1.95E-4 0.70
λ = 10−3 3.55E-4 0.70 5.12E-4 0.75 6.82E-4 0.75 8.82E-4 0.75 1.11E-3 0.75

λ = 10−5 8.00E-6 0.40 1.30E-5 0.44 1.80E-5 0.48 2.40E-5 0.48 3.20E-5 0.52
5 λ = 5 × 10−5 3.10E-5 0.52 4.40E-5 0.56 5.80E-5 0.56 7.50E-5 0.60 9.30E-5 0.60

(25) λ = 10−4 5.40E-5 0.56 7.40E-5 0.56 9.90E-5 0.60 1.30E-4 0.60 1.59E-4 0.64
λ = 10−3 3.91E-4 0.68 5.42E-4 0.68 7.22E-4 0.72 8.86E-4 0.72 1.10E-3 0.72

#: number of causal SNPs
λ: parameter used for estimating number of null hypotheses

We compared the number of causal SNPs with different
ORs selected using the FNR-based method, given the differ-
ent λ values and a pre-specified power of 80%, to the number
of causal SNPs selected using the traditional approaches dis-
cussed above (Table 5). In the simulated data, the numbers
and locations of the causal SNPs were known for the dif-
ferent simulation models. Therefore, given a number of how
many top SNPs were selected, the exact number of causal
SNPs selected and the corresponding ORs were known. As
expected, when the ORs were high (i.e., OR = 1.7 or 1.8), all
approaches showed very similar results and the correspond-
ing causal SNPs were selected with a higher probability. All
the causal SNPs associated with OR = 1.8 were selected for
all 5 models by using different approaches, except for the ap-
proaches using the Bonferroni correction and the fixed top
10 SNPs in Model 3, which only selected 1 of the 2 causal
SNPs associated with OR = 1.8. We observed a similar trend
for the causal SNPs associated with OR = 1.7. When the
ORs decrease, it is not surprising that all approaches would
select the corresponding causal SNPs with a lower probabil-
ity. When the OR was small (i.e., OR = 1.2), we found that
given the sample size, none of the approaches could identify
the corresponding causal SNPs. However, we also observed
that when the OR was moderate, such as OR = 1.3 and
1.4, which are similar to the ORs reported in the current

GWA studies, our FNR-based approach could identify more
causal SNPs than the traditional approaches. For example,
in Model 2, there are 2 SNPs with OR = 1.3. Using the tra-
ditional approaches, we only can identify half of the causal
SNPs (1/2), whereas using our FNR-based approach with
λ = 10−3, we can identify all the causal associated SNPs
(2/2) based on the median of the 100 replicates. In Model 3
where there were 2 causal SNPs associated with OR = 1.3,
none of the causal SNPs (0/2) was selected using the tra-
ditional approaches, but 1 of 2 causal SNPs was selected
using the FNR-based approach with parameters λ = 10−4

and 10−3.
These findings provide strong support that compared to

the traditional fixed p-value cutoffs, fixed number of top
SNPs cutoffs and the type I error-based approaches, the
FNR-based approach has more power to identify moderate
significant causal SNPs when using a relatively liberal pa-
rameter λ. On the basis of the results from our simulation
studies, we would like to recommend a parameter value of
λ = 10−3 for selecting top SNPs for stage one of GWA
studies. In the simulation studies, because the disease-causal
SNPs were pre-defined, we estimated the type I error prob-
abilities and the observed powers for all approaches in the
stage one analysis. Table 6 reports the median type I er-
ror probabilities and median observed powers using the pro-
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Table 7. The median type I error probabilities and median
observed powers of the traditional approaches in stage one

analysis, including Bonferroni correction and BH-FDR at 5%
genome-wide significance level, a fixed p-value cutoff 10−5,

and fixed number cutoffs, for the five simulation models

Model Parameter Type I Observed
(#) Approaches values errors powers

Bonferroni
correction 0 0.60

1 BH-FDR 0 0.60
(5) Fixed p-value

cutoff p = 10−5 1.60E-5 0.60
Fixed number 10 1.40E-5 0.60

cutoff 20 3.20E-5 0.80
30 5.20E-5 0.80

Bonferroni
correction 2.00E-6 0.50

2 BH-FDR 6.00E-6 0.60
(10) Fixed p-value

cutoff p = 10−5 2.40E-5 0.60
Fixed number 10 8.00E-6 0.60

cutoff 20 2.80E-5 0.60
30 4.60E-5 0.70

Bonferroni
correction 6.00E-6 0.53

3 BH-FDR 1.80E-5 0.60
(15) Fixed p-value

cutoff p = 10−5 4.20E-5 0.67
Fixed number 10 4.00E-6 0.53

cutoff 20 2.20E-5 0.60
30 4.00E-5 0.67

Bonferroni
correction 8.00E-6 0.50

4 BH-FDR 3.60E-5 0.60
(20) Fixed p-value

cutoff p = 10−5 6.30E-5 0.60
Fixed number 10 3.00E-6 0.43

cutoff 20 1.80E-5 0.55
30 3.60E-5 0.60

Bonferroni
correction 4.00E-6 0.36

5 BH-FDR 1.80E-5 0.48
(25) Fixed p-value

cutoff p = 10−5 4.20E-5 0.54
Fixed number 10 2.00E-6 0.36

cutoff 20 1.60E-5 0.48
30 3.40E-5 0.52

#: number of causal SNPs

posed FNR-based approach with different values of λ pa-
rameter. As expected, for the FNR-based approach, as the
pre-specified multi-testing power and the value of the pa-
rameter λ increased, the type I error probabilities increased
because more SNPs were selected. However, it is important
to note that the GWA significance (5 × 10−8) employed at
the end of the experiment (stage two) will control the over-
all type I error probabilities. Also, the observed powers of

Table 8. The numbers of SNPs selected given different
pre-specified powers in the glioma GWA dataset, at different

parameter λ values

Parameter Pre-specified multi-testing powers
values 50% 60% 70% 80% 90%

λ = 10−5 16 19 23 27 31
λ = 5 × 10−5 35 47 56 65 80

λ = 10−4 49 61 77 89 113
λ = 10−3 363 478 557 663 751

λ: parameter used for estimating number of null hypotheses

the FNR-based approach increased with the increase of pre-
specified multi-testing power and the value of the parameter
λ. Table 7 reports the median type I error probabilities and
median observed powers for the standard approaches.

4. APPLICATION TO REAL GLIOMA DATA

In addition to the simulated data, we applied the pro-
posed FNR-based approach to data from a GWA study of
glioma we have recently conducted [28]. Glioma is a rare
and diffusely infiltrating brain disease. To investigate the
FNR-based approach proposed in this paper, we used SNP
genotype data from this whole-genome association analy-
sis. The GWA study was based on genotyping 1, 247 glioma
patients and 2, 232 controls in the first stage for 499, 139 au-
tosomal SNPs. Using these data, we applied the FNR-based
approach to estimate the number of top SNPs to be selected
given different pre-specified multi-testing powers in the first
stage. These results are shown in Table 8. With the use of
the FNR approach with λ = 10−4, 49 SNPs were selected
to achieve 50% power, and 61, 77, 89, and 113 SNPs were
selected to achieve powers of 60%, 70%, 80%, and 90%, re-
spectively. In the original GWA study of glioma, 34 SNPs
were selected in the first stage using an arbitrary threshold
p-value < 10−5. Subsequent replication of these 34 SNPs
was performed in three case-control series totaling 5, 498
individuals confirmed that 14 SNPs were significantly as-
sociated with glioma and identified 5 distinct genetic loci.
Using the FNR approach to achieve 80% power, we would
have selected 89 SNPs in the first stage, which could have
identified the same 5 genetic loci. It needs to be noted that
all the genetic regions we proposed to select in the first stage
have been validated in the second stage of replication in this
GWA study of glioma. The identification of more susceptive
SNPs to be repeated in the second stage might allow us
to identify more genetic loci. Actually, if the investigators
could have selected more top SNPs as we suggested using
the FNR-based approach with a liberal parameter value of λ
(e.g. λ = 10−4 or 10−3), it would be possible to identify two
additional loci associated with glioma which were recently
discovered (unpublished data). Most importantly, compared
to the traditional arbitrary cutoff approach, using the FNR-
based approach, one can select top SNPs in stage one with
pre-specified confidence.
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5. DISCUSSION

The purpose of this paper is to provide a criterion that the
investigators can follow to select top SNPs in the first stage
of a GWA study based on controlling the type II errors. The
findings from both our analysis of simulated data and our
GWA study of glioma indicate that the proposed approach
provides an FNR-based criterion to select more potential
disease-associated SNPs with moderate significance accord-
ing to pre-specified powers. Using the FNR-based approach,
the number of SNPs to be selected in the first stage on the
basis of observed p-values and a pre-specified multi-testing
power can be ascribed, thus controlling the false negative
rate.

To illustrate the performance of the FNR approach, we
conducted simulation studies of five different scenarios, with
respect to different numbers of actual causal SNPs for a
range of OR values. As expected, the simulation results
showed that more SNPs need to be selected when the pre-
specified multi-testing power increases, as well as when the
number of actual causal SNPs increases. We compared the
FNR-based approach using pre-specified powers to the tradi-
tional approaches for selecting SNPs, including fixed p-value
cutoffs, fixed number of SNPs cutoffs, Bonferroni correction
and BH-FDR approach. The approaches based on control-
ling type I errors (e.g. Bonferroni correction and BH-FDR)
are conservative and select fewer top SNPs for replication
in stage two. When the disease-associated SNPs are highly
significant, both the traditional approaches and the FNR-
based approach can identify them. But when the disease-
associated SNPs are only moderately significant, the tradi-
tional approaches may lose power to identify them, whereas
the FNR-based approach will have more power to identify
this kind of disease-associated SNP. In the simulations, we
assumed that all the causal SNPs are in linkage equilibrium,
therefore, single SNP analysis is valid and provides an un-
biased estimate of marker effect size. We performed a proof
of principle simulation study to investigate the impact of
linkage disequilibrium (LD) among causal SNPs. We simu-
lated two scenarios. In one scenario the two disease-causal
SNPs were in LD (r2 = 0.4) and in the other scenario they
were not in LD (r2 = 0). We found that the p-values were
less significant when causal SNPs were in LD compared to
when causal SNPs were not in LD. Therefore, none of the
approaches, including the standard approaches and the pro-
posed FNR-based approach, selected the two causal SNPs
in LD in the first stage (data not shown). The issue related
with multiple causal SNPs in varying linkage disequilibrium
should be further investigated. One of the limitations of our
simulation study is that our simulation models with multi-
ple disease causing loci had larger heritability (as shown in
Table 2), therefore, signal to noise ratio or the complexity
of the trait may have some impact on the results.

When using the FNR-based approach proposed in this
paper, the selection of appropriate parameter λ in estimat-
ing m̂0 is very important. It has been shown that m̂0 can

be overestimated when the parameter λ is very small [32].
An alternative approach for estimating m̂0 has been pro-
posed [32] where m̂0 was estimated by smoothing the func-
tion m̂0(λ) over a range of values of λ, based on natural
cubic spline with 3 degrees of freedom. However, this ap-
proach might not be suitable for GWA studies because it
estimates m̂0 at the limiting value of λ = 1. Thus, the esti-
mated proportion of disease-associated SNPs among all the
SNPs will be extremely high. However, this is not the case
from the findings of the current GWA studies, where only
a handful of SNPs were discovered. Moreover, based on p-
values obtained from our simulated GWA data, we did not
find a pattern of p-values suggested by Storey and Tibshi-
rani, therefore, this approach is not directly applicable for
GWA studies. Because the proportion of the unassociated
SNPs (not associated with the disease of interest) among all
the SNPs could be close to 1 and the p-values correspond-
ing to the disease-associated SNPs are always assumed to
be more significant than those corresponding to the unas-
sociated SNPs, we used small values of λ as suggested in
[31], such as 10−5, 5 × 10−5, 10−4 and 10−3 for our FNR-
based approach. From our simulation results, we found that
the average values of estimated m̂0 were not dramatically
different for different values of λ. For example, when the
number of causal SNPs is 15 (Model 3), the medians of es-
timated m̂0 based on 100 replicates were 499970, 499960,
499950 and 499945, respectively, for λ of 10−5, 5 × 10−5,
10−4 and 10−3. Thus, the estimated m̂0 was not overesti-
mated in our simulation studies. This phenomenon could be
due to multiple SNPs in linkage disequilibrium with causal
SNPs. Therefore, p-values associated with these SNPs will
also be significant.

To select the parameter value of λ for GWA studies, we
would like to recommend using a liberal λ = 10−3. Al-
though more top SNPs will be selected in the first stage us-
ing λ = 10−3 (usually hundreds of top SNPs) than with the
traditional approaches, it is still feasible for replications in
GWA studies because of the rapid development of genotyp-
ing techniques and therefore the decrease of genotyping cost.
Furthermore, because a pre-specific power-based criterion is
attached to our FNR-based approach, this approach pro-
vides a more optimal selection criterion than traditional ap-
proaches. To identify disease-associated SNPs with smaller
ORs (such as 1.2), much larger sample sizes in stage one of
the two-stage design may be required. Our methodology of
choosing the number of SNPs is, however, valid irrespective
of the magnitude of the odds ratio. It should also be noted
that the type I error can be controlled in the second-stage
analysis of GWA studies, because the SNPs selected in stage
one with the use of our FNR approach are not final, and they
have to meet the GWA significance (5.0 × 10−8) at the end
of the stage two analysis [1]. Furthermore, to achieve higher
power, much larger samples would be needed in order to de-
tect the causal SNPs with small true ORs (i.e. OR = 1.2).
Therefore, a GWA study with 1,000 cases and 1,000 controls
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is likely to have low power to select 90% of the small effect
causal SNPs.

We also applied the FNR approach to a recently pub-
lished GWA dataset. Selecting a bit larger number of SNPs
in stage one, our approach led to the same conclusion as
the original GWA study using an arbitrary p-value cut-off.
Furthermore, using arbitrary p-value or fixed number cut-
offs, one just selects top SNPs, without confidence about
the disease-associated variants being selected; on the other
hand, using the proposed FNR-based approach, we have
confidence that most of the moderately significant SNPs in
the GWA study of glioma were selected in stage one for
replication.

In conclusion, we present an FNR-based approach for se-
lecting top SNPs given a pre-specified power based on the
ranked p-values. This approach will select a relatively larger
number of top SNPs in stage one that could include more
moderately significant SNPs. The type II error for stage one
can be controlled, and type I error can be controlled at the
end of the stage two analysis in the GWA studies.
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