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Imputation offers a promising way to infer the missing
and/or untyped genotypes in genetic studies. In practice,
however, many factors may affect the quality of imputation.
In this study, we evaluated the influence of untyped rate,
sizes of the study sample and the reference sample, window
size, and reference choice (for admixed population), as the
factors affecting the quality of imputation. The results show
that in order to obtain good imputation quality, it is neces-
sary to have an untyped rate less than 50%, a reference sam-
ple size greater than 50, and a window size of greater than
500 SNPs (roughly 1 MB in base pairs). Compared with the
whole-region imputation, piecewise imputation with large-
enough window sizes provides improved efficacy. For an ad-
mixed study sample, if only an external reference panel is
used, it should include samples from the ancestral popula-
tions that represent the admixed population under investi-
gation. Internal references are strongly recommended. When
internal references are limited, however, augmentation by
external references should be used carefully. More specif-
ically, augmentation with samples from the major source
populations of the admixture can lower the quality of impu-
tation; augmentation with seemingly genetically unrelated
cohorts may improve the quality of imputation.

Keywords and phrases: Genotype imputation, Genetic
study, Admixed population, Untyped rate, Window size,
Reference.

1. INTRODUCTION

Genome-wide association studies have successfully iden-
tified regions of the genome associated with disease risks
and other heritable traits. One of the key steps for these
studies is to collect the genotype data across the genome.
Despite advances in genotyping technology, missing genetic
information can arise from varieties of sources, such as er-
rors in genotype calling, variation in depth and scope of
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assessment across different genotyping platforms. Recently,
handling missing genotypes by design is drawing more at-
tention (Marchini and Howie 2010; Spencer, et al. 2009a;
The Wellcome Trust Case-Control Consortium 2007). Al-
though ignoring the untyped loci in association analysis is a
common practice, availability of complete information can
significantly enhance power (Anderson, et al. 2008a; Hao, et
al. 2009; Spencer, et al. 2009b).

Genotype imputation is the process of inferring genotypes
that are not directly assessed in a cohort of individuals (An-
derson, et al. 2008b; Li, et al. 2009; Marchini and Howie
2010; Servin and Stephens 2007; Spencer, et al. 2009b; The
Wellcome Trust Case-Control Consortium 2007). Advances
in the understanding of the genome structure, substructure
and population admixture, and statistical genetic method-
ology have enabled imputation of the missing genetic infor-
mation. Therefore imputation of genotypes has been widely
adopted to boost power, fine-map associations and synchro-
nize the genotype data from studies using different plat-
forms (Hao, et al. 2009; Marchini and Howie 2010; Zeggini,
et al. 2008). The need for robust imputation has led to de-
velopment of novel imputation algorithms through a wide-
array of software packages, such as IMPUTE (Marchini, et
al. 2007b), MACH (Li, et al. 2010), FastPHASE (Scheet
and Stephens 2006), and BEAGLE (Browning and Brown-
ing 2007). Although studies have compared various software
packages and their underlying methods for imputation (Alt-
shuler, et al. 2010; Aulchenko, et al. 2010; Browning 2008;
Nothnagel, et al. 2009; Pei, et al. 2008; Pei, et al. 2010),
a systematic investigation of the factors affecting the qual-
ity of imputation is needed. Ensuring quality of imputation
is vital to the downstream analyses as illustrated by the
recent study by Huang et al. (Huang, et al. 2009c) which
highlighted how imputation errors can seriously compromise
statistical power.

Herein we focus on the influence of four factors on the
quality of genotype imputation: sample size, untyped rate,
window-size, and reference choice. Guided by the work of
Huang et al. (Huang, et al. 2009b; Huang, et al. 2009c)
and Pei et al. (Pei, et al. 2008) we evaluate both accu-
racy and efficacy as measures of the quality of imputa-
tion. Although most algorithms specify a fairly large window
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size (the length of the chromosomal region, for example, is
at least 5MB for IMPUTE2 (Marchini, et al. 2007a)) for
analysis, a smaller window size (< 5 MB) may be neces-
sary for analysis of discreet regions such as candidate genes
(Huang, et al. 2009c). We therefore investigate how win-
dow size smaller than 5 MB affects the quality of geno-
type imputation. Several studies have discussed reference
choices (Huang, et al. 2009a; Shriner, et al. 2010; Zhao, et
al. 2008). Huang et al. (Huang, et al. 2009a) proposed strate-
gies to optimize the quality of imputation for admixed study
samples using existing external references. They evaluated
the “portability” of the HapMap data (The International
HapMap Consortium 2003) as reference panels. Zhao et al.
(Zhao, et al. 2008) used principal component analysis to
stratify the African American samples into two groups: one
group close to YRI (Yoruba in Ibadan, Nigeria) and the
other group close to CEU (Utah residents with Northern
and Western European ancestry from the CEPH collection).
They found that the accuracy of genotype imputation for
the group close to CEU with CEU as reference improved
dramatically compared with the accuracy of imputation for
this group with YRI as the reference. These studies, how-
ever, focused on external references, claiming that a “cos-
mopolitan” reference panel formed by pooling the available
reference cohorts would work for practical use (de Bakker, et
al. 2006; Huang, et al. 2009a). Intuitively, internal references
(i.e., reference samples drawn from the same population as
the study samples) would be preferred. But they are usu-
ally more expensive to obtain because the studies have to
genotype a proportion of individuals as references with a
much greater density. Thus, a study is necessary to evaluate
internal references in terms of the gain in the quality of im-
putation against the cost for internal reference. In addition,
when an internal reference panel is small, the researchers
may want to augment the reference panel with some existing
external references. In this case, researchers are interested
in the portability of the “cosmopolitan rule”.

These questions are relevant to our ongoing work in phar-
macogenomics of warfarin, the most commonly used oral
anticoagulant. Anticoagulant therapy with warfarin is chal-
lenging due to marked and often unpredictable variability in
response (Aquilante, et al. 2006; Budnitz, et al. 2007). The
recent years have witnessed a bourgeoning understanding
of genetic regulation of warfarin response making warfarin
the ‘poster child’ for pharmacogenetics. Clearly, the bulk of
available evidence supports a major influence of polymor-
phisms in two genes: vitamin K epoxide reductase complex
1(VKORC1 ) and cytochrome P450 2C9 (CYP2C9) in de-
termining warfarin dose in populations of European, Asian
descent (Aquilante, et al. 2006; Borgiani, et al. 2007; Cald-
well, et al. 2007; Carlquist, et al. 2010; Cho, et al. 2007;
D’Andrea, et al. 2005; Furuya, et al. 1995; Gage, et al. 2008;
Klein, et al. 2009; Limdi, et al. 2008a; Limdi, et al. 2010a;
Limdi, et al. 2010b; Limdi, et al. 2009; Takahashi, et al. 2006;
Wadelius, et al. 2007; Wadelius, et al. 2009; Zhu, et al. 2007),

and recently African descent (Limdi, et al. 2008b; Momary,
et al. 2007; Schelleman, et al. 2007). Among patients of Eu-
ropean descent, polymorphisms in CYP2C9 and VKORC1
explain 30–35% of the variability in warfarin dose while clin-
ical and demographic factors account for an additional 20
to 25% (Crawford, et al. 2007; Klein, et al. 2009; Rieder,
et al. 2007). However, among patients of African descent, a
smaller proportion of variability is accounted by CYP2C9
(2-5%) and VKORC1 (5–7%). Recognizing that differences
in VKORC1 haplotype structure between persons of Euro-
pean versus African descent (Crawford, et al. 2004; Kuffner,
et al. 2003; Przeworski, et al. 2000) may explain racial dif-
ferences in warfarin requirements, the predictive ability of
single VKORC1 polymorphisms and VKORC1 haplotypes
has been evaluated (Limdi and Veenstra 2008; Limdi, et
al. 2010b). Participants in the report by International War-
farin Pharmacogenetics Consortium (IWPC) (Limdi, et al.
2010b) were recruited from 11 countries. In total, seven
VKORC1 SNPs were studied. However, as all study sites did
not assess the same SNPs, genotype information was incom-
plete. To ensure complete genotype information, imputation
methods that perform robustly over short window sizes (i.e.,
only seven SNPs in one gene) are vital. Also, the choice of
reference samples is vital for the quality of the imputation.
Another ongoing study involves pooling genotype informa-
tion (Illumina 550K versus Illumina1M duo) for African-
American samples from two study sites wherein differences
in genotyping density (600 K SNPs and 1.2 million SNPs,
respectively) across study sites raise important questions.
With the resource of about 4 million SNPs from HapMap
data, can we impute our data to the same number of SNPs as
HapMap data? With the large amount of genome-wide data,
how can we take full advantage of high-performance paral-
lel computing resources and conduct imputation on small
chromosome regions? For the African American samples, the
choice of reference is also an issue as we have to deal with
in the first study. By focusing on how sample size, window-
size, untyped rate and reference choice influence the quality
of genotype imputation, we hope to provide guidelines and
recommendations for such studies.

2. MATERIALS AND METHODS

2.1 Simulation of the study populations
and reference populations

We used software HAPGEN (Spencer, et al. 2009b) to
simulate study populations and reference populations, each
with 1,000 individuals, based on haplotype data on chro-
mosomes 15, 19, and 22 of unrelated individuals from two
HapMap 3 cohorts, CEU (Utah residents with Northern and
Western European ancestry) and ASW (African ancestry in
Southwest USA) (The International HapMap Consortium
2003). Study samples were randomly drawn from the study
populations. Similarly, reference samples of haplotypes were
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randomly drawn from the reference populations. For con-
venience, the first 5,000 SNPs on these chromosomes were
used for analyses. The results presented in this work were
mainly for chromosome 22.

2.2 The measures of imputation quality

We used accuracy and efficacy as the measures of impu-
tation quality. IMPUTE 2 gives posterior probabilities for
all three genotypes (e.g., aa, aA, AA) at each locus for each
individual. In this study, we chose the confidence thresh-
old of 0.90 for a genotype to be accepted (i.e. successfully
imputed). Efficacy (call rate) (Nothnagel, et al. 2009) was
calculated as the ratio of the number of successfully imputed
SNPs (i.e., the SNPs whose highest posterior probabilities
of the three possible genotypes are greater than or equal
to 0.90) to the total number of SNPs being imputed in the
study. Accuracy (Huang, et al. 2009a; Nothnagel, et al. 2009;
Zhao, et al. 2008) was defined as the proportion of correctly
imputed SNPs among all the successfully imputed SNPs in
the study samples under investigation. In other words, effi-
cacy measures the proportion of the imputed SNPs passing
the chosen confidence threshold, thus it is similar to the
genotyping call rate; accuracy measures the proportion of
the correctly imputed SNPs among those that passed the
confidence threshold.

A higher confidence threshold is associated with a lower
efficacy and a higher accuracy. Although the choice of the
threshold should depend on the study, a considerably high
confidence threshold is necessary for high accuracy of impu-
tation. In our study, the confidence threshold of 0.90 resulted
in considerably high accuracy.

2.3 The factors affecting the quality
of imputation

2.3.1 The untyped rate

To simulate the study samples, the SNPs were masked
randomly according to the chosen untyped rates. An un-
typed rate higher than 70% would result in low efficacy. On
the other hand, an untyped rate less than 10% may not be
appealing from the cost saving point of view. Therefore the
untyped rates considered in this study were 10%, 30%, 50%,
and 70%.

2.3.2 Study sample size and reference sample size

To comprehensively evaluate the effects of study sample
size and reference sample size on imputation quality, we con-
ducted imputation for studies of large, medium, and small
sizes, although we did not present the results in the same
way. For a study of large sample size, we considered study
sample sizes of 500 and 1,000, with reference sample sizes of
100, 300, 500, and 1,000. For medium studies, we considered
study sample sizes of 50, 100, and 300, with reference sam-
ple sizes of 5, 10, 25, 50, 100, 250, 300, and 600. For small
studies we considered study sample sizes from 1 to 15, with
reference sample sizes of 5, 10, 15, and 20.

Figure 1. The distribution of haplotypes of different cohorts
of HapMap 3 generated by the first two eigenvectors from
SVD. The abbreviations and numbers of the haplotypes for
unrelated individuals in the cohorts are: CEU (234), ASW

(126), YRI (230), LWK (180), MKK (286), GIH (176), MEX
(104), and JPT +CHB (JC) (340), respectively.

It is reasonable to expect that a large reference sample
will improve the quality of imputation. But in some situa-
tions there may not be enough reference samples. Therefore,
we included reference sample sizes as small as 10% of the
study sample sizes for some combinations of scenarios, to
see whether the effect of small reference sample size can be
compensated by a larger study sample.

2.3.3 Reference choice for admixed study sample

The choice between the external references and internal
references is critical for the quality of imputation. Internal
reference refers to reference samples drawn from the same
population as the study samples; external reference refers
to reference samples drawn from a population other than
the population from which the study samples are drawn.
Publically available data, such as HapMap data (The In-
ternational HapMap Consortium 2003) and the Wellcome
Trust data (The Wellcome Trust Case-Control Consortium
2007), are usually used as external references. Internal ref-
erences, however, usually have to be obtained for a specific
study, adding extra cost when a certain number of individu-
als need to be genotyped at all loci of interest or genotyped
with a higher density.

We chose ASW as an example of admixed study popula-
tion. To choose the reference populations for the study sam-
ples from ASW, the relationship between ASW and other
HapMap cohorts was examined using Singular-Value De-
composition (svd function in R (Team R Development Core
2009) was used). Figure 1 displays the locations of the hap-
lotypes of the different cohorts along the first two principal
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components. The cohorts and their abbreviations are listed
in the appendix. This figure shows that most of the ASW
haplotypes are close to African populations (YRI, LWK,
MKK), but some of them are close to the CEU and GIH co-
horts. This is expected because it is well documented that
ASW is an admixed population between Caucasian popula-
tions and African populations (Alexander, et al. 2009). We
introduced two terms: the major source of admixture and
the minor source of admixture. The former refers to the an-
cestry population that makes a major genomic contribution
to the admixed population, and the latter refers to the ances-
try population that makes a minor genomic contribution to
the population. For example, in the case of ASW, we loosely
designated YRI as the major source of admixture and CEU
as the minor source of admixture. Intuitively, adding the co-
horts genetically close to the reference panel should improve
the quality of imputation; adding “irrelevant” cohorts may
not improve imputation but should not compromise much
of the quality of imputation. (de Bakker, et al. 2006)

We sequentially examined the external reference panel,
the internal reference panel, and the internal reference
panel augmented by external references to see whether
this conjecture holds. Specifically, starting with external
references, we chose YRI, LWK, and MKK as single refer-
ence separately, and we chose YRI +CEU, YRI +JPT +
CHB, and CEU+YRI +MKK+GIH+MEX as mixed ref-
erences. Parallel to external references, we examined
the original ASW haplotypes in the HapMap project as
internal references, followed by the augmented reference
panels ASW +CEU, ASW +GIH, ASW +JPT +CHB,
ASW +CEU+YRI, ASW +CEU+MKK, ASW +CEU +
YRI+MKK, and ASW +CEU+YRI +MKK+GIH+
MEX, respectively.

We compared internal references with external references
to determine whether the effort of obtaining an internal ref-
erence is worth the gain in imputation quality. We also com-
pared the imputation results from using original haplotypes
of ASW as a reference, with those from using simulated hap-
lotypes as references to evaluate the difference in imputation
quality.

2.4 Piecewise vs. whole-region imputation

The IMPUTE 2 document recommends using chromo-
somal regions larger than 5 MB for an analysis for paral-
lel computing purposes. We chose the first 5,000 SNPs on
chromosomes 15, 19, and 22, regions greater than 10 MB,
imputed the masked SNPs using whole-region imputation,
and compared them with the ones obtained using piecewise
imputation. Here, whole-region imputation runs over the en-
tire region; piecewise imputation is implemented by break-
ing the whole region into smaller blocks and imputing the
untyped SNPs within the blocks separately. Piecewise impu-
tation was implemented on evenly spaced blocks of 5, 10, 20,
50, 100, 200, and 500 SNPs, and on blocks determined by
a haplotype block partition scheme using the program Hap-

block (Zhang, et al. 2005), to investigate how the partition
of the whole region into smaller pieces affects the imputation
quality.

2.5 Software, platform, and number
of replicates

IMPUTE 2 was used for imputation because of its high
accuracy and popularity (Nothnagel, et al. 2009; Spencer,
et al. 2009b; The Wellcome Trust Case-Control Consortium
2007; Zhao, et al. 2008). The parameters for the package
were set as: buffer 250 -k 70 -iter 40 -burnin 3 -call thresh
0.90. The parameter buffer allows a buffer region (in KB)
to ensure that the genotypes close to the ends of the im-
putation interval can be imputed with enough information
and confidence. Parameter k is the number of “conditional
states” for MCMC phasing updates. The default is 40. The
parameter iter specifies the total number of iterations for
MCMC. We increased these parameters to guarantee better
performance. Call thresh specifies the threshold for a geno-
type to be accepted (successfully imputed). For each indi-
vidual at a specific locus, if the highest posterior probability
of the three genotypes passes the threshold, IMPUTE2 uses
that genotype as the imputed genotype. Otherwise the geno-
type is not successfully imputed. The details are available
through the link listed in the appendix. IMPUTE 2 was run
on a Linux-based cluster system.

Considering that the number of all combinations among
untyped rate, study sample size, and reference sample size
that we chose to simulate is enormously large, we generated
10 replicates for each combination scenario. For the evalu-
ation of reference choice and comparison between piecewise
imputation and whole-region imputation, 1,000 replicates
were generated.

3. RESULTS

3.1 The effects of study sample size,
reference sample size, and untyped rate

To investigate the effects of study sample size, reference
sample size, and untyped rate on the quality of genotype im-
putation, we conducted simulations with 576 different com-
binations of these factors. For each combination we gener-
ated 10 replications, using internal reference samples. Con-
cordant with prior report (Huang, et al. 2009a), for study
sample size ranging from five to several hundreds the qual-
ity of imputation is similar for fixed reference sample sizes
(data not shown). Because the effect of study sample size is
negligible compared with the effect of reference sample size,
the simulation results with the same reference size were av-
eraged over different study sample sizes (Figure 2). As high-
lighted in Figure 2, both accuracy and efficacy increase as
the reference sample size increases from 1 to 50, taper off
for reference sample above 50, with little additional gains in
accuracy and efficacy for reference samples over 300. Thus,
for clarity, we only show the curves for the reference sample
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Figure 2. The mean values of accuracy and efficacy of
imputation with varying reference sample size at different

untyped rates for CEU and ASW. The untyped rates are 0.1,
0.3, 0.5, and 0.7, respectively. The study sample sizes vary for

different points on the curves (refer to the main text).

size up to 300. The quality of imputation for ASW samples
is considerably lower than that for CEU samples, with refer-
ence sample size exerting a stronger influence on the quality
of imputation for the ASW study samples than for the CEU
study samples.

Figure 3 shows the influence of different untyped rates on
the quality of imputation with fixed study sample sizes and
reference sample sizes. The quality does not change greatly
when the untyped rate increases from 0.1 to 0.3, decreases
modestly when the untyped rate increases from 0.3 to 0.5,
but decreases considerably when the untyped rate increases
from 0.5 to 0.7. For studies with a small reference sample
size, both accuracy and efficacy are significantly compro-
mised. This may be explained by the greater possibility that
some subjects in the study sample may not find their match-
ing references on some regions in a small reference sample.

3.2 The selection of reference for ASW
study population

Each cell in Table 1 shows the mean values of efficacy and
accuracy of imputation using the reference panel listed in
the corresponding column for 1,000 random study samples,
each consisting of 50 individuals randomly drawn from the
ASW study population generated by HAPGEN using ASW
haplotypes as the input. Untyped rate was chosen at 0.5 and
0.7.

Figure 3. The effects of untyped rate on accuracy and
efficacy. The points represent the accuracy and efficacy at
four untyped rates: 0.1, 0.3, 0.5, and 0.7, with both study

sample sizes and reference sample sizes of 50, 100, 500, and
1,000, respectively. The points with the same untyped rates
are jittered for easy reading, and connected with dashed lines
for clear presentation of the trends for different combinations

of population and sample size.

3.2.1 External references

Based on their close relationship with ASW, each of
the African cohorts LWK, MKK, and YRI was used as a
single reference panel separately. We found that YRI per-
forms the best among these three. When the cohorts YRI,
MKK, GIH, MEX, and CEU were pooled together as a “cos-
mopolitan” reference panel (Ext-cosmo), the accuracy im-
proves slightly compared with the one obtained from the
best single-reference panel, YRI. According to Alexander et
al. (Alexander, et al. 2009), ASW is an admixed population
between African populations and CEU. Thus, a reference
panel composed of YRI and CEU cohorts may be adequate.
The results show that panel YRI +CEU (i.e., the reference
panel consists of samples from YRI and CEU populations) is
slightly better than all other external panels including Ext-
cosmo. The reference panel YRI +JC (JPT +CHB) per-
forms slightly worse than panel YRI +CEU, but better than
YRI alone. We noticed that Ext-cosmo, as the largest ref-
erence panel in Table 1, does not outperform panel YRI +
CEU.

3.2.2 Internal references augmented by external reference
cohorts

The first reference panel, labeled as SIM in the first col-
umn in the lower panel of Table 1, is a reference sample
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Table 1. Comparison of reference panels for quality of imputation for 50 individuals

External references
LWK MKK YRI YRI +CEU YRI + JC Ext-Cosmo

Untyped Rate 0.5

Efficacy 0.778 0.768 0.793 0.801 0.797 0.793
SD 0.007 0.006 0.007 0.006 0.007 0.006

Accuracy 0.968 0.964 0.967 0.976 0.973 0.978
SD 0.001 0.001 0.001 0.001 0.001 0.001

Untyped Rate 0.7

Efficacy 0.696 0.687 0.713 0.72 0.718 0.71
SD 0.007 0.007 0.007 0.007 0.007 0.008

Accuracy 0.961 0.957 0.96 0.97 0.965 0.972
SD 0.001 0.001 0.002 0.001 0.001 0.001

Internal references augmented
SIM ASW + GIH + CEU + JC* + YRI+ CEU + CEU + MKK Cosmo Cosmo1

Untyped Rate 0.5

Efficacy 0.842 0.901 0.914 0.915 0.918 0.894 0.899 0.884 0.885
SD 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006

Accuracy 0.984 0.996 0.994 0.994 0.994 0.994 0.994 0.994 0.994
SD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Untyped Rate 0.7

Efficacy 0.765 0.829 0.854 0.857 0.861 0.829 0.834 0.816 0.817
SD 0.008 0.007 0.006 0.006 0.006 0.007 0.007 0.008 0.008

Accuracy 0.98 0.994 0.992 0.991 0.99 0.991 0.991 0.99 0.99
SD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Note:
1. Each of the cells in the table lists the mean or standard deviation of the quality measures (rounded to 3rd decimal) indicated in the first
column for 1,000 replications for the combination of untyped rate and the reference panel.
2. The cohorts and their numbers of haplotypes (in parentheses): CEU (234), ASW (126), YRI (230), LWK (180), MKK (286), GIH (176),
MEX (104), JPT +CHB (JC) (340).
3. The panel “Ext-Cosmo” is the pool of haplotyes from YRI, MKK, GIH, MEX, and CEU. The panel “SIM” was a random draw of 200
haplotypes (100 individuals) from 2000 haplotypes simulated by HAPGEN based on the original ASW haplotypes. “ + ” stands for the mixture
of several cohorts. In the columns of the lower panel of the table, “ASW” is omitted from columns 4 to 8 because of the limited space. “Cosmo”
means “ + CEU + YRI + MKK + GIH + MEX”, and “Cosmo1” means “ + CEU + YRI + MKK.”

drawn from the pseudo-population simulated by HAPGEN
based on the ASW haplotypes obtained from the HapMap
project. The second reference panel, labeled ASW, is the
panel formed by the original ASW haplotypes. Because the
ASW cohort (126 unrelated haplotypes) is not large, we
wanted to augment the internal reference panel with exter-
nal cohorts. Parallel to the external “cosmopolitan” panel,
the internal panel was augmented by the external “cos-
mopolitan” panel to form a panel termed as expended panel
(Cosmo), augmented by YRI +MKK+CEU to form the
panel Cosmo1, etc. JC was the last reference panel used to
augment the internal reference panel. All thus-formed pan-
els were used as references to impute the randomly masked
genotypes in the study samples. The imputed genotypes
were compared with the actual genotypes to calculate the

efficacy and accuracy of imputation for the whole region of
5,000 SNPs. Surprisingly, the largest augmented reference
panel (Cosmo) performs the worst, but the panel augmented
by the seemingly unrelated cohorts, JC (the column with “*”
in the lower panel of Table 1), performs the best. Inclusion
of fewer ASW related haplotypes for augmentation resulted
in better imputation quality. Also, the simulated haplotypes
did not perform as well as the original haplotypes as refer-
ences. The results were similar with analyses on the first
5,000 SNPs on chromosomes 15 and 19.

3.3 Piecewise imputation vs. whole-region
imputation

We evaluated four block-partitioning strategies. The first
three, labeled as “even100”, “even200,” and “even500,” are
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to divide the whole region into evenly spaced blocks with
window size of 100 SNPs, 200 SNPs, and 500 SNPs, respec-
tively. The fourth one defines the blocks based on haplotype
block partition scheme using software HapBlock (Zhang, et
al. 2005). Detailed information is freely available through
the link listed in the appendix. The parameters were set as:
blockpercent (the threshold for common haplotypes in block
partitioning) at 0.85, and the fraction of strong pair-wise LD
(D’) at 0.002. With the above parameters, HapBlock parti-
tioned the entire region into 53 blocks using the whole study
population (2,000 haplotypes generated by HAPGEN from
the original haplotypes). More than half of the blocks con-
tain close to or more than 100 SNPs. Based on our prior ob-
servation that the quality of imputation for a region smaller
than 100 SNPs is not very stable, the blocks with less than
100 SNPs were merged with the neighboring blocks until
the new blocks contained more than 100 SNPs. The process
started from the first block (SNP 1 to SNP 36) on the left
and moved along the region. If a block was larger than 100
SNPs, the algorithm would simply move to the next block;
if a block was smaller than 100 SNPs, the algorithm would
merge the block with the block on its right until a new block
larger than 100 SNPs was formed. The block partitioning
strategy thus defined is labeled as “block85”.

Figure 4 compares the performance of the piecewise im-
putation strategies even200 and even500 with that of whole-
region imputation for the first 5,000 SNPs on chromosome
22. The imputed results from whole region imputation and
even200 were re-grouped by the blocks that even500 used
in order to have a common comparison basis among differ-
ent partitioning strategies. Overall, the accuracy of whole-
region imputation is better than, or at least as good as,
that of piecewise imputation for most blocks for all of the
strategies. The efficacy that strategy even500 achieves, how-
ever, is statistically significantly better at the level of 0.05
than the whole-region imputation for almost all of the blocks
and scenarios along the whole region. The only exception is
the block [2001, 2500] in the scenario of untyped rate 0.7
and reference sample size of 100, where the whole-region
method is slightly better with a difference of 0.001 (p-value
0.26) (refer to the fifth point in the second graph on the
top row in Figure 4). For the efficacy of imputation quality
even200 performs slightly better the even500 in a few blocks
when the reference sample is large, but performs worse than
even500 in most of the blocks. However, it performs better
than the whole region method for most of the intervals we
investigated in terms of efficacy. Even100 and block85 also
outperform whole region strategy in several blocks in terms
of efficacy. For the legibility of the graphs, the results from
these two strategies are not shown in Figure 4. We confirmed
these comparison results on chromosome 19.

For strategy block85, we generated 100 replicates. Table 2
compares the means of accuracy and efficacy and their stan-
dard deviations of 100 simulations from piecewise method
with those calculated based on the results obtained from

whole-region method but regrouped for blocks partitioned
using block85, for an untyped rate of 0.5, study sample size
of 50 and reference sample size of 500. A bolded number
indicates that one strategy outperforms the other for the
measure by 1% in the block. We conducted t-test for the
differences greater than 1%, finding that they are all signif-
icant at 0.05 except for the block [2804, 2925] which has a
statistic value 1.57 (p-value 0.058). The difference in efficacy
is not uniform among the blocks. In the underlined blocks,
block85 outperforms the whole-region imputation by more
than 4% in efficacy. t-test also shows that all of the differ-
ences in accuracy are highly significant, with much smaller
standard deviations of accuracy than those of efficacy.

4. DISCUSSION

In this study, we evaluated several factors affecting the
quality of genotype imputation through simulation based
on real data. We examined different combinations of study
sample size, reference sample size, and untyped rate for sam-
ples from CEU and ASW populations; we compared among
external reference panels and internal reference panels aug-
mented by different cohorts; finally we compared piecewise
imputation with whole-region imputation for further divis-
ibility of the region unit for imputation that IMPUTE rec-
ommends, and feasibility of imputation for studies focusing
on short chromosomal regions.

Our results show that study sample size has little effect
on the quality of genotype imputation. This is consistent
with the report of conditional independency of imputation
on study sample size given the reference panel (Huang, et al.
2009a). For the imputation of untyped loci, this conditional
independence has a more intuitive explanation: none of the
individuals are typed at the same set of loci, which means
that there is no information to borrow from each other and a
large study sample size cannot compensate much for a small
reference sample size. This conclusion relieves the concern
about the poor imputation quality for studies with small
study sample sizes.

In Figure 3, the points at four chosen untyped rates are
connected by straight lines to find patterns of the quality
measures. We observed that the accuracy and efficacy of
imputation are much lower at the untyped rate 0.7 than
that at 0.5. There is a possibility that the decrease in geno-
type imputation quality could have occurred at any point
larger than 0.3 if the decrease is not linear as shown in Fig-
ure 3. However, for practical consideration we recommend
an untyped rate less than 0.5.

An appropriate reference sample size is crucial for the
quality of imputation. Surely, the greater the reference sam-
ple size, the better the quality. The steep slopes of the curves
to the left of reference sample size 50 in Figure 2 suggest
that for both relatively homogeneous populations, such as
CEU, and admixed populations, such as ASW, a reference
panel size greater than 50 is necessary for quality of impu-
tation, but a panel size greater than 300 may not be cost
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Figure 4. The mean values and their standard error bars of efficacy and accuracy achieved by piecewise imputation and whole-region imputation for the first
5,000 SNPs on chromosome 22 for the scenarios with different untyped rates (0.5 or 0.7) and reference sample sizes (100 and 500). The imputed results from

the whole-region method and even200 were re-grouped by the blocks that even500 used in order to have a common comparison basis. The curves are
generated by connecting the mean values for the blocks of 1,000 replications for even500 and even200.
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Table 2. Comparison between Block85 and whole-region imputation

Block85 Whole-region
Start End Accuracy SD Efficacy SD Accuracy SD Efficacy SD

1 140 0.981 0.006 0.874 0.029 0.987 0.004 0.836 0.034
141 284 0.987 0.005 0.885 0.026 0.993 0.003 0.865 0.026
285 397 0.979 0.007 0.815 0.036 0.986 0.005 0.736 0.04
398 520 0.97 0.008 0.803 0.034 0.98 0.006 0.729 0.039
521 729 0.984 0.005 0.894 0.02 0.989 0.003 0.872 0.021
730 899 0.986 0.005 0.887 0.025 0.991 0.003 0.861 0.026
900 1126 0.984 0.004 0.865 0.025 0.988 0.003 0.843 0.026
1127 1373 0.994 0.002 0.964 0.012 0.995 0.002 0.966 0.009
1374 1507 0.976 0.007 0.822 0.036 0.986 0.005 0.798 0.036
1508 1618 0.981 0.006 0.894 0.029 0.99 0.004 0.877 0.03
1619 1801 0.991 0.004 0.944 0.016 0.994 0.003 0.941 0.014
1802 2033 0.983 0.004 0.864 0.027 0.988 0.003 0.845 0.022
2034 2254 0.988 0.003 0.904 0.023 0.991 0.003 0.89 0.023
2255 2375 0.979 0.007 0.857 0.026 0.986 0.004 0.807 0.033
2376 2621 0.992 0.002 0.937 0.015 0.994 0.002 0.93 0.015
2622 2803 0.986 0.004 0.893 0.019 0.99 0.003 0.876 0.02
2804 2925 0.963 0.009 0.725 0.046 0.975 0.007 0.711 0.043
2926 3030 0.983 0.006 0.883 0.027 0.989 0.004 0.891 0.023
3031 3174 0.989 0.004 0.931 0.017 0.992 0.003 0.924 0.018
3175 3285 0.972 0.008 0.814 0.039 0.981 0.006 0.758 0.042
3286 3385 0.984 0.005 0.891 0.039 0.991 0.004 0.877 0.034
3386 3522 0.988 0.004 0.932 0.02 0.991 0.003 0.929 0.02
3523 3774 0.993 0.002 0.953 0.013 0.995 0.002 0.957 0.009
3775 3940 0.983 0.005 0.89 0.021 0.989 0.004 0.863 0.025
3941 4179 0.987 0.004 0.904 0.017 0.992 0.002 0.892 0.019
4180 4312 0.977 0.006 0.838 0.03 0.985 0.005 0.825 0.031
4313 4470 0.989 0.005 0.924 0.018 0.993 0.004 0.923 0.017
4471 4629 0.984 0.005 0.9 0.024 0.99 0.003 0.885 0.023
4630 4821 0.99 0.003 0.92 0.021 0.993 0.002 0.908 0.02
4822 5000 0.986 0.004 0.896 0.026 0.991 0.003 0.864 0.03

The means of accuracy and efficacy and their standard deviations of 100 simulations for blocks determined using the block85 and whole-region
methods, with an untyped rate of 0.5, study sample size of 50, and reference sample size of 500. The first two columns are serial numbers of the
start and end SNPs for blocks formed by block85 partitioning scheme. The bolded numbers indicate that one strategy outperforms the other
for the measure by 1%. The underlined blocks are the ones in which block85 outperforms whole-region imputation by more than 4% in efficacy.

effective. However, Figure 2 indicates that reference sample
size affects the imputation quality differentially for CEU and
ASW. This may be due to smaller haplotype block sizes in
African populations (Zhao, et al. 2003). Smaller block sizes
implies more unique haplotype blocks in a region of a chro-
mosome. Therefore, a larger reference sample is necessary
for a larger number of distinct haplotypes. Recent admix-
ture history of ASW between African populations and other
ethnic populations also contributed to this ongoing process,
leading to lower quality of imputation for ASW given the
same reference sample size. In general, we recommend a ref-
erence sample size greater than 100 individuals for homoge-
neous populations, and 200 individuals for admixed popula-
tions, if possible.

Reference choice among available cohorts is another de-
cision researchers have to make. Table 1 demonstrates that
some prior information on the admixture of the study pop-
ulation is beneficial for the quality of imputation. The
prior information should be used differentially depending

on whether internal references are available. If a study does
not have a budget for internal references, and there are no
such existing sources, an external reference panel is the only
choice. If possible, only the cohorts from the populations
that contribute to the admixture of the study population
should be included, although a “cosmopolitan” panel does
not compromise much the quality of imputation. When in-
ternal references are available, however, the augmentation
with external references should be careful.

Researchers may wrestle over whether internal references
are necessary when planning the study budget. Based on
our findings, the use of internal references provides a sig-
nificant gain in quality that is worth the cost and effort.
Further, a small internal reference panel can be augmented
with the existing external cohorts. The choice of the exter-
nal cohort for such augmentation is important for the qual-
ity of imputation. Our results demonstrate that compared
with the external-reference-only panel, augmenting an inter-
nal reference panel with a cosmopolitan external panel can
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considerably lower the quality of imputation. More specif-
ically, augmenting the reference panel with cohorts related
to the study population is harmful. This phenomenon can
be explained by the fact that the population represented by
the reference panel may shift considerably from the inter-
nal reference population on inclusion of external references.
For example, as more African cohorts, such as LWK, MKK,
and YRI, are added to the reference panel it begins to more
closely resemble the African population formed by LWK,
MKK, and YRI. Consequently it will no longer serve as a
good reference panel for the admixed ASW study popula-
tion (formed by African populations and Caucasian pop-
ulations). This led us to the other side of the spectrum of
the seeming relationship among the cohorts. To our surprise,
the panel augmented by JPT +CHB (JC) performs the best.
This suggests that although ASW and JC are seemingly un-
related, they still share regions on chromosomes. Thus, the
seemingly unrelated cohorts of appropriate sizes can provide
additional reference information for the study sample from
ASW, yet the augmented panel is not significantly different
from the internal reference population ASW.

Zhao et al. (Zhao, et al. 2008) reported that the princi-
pal component-clustering method improved the quality of
imputation greatly for the subgroup of the African Amer-
ican cohort close to CEU but did not improve the quality
as much for the rest of the cohorts. The proportion of the
subgroup close to CEU should be small, thus the overall im-
provement of the imputation quality for the African Amer-
ican cohorts would not be significant. By using an internal
reference panel, however, the efficacy improved by 10% over
the one achieved by using YRI +CEU as the reference panel
for the whole study sample, and improved further by appro-
priate augmentation with external references, with the final
efficacy of 0.918 for an untyped rate of 0.5 and 0.861 for
an untyped rate of 0.7. These figures are similar to those
reported for CEU cohorts (Figure 2). The internal reference
also improves the accuracy by 2%. The best augmented ref-
erence panel performs slightly worse than the internal ref-
erence panel, but the magnitude of the difference is negligi-
ble compared with the gain in the efficacy. We expect that
for the combinations with the untyped rate less than 0.5
the gain from internal reference and augmentation will be
worth the cost. Therefore, we recommend augmenting the
internal reference panel with unrelated cohorts. Although
these results were obtained from an ASW population, the
augmentation with unrelated cohorts may apply to other
admixed populations and some homogeneous populations,
such as African populations, which are known to be difficult
to impute (Huang, et al. 2009a).

As shown in Table 1 the haplotypes simulated by HAP-
GEN based on the original haplotypes did not perform as
well as the original haplotypes when used as the references.
This may be due to the simplification of the underlying ge-
netic model adopted by HAPGEN. The simplification may

also affect the simulated genotypes and haplotypes differen-
tially in terms of quality because haplotypes entail more ge-
netic information than genotypes. This discrepancy in qual-
ity may also contribute to the worse performance of the
simulated haplotypes as references.

In reality, some genetic studies may focus on short chro-
mosomal regions, such as candidate gene studies. In addition
to the block partitioning strategies presented in Figure 4, we
evaluated window sizes as small as 5 SNPs to 100 SNPs. The
imputation quality was not reliable for regions smaller than
50 SNPs (data not shown). Even100 does not perform as
well as whole-region imputation except in some scenarios.
Therefore we only present the results from using window
size larger than 100 SNPs. Overall, even200 did not perform
as well as even500 in terms of efficacy for most blocks and
combinations of untyped rate and reference sample size. It
uniformly performs worse than even500 and whole-region
strategy in terms of accuracy.

The strategy block85 partitions the whole region into 30
blocks, more than the 25 blocks used by even200. The accu-
racy and efficacy achieved with block85 were higher than the
ones achieved by even200 for most combinations of untyped
rate and reference sample size (data not shown). As shown
in Table 2, block85 outperforms the whole-region strategy
by more than 4% in efficacy in some of the blocks. These
results suggest that block-partitioning strategies based on
haplotype blocks are promising for piecewise imputation.
We investigated a limited number of combinations among
the input parameters of the software HapBlock in this study.
Further research may be needed to optimize the partition to
further improve the imputation quality along the region of
interest.

Our results show that the efficacy achieved by even500
is significantly better than the one achieved by whole-
region imputation. Based on our results and extrapola-
tion, a practical implication of these differences is that the
strategy even500 may provide 2,000 to 8,000 more imputed
SNPs than whole-region imputation for downstream analy-
ses when we impute a 500,000-SNP panel using a 1,000,000-
SNP panel as the reference. The differences in accuracy are
quite small (0.004), although the mean differences of accu-
racy are also statistically significant. Thus, we conclude that
the accuracy achieved by even500 is stable and acceptable
compared with the one achieved by the whole-region strat-
egy. For the general practice, therefore, we recommend even
window sizes of 500 SNPs, with the best tradeoff between
efficacy and accuracy among the strategies we investigated.
A block of 500 SNPs is roughly equivalent to 1 MB, with
one SNP every 2 KB (Gabriel, et al. 2002), a window size
much smaller than 5 MB recommended by IMPUTE. For
the researchers who need to focus on a shorter region of
chromosome than this size, a window larger than 50 SNPs
is highly recommended.

Overall, studies with a small study sample size and/or
short (but not too short) chromosomal region are feasible in
terms of the quality of genotype imputation. For studies of

348 B. Zhang et al.



large chromosome regions, the efficacy gain and time saving
through parallel computing indicates that the imputation of
SNPs along chromosomes can be divided into pieces smaller
than what IMPUTE recommends and can be conducted in-
dependently.

Our study mainly focused on the first 5,000 SNPs on
chromosome 22. Results may differ on the rest of the chro-
mosome and on other chromosomes. For this reason, we con-
ducted the same simulations on chromosomes 15 and 19 and
confirmed the results. However, we still advise that the re-
sults be used conservatively. For example, a study may in-
crease the window size over 500 SNPs for piecewise impu-
tation if high accuracy is desirable, and choose an untyped
rate as small as the budget permits. In our study, we used a
large number of replications for evaluation of piecewise im-
putation and reference choice. For other parts of the study,
the numbers of the replications are not very large because of
the large amount of computation. But merging of the data
from combinations of simulation scenarios during the analy-
ses made the amount of usable data much greater, resulting
in the fairly small standard errors of the measures, which
gave confidence about our results.

Another limitation is that the study was mainly con-
ducted through simulation based on real data with a high
density of SNPs. If a study population is not represented
by one of the cohorts in the HapMap project, the inter-
nal reference panel that the study creates will be likely less
dense than the ones in the HapMap project. In that case,
we recommend using low untyped rates, large reference sam-
ple size, and appropriate augmentation. Hopefully, with the
completion of the 1,000 Genome Project, Human Genome
Diversity Project (HGDP) (Sanna, et al. 2008), studies will
have more appropriate choices for reference.

The results obtained in this study will benefit the two
studies we mentioned at the beginning. For the study of
the seven VKORC1 SNPs, we will try to retrieve as many
SNPs of expanded chromosomal regions as possible and im-
pute the missing SNPs using a window of more than 500
SNPs to achieve better imputation quality than the one us-
ing only the seven SNPs of interest. For the second study,
we will impute the SNPs in HapMap data but not on the
Illumina 550K/1M arrays. A rough check of these arrays
against HapMapIII data gives an estimate of untyped rate
between 0.5 and 0.7. If we use the ASW cohort in HapMap
data as the internal reference augmented with JC, we will be
able to impute 85% to 90% of the untyped SNPs. With the
SNPs already genotyped in the arrays, we will have roughly
90% to 95% of the SNPs in the HapMap data with fairly
good accuracy for subsequent analyses. We will also take
advantage of the results on piecewise imputation to greatly
facilitate the genome-wide imputation.

Imputation is very appealing in genetic studies. If used
appropriately, imputation may greatly save time and money,
and increase power. Our results may be helpful for the design
and analysis of genetic studies. The design of cost-effective
studies deserves further investigation.

APPENDIX

Populations and corresponding abbreviations (http://
www.sanger.ac.uk/humgen/hapmap3/)

• ASW African ancestry in Southwest USA
• CEU Utah, USA residents with Northern and Western

European ancestry from the CEPH collection
• CHB Han Chinese in Beijing, China
• CHD Chinese in metropolitan Denver, Colorado, USA
• GIH Gujarati Indians in Houston, Texas, USA
• JPT Japanese in Tokyo, Japan
• LWK Luhya in Webuye, Kenya
• MEX Mexican ancestry in Los Angeles, California, USA
• MKK Maasai in Kinyawa, Kenya
• TSI Toscani in Italy
• YRI Yoruba in Ibadan, Nigeria

Links to software packages:
IMPUTE 2: https://mathgen.stats.ox.ac.uk/impute/

impute v2.html.
HapBlock: http://www.soph.uab.edu/Statgenetics/

People/KZhang/HapBlock/hapblock-index.html.
HAPGEN: http://www.well.ox.ac.uk/˜zhan/hapgen/

hapgen2.html.
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