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How to estimate the measurement error variance
associated with ancestry proportion estimates
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To show how the variance of the measurement error (ME)
associated with individual ancestry proportion estimates
can be estimated, especially when the number of ancestral
populations (k) is greater than 2.

We extend existing internal consistency measures to esti-
mate the ME variance, and we compare these estimates with
the ME variance estimated by use of the repeated measure-
ment (RM) approach. Both approaches work by dividing
the genotyped markers into subsets. We examine the effect
of the number of subsets and of the allocation of markers to
each subset on the performance of each approach. We used
simulated data for all comparisons.

Independently of the value of k, the measures of internal
reliability provided less biased and more precise estimates of
the ME variance than did those obtained with the RM ap-
proach. Both methods tend to perform better when a large
number of subsets of markers with similar sizes are consid-
ered.

Our results will facilitate the use of ME correction meth-
ods to address the ME problem in individual ancestry pro-
portion estimates. Our method will improve the ability to
control for type I error inflation and loss of power in asso-
ciation tests and other genomic research involving ancestry
estimates.

Keywords and phrases: Population stratification, Ad-
mixture, Type I error inflation, Reliability, Cronbach’s al-
pha, Measurement errors, Measurement error variance.

1. INTRODUCTION

Population stratification and admixture are concerns in
genetic association studies. Failure to adequately control
them in genetic association tests may lead to inflated type
I error and/or loss of power. Structured association tests
(SATs), in which individual admixture proportion estimates
(IAPE) [1–4] or individual-level measures of genetic back-
ground [5, 6] are computed and included in the model as
covariates to control for confounding, are widely applied in
genetic association tests. We have shown [7] that the SAT
approach can be cast in the general linear model framework.
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If unmodified, the use of this framework implicitly assumes
that the predictors are measured without error. We also
showed in that study that controlling for admixture alone
is not sufficient to control for spurious associations. Investi-
gators must also account for the individual’s true ancestry
proportion as well as the product of the parental ancestries
in the association test to completely remove the confound-
ing effect of admixture-induced linkage disequilibrium. We
define an individual ancestry proportion, with respect to
a specific ancestral population, as the proportion of that in-
dividual’s ancestors who were members of that parental pop-
ulation in the generation before the first admixture event.
This is in contrast to an individual’s admixture, which is
the proportion of the individual’s genome that is inherited
from a specific ancestral population. For example, two full
siblings have the same ancestry. However, random variations
that happen during meiosis may lead to different admixture
proportions both at the global level and at the local level.
Therefore, independently of the approach chosen to estimate
the IAPEs, the resulting estimate should be seen as an im-
perfect or error-contaminated measurement of the true in-
dividual ancestry estimate. Existing methods and software
for estimating admixture proportions such as STRUCTURE
and FRAPPE provide an estimate of the standard error as-
sociated with the admixture proportion. Here, the purpose
is to go one step further and compute an estimate of the
ME associated with the IAPEs.

The introduction of error-contaminated covariates in a re-
gression model can lead to type I error inflation and loss of
power [8]. Divers et al. [9] and Padilla et al. [10] discussed
how existing measurement correction methods can be tai-
lored for application in SATs. These methods assume that
an estimate of the ME variance is available. To support
such availability, we previously showed how Cronbach’s al-
pha, a measure of internal reliability, can be used to obtain
an estimate of the measurement error variance. The meth-
ods that we used in these studies [9, 10] assumed that k,
the number of ancestral populations that intermated to cre-
ate the admixed population, is equal to 2. In this case, the
confounder can be represented by a single predictor in the
model. We now extend this approach for estimating the
ME variance when k > 2. We focus mainly on the case
where k = 3 because it has direct application when con-
trolling for admixture-induced confounding in genetic asso-
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ciation involving, for example, Caribbean Hispanics. How-
ever, the methods that we discuss below are valid for any
value of k. The properties of internal reliability measures
like Cronbach’s alpha are well known for univariate scales,
but they are less well studied for multivariate scales. We
also compare the estimate of the ME variance computed by
using Cronbach’s alpha to an estimate obtained by using
the repeated measurement approach discussed in [8]. Both
methods work by dividing the ancestry informative markers
(AIMs) into p subsets. Individual proportion estimates are
obtained for each subset and are then combined into an over-
all estimate for which the ME variance can be computed.

1.1 ME in individual admixture estimates

Given the distinction that we make between admixture
and ancestry, it is easy to see that admixture is a func-
tion of true ancestry and random biological variations. The
admixture estimates provided by existing software should
be seen as error-contaminated measurements of true an-
cestry. These measurement errors occur for several reasons.
(1) Only a subset of genetic markers with imperfectly known
ancestral population allele frequencies is used to estimate
the individual admixture proportions. (2) Imperfect histo-
rical knowledge about the admixed population can also lead
to inaccurate estimates of individual admixture. For exam-
ple, the number of ancestral populations that intermated to
create the admixed population is not always well known.
(3) Most AIMs are not perfectly ancestry informative. That
is, they do not exhibit variants that are seen only in one
ancestral population and not in the others. Therefore, when
a variant is observed in an admixed individual, its ancestral
origin cannot be inferred with certainty.

1.2 ME in genetic background measures

Measurement errors can also occur when principal com-
ponent analysis (PCA) is used to control for population
stratification and admixture. PCA does not necessarily yield
admixture estimates. Instead, it identifies axes of variations
that may correspond to population substructure or other
sources of variations, such as plate effects, genotyping er-
ror, or region of the genome with long-range linkage dise-
quilibrium (LD). Even in cases where one or more axes of
variation can be associated with population substructure,
the inferred axes of variations may not be parallel to the
true axes. In fact, Paul [11] showed that the inferred eigen-
vector is parallel to the true eigenvector if and only if the

corresponding eigenvalue is between 1 and 1 +
√

N
M where

N is the number of rows (samples) and M is the number of
markers used in the PCA. This result assumes that M � N ,
which is not likely to be the case in a genome-wide associ-
ation study (GWAS). We note that for a GWAS, principal
components are usually computed on the transpose of the
genetic data matrix in an effort to satisfy this requirement.
Though enabling computation, it is not entirely clear that

transposition of this matrix really solves the M � N prob-
lem. We note that ideas similar to those described below can
be applied to address the ME problem for principal compo-
nents. However, we restrict our attention to the ME problem
in ancestry estimates.

1.3 Effect of measurement errors
in regression models

It is well known that including covariates measured with
error in a model can lead to biased and inconsistent param-
eter estimates [8]. Measurement errors in the estimation of
the individual ancestry proportion or genetic background
means that residual confounding may still persist even after
adjustments for population stratification and admixture are
made. We have shown how ME correction methods [9, 10]
can be applied to help keep the type I error rate at its nom-
inal level in genetic association tests. However, an estimate
of the ME variance is required before the measurement cor-
rection methods can be applied. This estimate is usually de-
rived by considering deviations from a ‘gold standard’ mea-
surement, by considering previously collected information,
or through repeated measurements. A gold standard mea-
surement or a previous estimate of the ME variance associ-
ated with the individual ancestry proportions or individual
genetic background measures is not likely to be available
in genetic association studies. A straightforward repeated
measurements approach consisting of genotyping different
sets of AIMs on the same individuals for the sole purpose
of ancestry proportion estimation may be not feasible or
may be too expensive for this type of analysis. However, ad-
mixture proportion estimates computed on the autosomes
or on any independent subsets of AIMs can be treated as
repeated observations of the underlying true individual an-
cestry proportion. Once an estimate of the ME variance is
available, the ME correction methods that we previously de-
scribed can then be applied in most genetic association tests
independently on the value of k.

The remainder of this article is organized as follows. In
Section 2.1 we present a short review of the reliability con-
cept and how Cronbach’s alpha in particular can be used to
estimate the variance of the ME associated with individual
ancestry estimates. In Section 2.2, we present an extension of
the Cronbach’s alpha when the items have different weights.
In Section 2.3 we show how a measure of reliability can be
obtained when the number of ancestral populations (k) is
greater than 2. We describe our simulation procedure in Sec-
tion 3, show the result of these simulations in Section 4, and
then present our conclusions in the discussion section.

2. METHOD

All ME correction methods assume that an estimate of
the ME variable is available. In this section, we show how
this estimate can be computed for ancestry proportions that
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are used as control variables in SAT. We note that this vari-
able can be either univariate, when the number of ances-
tral populations (k) is equal to 2, or multivariate when this
number is greater than 2. We begin by showing how the ME
variance can be estimated in the first case and then extend
these methods to cases where k is greater than 2.

2.1 The use of Cronbach’s alpha to estimate
measurement error variance, when
k = 2

We showed previously how Cronbach’s alpha [12], a mea-
sure of internal consistency, can be used to provide a lower
bound of the reliability of individual admixture as a mea-
sure of the underlying individual ancestry. Cronbach’s alpha
estimates how well a set of items (or variables) measures an
underlying unidimensional latent construct. Briefly, we sug-
gested obtaining independent estimates of an individual ad-
mixture proportion. These estimates will serve as the items
in the estimation of Cronbach’s alpha. That is, they will
serve as manifestations of the same underlying latent con-
struct. For example, one can compute estimates at the auto-
somal level. Therefore, one would have 22 independent esti-
mates of an individual’s admixture proportion. Cronbach’s
alpha provides a measure of the reliability of their average
as an estimate of the overall IAPE.

We expressed the individual ancestry proportion estimate
in the classical true score model (CTM) [13–15] by writing
the observed proportion as:

(1) Wij = Xi + Uij ,

where Wij is the admixture proportion estimated for the
ith individual using markers selected on the jth subset, Xi

is the individual’s true but unobserved ancestry proportion,
and Uij is the ME associated with this estimate. The error
term Uij can conceptually be broken down into 2 compo-
nents, U1

ij and U2
ij , where U1

ij represents the measurement

errors whose sources are described in Section 1.1 and U2
ij

summarizes all the biological variations that result in the
difference in admixture between two full sibs. We will work
with the aggregated variable Uij and assume that

(2) Uij ∼ N(0, σ2
u).

Additional requirements of the CTM are that Xi and Uij

are independent and that σ2
U is constant. These assumptions

lead to

(3) Cov(Wij ,Wil) = Cov(Xi, Xi) = Var(Xi) = σ2
X .

The last equation implies that the admixture proportion
estimates computed on the jth and lth subsets are both
measuring the same underlying latent variable, which in this
case is the true ancestry proportion. The reliability of W as
a measure of X is generally defined as the ratio:

(4) ρ =
σ2
X

σ2
W

=
σ2
X

σ2
X + σ2

U

,

which can also be seen as the squared correlation between
W and X. Cronbach’s alpha [12] provides an estimate of
the upper bound of the reliability measure with equality
only under tau-equivalence. The constant variance assump-
tion can be relaxed to allow for more informative subsets
to have less measurement errors than subsets that are less
informative. We address how Cronbach’s alpha can be com-
puted when the measurement error variance is not constant
in Section 2.2.

To compute Cronbach’s alpha, let m be the total number
of AIMs available for the study, divide m into p subsets and
let mj , j = 1, . . . , p be the number of markers in the jth
subset. The subsets can be an autosome or any combina-
tion of markers. The only requirement is that the subsets
are mutually exclusive. One can then use existing software
packages to obtain individual ancestry proportions on each
subset, which we denote adxi. Let V denote the observed
variance-covariance matrix calculated from the admixture
estimates obtained from each subset. A measure of the re-
liability of the adxi’s as an overall measure of individual
ancestry is given by:

(5) αequal =
k − 1

k

(
1−

∑k
j=1 Vjj∑k

l=1

∑k
j=1 Vlj

)
,

where αequal is the Cronbach’s estimate obtained when all
items are assigned the same weight. This relation holds as
long as the overall individual admixture estimate can be
seen as the sum of the individual admixture estimates com-
puted on each subset [16]. The average can always be seen
as a weighted sum. Once α is computed, an upper bound of
the ME variance is given by:

(6) σ̂2
u,C = (1− α)S2

w,

where S2
W is the sample variance of the estimated ancestry

proportions and the letter C in the subscript denotes that
this estimate is computed by using the Cronbach’s alpha
approach.

2.2 Estimating the ME variance for unequal
weights

In Divers et al. [9], we suggested that one can divide
the total number of markers into p subsets, compute in-
dividual admixture proportion estimates for each subset,
and then average over these estimates to obtain an esti-
mate of the overall ancestry proportion. Our simulations
have shown that this approach works well. First, the Cron-
bach alpha estimates were very close to the true reliabil-
ity values, which suggest that the CTM requirements were
met. Second, the ancestry proportions obtained by using
the proposed approach were highly correlated with ancestry
proportions computed by using all the markers in a single
estimate. These simulations assume that the same amount
of information was available for each chromosome. However,
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we wonder whether it would be more appropriate to consider
a weighted instead of an unweighted average. There are nu-
merous reasons beyond the statistical argument to consider
a weighted average. For example, if the subsets are made of
markers selected from the same autosome, it should be ex-
pected that ancestry proportions estimated on longer chro-
mosomes would be more accurate than those computed on
shorter chromosomes. This is true because longer chromo-
somes are more likely to host AIMs that are effectively in-
dependent (i.e., more linkage groups) than are shorter ones.
Consequently, longer chromosomes are expected to be bet-
ter represented in most sampling plans that do not explicitly
seek to select the same number of AIMs per chromosome.
Also, if subset A contains makers that are more ancestry
informative than those that are considered in subset B,
the ancestry proportion estimates obtained with subset A
will also tend to be more accurate than those computed
from subset B assuming that both subsets contained ap-
proximately the same number of markers. In both cases, it
makes sense to weight these subsets differently to capita-
lize upon their degree of accuracy. We should also note that
two subsets with a different number of elements (cardinal)
can contain markers with different ancestry informativeness
contents such that the number of AIMs or the informative-
ness content of each marker alone is not sufficient to predict
which subset will lead to more accurate estimates of the indi-
vidual ancestry proportions. The optimal weighting scheme
will need to account for the total informativeness content of
the subset rather than just its cardinality. In the following
section, we show how appropriate weights can be determined
and demonstrate how an estimate of the ME variance can
be obtained when the subsets carry different weights.

2.2.1 Determining appropriate weights

Let mj be the number of AIMs used to estimate individ-
ual ancestry estimates obtained on the jth subset. Similarly,
let δjs be the informativeness content of the sth marker in
the jth subset. The informativeness content is often mea-
sured by the delta value, which is the absolute value of
the allele frequency difference between two ancestral pop-
ulations at a marker, or an entropy-based measure like the
one described in Rosenberg et al. [17]. Assuming that the
total number of AIMs available is divided into p subsets,
a simple measure of the weight to assign to the jth subset
of markers is given by the following equation

(7) πj =

∑mr

s=1 δjs∑p
j=1

∑ms

s=1 δjs
.

2.2.2 Weighted measures of reliability

We should note that the parallel measurement assump-
tion [12, 18] that underlies the derivation of Cronbach’s al-
pha as a measure of reliability is no longer valid when the
individual ancestry proportions (the items) carry different

weights. However, various estimates of Cronbach’s with un-
equal weights exist in the literature [19].

The simplest estimate is obtained by considering the
weighted average of the Wij ’s. That is, W i =

∑p
i=1 πjWij ,

where πj ≥ 0 and
∑p

j=1 πj = 1. In this case, an estimate of
Cronbach’s alpha is given by

(8) αprop =
p

p− 1

(
1−

tπDiag(V )π
tπV π

)
,

where diag(V ) is the diagonal matrix of the observed vari-
ances of W and αprop denotes the estimate of Cronbach’s
when the items are assigned different weights. Note that the
weighted version of Cronbach’s alpha may violate the un-
derlying assumptions. For example, when different weights
are assigned to different items, it does not make sense to
assume that the variance of the ME is constant. However,
Cronbach’s alpha still provides useful results, which explains
its appeal and is what makes it so widely used in practice.
In fact, we are considering two possible estimates of the ME
variance, because equation (6) yields two possible estimates:
one using equation (5) (same weights) and another using
equation (8) (different weights).

Another approach would be to consider Armor’s the-
ta [20], which is a special case of Cronbach’s alpha where
the weights πi are chosen such that the reliability estimate
is maximized. This maximization is realized by selecting the
eigenvector corresponding to the largest eigenvalue of the
correlation matrix computed from the individual ancestry
proportion estimates. Armor showed that this estimate can
be written as

(9) θ =
p

p− 1

(
1− 1

λ1

)
,

where λ1 is the largest eigenvalue of the correlation matrix
computed from the items, which in this case is the correla-
tion matrix between the different sets of individual ancestry
proportion estimates.

2.3 Estimating the ME variance by using
the repeated measurement approach

The repeated measurement approach may be the most
widely used approach to estimate the ME variance. As-
sume that the ME model can again be written as in equa-
tion (1). Under the assumption that the measurement er-
rors are independent of the true ancestry proportions and
Var(Uj) = σ2

U,j , we have from equation (1) that

(10) Var(Wij) = σ2
X + σ2

U,j ,

after relaxing the homoscedasticity assumption to allow the
ME variance to vary with the informativeness content of the
subset of markers that is used to estimate individual ances-
try. There are several ways to estimate the ME variance by
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using repeated data. The simplest approach consists in es-
timating the measurement error variance from each subset
and pooling the results into a single estimate. This is in
fact the approach taken by Carroll et al. [8] (page 71, equa-
tion (4.3)). However, they assume that the ME variance is
constant in all subsets. Other estimates can be defined by
relaxing the assumption made in equation (2) such that one
now assumes that

(11) Var(Uj) = σ2
uj =

σ2
u

πj
,

such that Var(Uj) < Var(Ul) if subset j is more informative
than subset l. Note that πj is given by equation (7).

Let W i =
∑p

j=1 πjWij be the overall estimate of the
ancestry proportion of the ith individual obtained by com-
bining the p estimates (one for each subset) into a single
estimate of ancestry proportions. As mentioned above, W i

is the estimate that will be used as a covariate in the as-
sociation test. It is highly correlated with Wi, the estimate
that would be obtained if all the AIMS were used to pro-
duce a single estimate. The value of using W i instead of Wi

is that unlike Wi, an estimate of the ME variance can be
computed for W i. In fact, it can be shown that W i is the
minimum variance unbiased estimator of Xi. An estimate of
the ME variance is given by

(12) σ̂2
U =

∑n
i=1

∑p
j=1 λj(Wij −W i)

2

n(p− 1)
.

2.4 Reliability estimates for multivariate
IAPE

Multivariate estimates of genetic background can arise
with both individual ancestry proportions and principal
components. If the admixed population is derived from
k > 2 ancestral populations, the estimate of individual
ancestry proportions can be represented by a vector with
k′ = k − 1 elements because the k estimates sum to 1.
Caribbean Hispanics, for example, exhibit various levels of
Native American (mostly Táınos), European, and African
ancestry [21]. Therefore, their ancestry proportion can be
represented by a vector with 2 components. It should also
be noted that a negative correlation is expected between
these components because of the linear constraint. It is also
not uncommon to use more than one principal component
to achieve the appropriate type I error control in a GWAS.
In fact, most investigators use the default setting of EIGEN-
STRAT, which suggests that the first 10 principal compo-
nents are included as covariates in their association tests.
The reliability of the sample eigenvector as an estimate of
the true eigenvector in the population can also be a use-
ful measure. Paul [11] provides a method to compute this
reliability for the eigenvector corresponding to the largest
eigenvalue. Kimmel et al. [22] show how a non-zero angle
between true and estimated axes of variation can lead to

type I error inflation in GWAS. Measurements errors in the
estimation of the genetic background variable can occur in
both cases.

We focus on estimating the ME variance when individual
ancestry proportion estimates are computed by using AIMs
when k > 2. Previous papers on estimating reliability in
the multivariate case have focused on relating s observed
variables with t latent factors [23].

We propose the following ME model

(13) Wij = Xi + Uij , j = 1, 2, . . . , p,

where Wij is a (k′, 1) vector of ancestry proportion esti-
mates, Xi is the true but unobserved (k′, 1) vector of ances-
try proportions, and Uij is the (k

′, 1) vector of Measurement
errors associated with the estimation of Wij . Note that we
also assume that (1) Uij ∼ MVN (0,Σj), (2) Xi and Uij are
independent, (3) Uij is independent of Uil for any two sub-
sets l and j, (4) and that Σj = ( 1

πj
)Σ, where πj is defined

similarly as in equation (7). Similarly to the univariate case,
these assumptions lead to Cov(Wij ,Wil) = Cov(Xi, Xi) =
ΣX except that ΣX is now a (k′, k′) positive definite matrix.

Equation (13) implies that

(14) Cov(Wij) = ΣX +Σj , j = 1, 2, . . . , p.

Similarly to the univariate case, the (k′, 1) vector

(15) W i =

p∑
j=1

πjWij

will be used as a covariate in the association test instead
of Wi. As mentioned above, W i is almost always perfectly
correlated with Wi, and contrary to Wi an estimate of the
ME variance can be computed for W i. Combining (14) and
(15), and using the fact that under the assumptions of the
CTM model, it can be shown that Cov(Wi,Wj) = ΣX , we
have

(16) Cov(W i) = ΣX +

p∑
j=1

λ2
jΣj .

2.4.1 Estimating the ME covariance by using the repeated
measurement approach

There are a number of ways to estimate the ME covari-
ance by using repeated data. However, we opted to use an
estimate similar to (15) in which the variable Wij is now
a vector with k′ elements. The repeated measurement esti-
mate of the ME covariance matrix is given by

(17) Σ̂RM =

∑n
i=1

∑p
j=1 πj(Wij −W i)(Wij −W i)

T

n(p− 1)
.
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2.4.2 Estimating the ME covariance by using the reliability
approach

Following Tarkkonen and Vehkalahti [23], we can write
the reliability matrix as

(18) Ω = ΣX(Cov(W ))−1.

This estimate cannot be computed based on equation (18)
alone since the individual ancestry proportion are not di-
rectly observed. We now describe a procedure to esti-
mate the reliability matrix. Consider the block matrix
C = Cov(W1,W2, . . . ,Wp)

T , which is a (k′p, k′p) matrix,
where the submatrix on the ith row and jth column of
Cov(W1,W2, . . . ,Wp) corresponds to a (k′, k′) matrix that
is defined as:

Clj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
π2
jn

−1

n∑
i=1

(Wij −W i)(Wij −W i)
T , l = j,

πlπjn
−1

n∑
i=1

(Wij −W i)(Wil −W i)
T , l �= j,

where Wij and Wil are the (k′, 1) vectors of ancestry pro-
portion estimated using markers on the jth and lth sub-
sets.

An estimate of the reliability matrix is given by

(19) Ω̂ =
p

p− 1

((
p∑

l �=j

Clj

)(
p∑

j=1

p∑
l=1

Clj

)−1)

and an estimate of the ME covariance matrix is

(20) Σ̂Rel = (Ip − Ω̂) Ĉov(W ).

Ĉov(W ) is the observed (p, p) covariance matrix of the over-
all estimate of the ancestry proportion computed in equation
(19) for the n individuals in the sample.

In the case in which the estimated ME covariance matrix
is not a positive definite matrix, a simple correction consists
of replacing it by another matrix whose minimum eigenvalue
is equal to a very small positive value. Let ζ be the minimum
eigenvalue of Σ̂, where Σ̂ denotes the ME covariance matrix
estimated by using either equation (17) or equation (20). If
ζ ≤ 0, then Σ̂ is not a positive definite matrix. However, the
matrix Σ̂corrected = Σ̂ + (0.01 − ζ)Ik−1, where Ik−1 is the
(k − 1)× (k − 1) identity matrix. The minimum eigenvalue
of this new matrix is 0.01, which makes a positive definite
matrix.

3. SIMULATION STUDY

We present 2 sets of simulation studies. First, we assumed
an admixed population derived from intermating between
exactly 2 ancestral populations. In this case, an individual’s
ancestry proportion estimate can be represented by a scalar
and the confounder is univariate. We also assumed that the

total number of AIMs is divided into p subsets with mj ,
j = 1, 2, . . . , p being the number of markers used to ob-
tain the admixture estimate on the jth subset. Also, let
M =

∑p
j=1 mj is the total number of markers simulated.

For simplicity, we set p = 22 to mimic the more intuitive
case in which each estimate is computed at the autosome
level. We considered 2 cases: (1) M = 110 and (2) M = 220.
In each case, we compared the estimate of the ME vari-
ance obtained with Cronbach’s alpha to the estimate ob-
tained when we used the repeated measurements approach.
These results were compared by assuming (a) an equal al-
location of the number of markers per subset and (b) an
allocation proportional to the chromosome length. Weights
under scenario (b), were determined by using the Marshfield
sex-averaged chromosome lengths [24].

Let prs be the allele frequency of the sth marker s =
1, 2, . . . ,M in the rth ancestral population r = 1, 2. The
allele frequencies were chosen such that each marker was
ancestry informative. In practice, a minimum absolute dif-
ference of 0.3 between allele frequencies in the 2 ancestral
populations is required before a marker can qualify as an
AIM. The true ancestry proportions, which is denoted by
ai, i = 1, 2, . . . , n, were drawn from a beta distribution
(ai ∼ Beta(10, 40)) such that the expected value was 0.2,
which is close to estimates of the European genetic contri-
bution to the African-American population [25]. We then
computed the allele frequency at the sth marker for the ith
individual as qis = aip1s + (1 − ai)p2s, which served as the
parameter for the binomial distribution from which the indi-
vidual genotype at that marker is drawn. Finally, we applied
a maximum likelihood approach [26] to provide both a global
and p IAPEs (one of each subset). The difference between
the true ancestry proportions, which were drawn from the
Beta distribution, and the global ancestry proportion esti-
mates was computed and regarded as the ME variable. In
practice, this difference is never observed because the true
ancestry proportions are not known. However, computation
of this difference allowed us to directly compute the ME
variance and to evaluate the performance of each approach.
The ME variance was estimated under 4 different scenar-
ios. (1) The total number of markers was divided equally
into 22 subsets of markers, and we applied both methods
assuming the IAPEs obtained on each subset carried the
same weight. (2) The total number of markers was again di-
vided into 22 subsets, but marker allocation was done pro-
portional to chromosome length. (3) The total number of
markers was divided equally into 4 subsets. (4) The total
number of markers was divided into 4 subsets with propor-
tional allocation where 10% of markers were allocated to the
first subset, 20% to the second, 30% to the third, and 40%
to the last. We generated 10,000 data sets containing 1,000
individuals each. The simulation results are summarized in
Tables 1 to 4.

The purpose of the second simulation study was to evalu-
ate the performance of the two ME variance estimation ap-
proaches when the confounder is multivariate, that is, when
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Table 1. Five-point summary and standard error of the distribution of the measurement error variance associated with
ancestry proportion estimates for K = 2 when 110 AIMS divided into 22 subsets are used

Estimates Minimum Q1 Q2 Mean St. Error Q3 Maximum

True error variance 1.988 2.596 2.742 2.755 0.225 2.901 3.771

Cronbach’s alpha (prop) 2.222 2.602 2.701 2.706 0.150 2.804 3.314

Cronbach’s alpha (equal) 1.931 2.275 2.363 2.370 0.138 2.460 2.879

Armor’s theta 1.816 2.170 2.252 2.257 0.127 2.340 2.765

Repeated measurements (prop) 2.616 3.247 3.418 3.435 0.268 3.608 4.715

Repeated measurements (equal) 2.236 2.785 2.909 2.918 0.192 3.044 3.785
Note: All numbers in the table should be divided by 1,000 to get back to the original scale.

Table 2. Five-point summary and standard error of the distribution of the measurement error variance associated with
ancestry proportion estimates for K = 2 when 110 AIMS divided into 4 subsets are used

Estimates Minimum Q1 Q2 Mean St. Error Q3 Maximum

True error variance 2.025 2.594 2.740 2.751 0.224 2.893 3.772

Cronbach’s alpha (prop) 2.390 2.768 2.855 2.861 0.136 2.950 3.543

Cronbach’s alpha (equal) 2.553 2.989 3.099 3.109 0.176 3.222 3.885

Armor’s theta 2.537 2.933 3.035 3.042 0.161 3.147 3.691

Repeated measurements (prop) 2.967 4.116 4.629 4.908 1.152 5.405 14.210

Repeated measurements (equal) 3.654 5.143 5.821 6.089 1.330 6.757 16.540
Note: All numbers in the table should be divided by 1,000 to get back to the original scale.

Table 3. Five-point summary and standard error of the distribution of the measurement error variance associated with
ancestry proportion estimates for K = 2 when 220 AIMS divided into 22 subsets are used

Estimates Minimum Q1 Q2 Mean St. Error Q3 Maximum

True error variance 1.057 1.302 1.361 1.363 0.090 1.421 1.773

Cronbach’s alpha (prop) 1.312 1.527 1.582 1.587 0.086 1.643 2.019

Cronbach’s alpha (equal) 1.156 1.302 1.340 1.341 0.057 1.379 1.585

Armor’s theta 1.129 1.268 1.303 1.304 0.054 1.340 1.549

Repeated measurements (prop) 1.493 1.790 1.878 1.891 0.143 1.981 2.564

Repeated measurements (equal) 1.290 1.501 1.551 1.556 0.079 1.606 1.951
Note: All numbers in the table should be divided by 1,000 to get back to the original scale.

Table 4. Five-point summary and standard error of the distribution of the measurement error variance associated with
ancestry proportion estimates for K = 2 when 220 AIMS divided into 4 subsets

Estimates Minimum Q1 Q2 Mean St. Error Q3 Maximum

True error variance 1.083 1.301 1.359 1.362 0.090 1.421 1.767

Cronbach’s alpha (prop) 1.704 1.917 1.964 1.966 0.073 2.014 2.241

Cronbach’s alpha (equal) 1.595 1.786 1.828 1.830 0.066 1.874 2.088

Armor’s theta 1.591 1.783 1.825 1.828 0.066 1.871 2.087

Repeated measurements (prop) 1.999 2.649 3.062 3.277 0.888 3.670 12.260

Repeated measurements (equal) 1.982 2.698 3.101 3.284 0.813 3.679 9.135
Note: All numbers in the table should be divided by 1,000 to get back to the original scale.

the number of ancestral populations (k) is greater than 2.
For simplicity, we focus on the case in which k = 3. In
this case, individual ancestry proportion estimates can be
represented by a vector with 2 components. The simula-
tion procedure when k > 3 is similar to the one we just
described above for the case in which k = 2, except that
the true ancestry proportions were drawn from a Dirichlet
instead of a Beta distribution. Again, we assumed that the

total number of AIMs (M) is divided into p subsets withmj ,
j = 1, 2, . . . , p being the number of markers used to obtain
the ancestry estimate on the jth subset. The performance of
the two ME variance estimation approaches was evaluated
again by using the 4 scenarios described above.

Let prs be the allele frequency of the sth marker, s =
1, 2, . . . ,M in the rth ancestral population r = 1, 2, 3. Fol-
lowing Pfaff et al. [27], the allele frequency of the sth marker
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Table 5. Performance of the repeated measurement approach and multivariate reliability when k = 3 and 110 AIMs are used
to estimate the individual ancestry proportions

Number
of
subsets

True measurement
error covariance

Repeated Measurement Multivariate Reliability

Allocation equal Allocation proportional Allocation equal Allocation proportional

22

0.0083 −0.0044 0.0036 −0.0020 0.0050 −0.0027 0.0061 −0.0034 0.0073 −0.0040
0.0007 0.0006 0.0005 0.0007 0.0024 0.0018 0.0001 0.0002 0.0002 0.0002
−0.0044 0.0047 −0.0020 0.0030 −0.0027 0.0055 −0.0034 0.0051 −0.0040 0.0064
0.0006 0.0006 0.0007 0.0007 0.0018 0.0019 0.0002 0.0002 0.0002 0.0002

4

0.0083 −0.0044 0.0097 −0.0051 0.0032 −0.0017 0.0076 −0.0040 0.0077 −0.0040
0.0007 0.0006 0.0013 0.0011 0.0002 0.0002 0.0005 0.0005 0.0003 0.0003
−0.0044 0.0047 −0.0051 0.0066 −0.0017 0.0020 −0.0040 0.0050 −0.0040 0.0048
0.0006 0.0006 0.0011 0.0012 0.0002 0.0002 0.0005 0.0005 0.0003 0.0002

in the admixed population can be written as

(21) p(adx)s = m1p
(1)
1s +m2p

(2)
2s +m3p

(3)
3s ,

where mr is the genetic contribution of the rth ancestral
population. Note that mr is such that

∑3
r=1 mr = 1. The

genotype at each marker was simulated by two independent
draws from a Bernoulli(ps). The true ancestry proportions
were drawn from a Dirichlet distribution with parameters
(0.4, 0.3, 0.3), which is close to the ancestry proportions ob-
served in Caribbean Hispanics such as Puerto Ricans [28].
We should note that since we generated markers to esti-
mate the IAPE, the distribution of the ME variable was not
known. The ME variance was computed for each simulation
as the difference between the simulated true ancestry pro-
portions and the overall estimate computed by combining
all the subsets into a single data set.

4. RESULTS

We note that both approaches for estimating the ME vari-
ance implicitly assume that the average IAPE computed
over the p subsets is the control variable that is used in the
association test to guard against spurious associations. We
showed previously [9] that the correlation between the aver-
age estimates computed over the p subsets and the estimate
obtained when all the markers are used to provide a single
estimate was around 99% when we considered a real data
set with over 6,000 individuals in which 1,312 AIMs based
on the marker panel described in [29] were typed.

The simulation results for the case in which k = 2 are
given in Tables 1 to 4. These tables present the five-point
summary of the estimate of the ME variance computed with
each method. The distribution of these estimates was then
compared with the true ME variance to evaluate their per-
formance. These simulations showed that the estimates of
the ME variance based on the internal reliability measures
(i.e., Cronbach’s alpha and Armor’s theta in the univariate
case) seemed to outperform those computed by using the

repeated measurement approach. Considering the estimates
based on the internal reliability approach, we see that the
error variance estimate obtained with Armor’s theta was al-
ways between the estimates computed by using Cronbach’s
alpha under the two weighting schemes. This result should
be expected because Armor’s theta corresponds to the max-
imum estimate of Cronbach’s, which is obtained by consid-
ering all possible weightings of the IAPE computed for each
subset. As can be seen in Tables 1 to 4, the estimate with Ar-
mor’s theta was always closer to the estimate provided by
Cronbach’s alpha under equal allocation of markers. This
result is in agreement with equation (6), because Armor’s
theta yields the maximal value of Cronbach’s alpha when
the weights are all equal. This result suggests that there
might be an advantage to weighting the items before com-
puting Cronbach’s alpha. The estimates based on the re-
peated measurement had less bias when the markers were
allocated equally.

We also note that the performance of the ME variance
estimated by using Cronbach’s alpha varied with the total
number of markers. That is, when we considered 110 AIMS,
the allocation proportional to subset size worked better than
when the markers were equally allocated to each subset.
However, the reverse situation was observed when we con-
sidered 220 markers. Very few markers were assigned to the
smaller subsets when only 110 markers were used. Therefore,
the IAPE calculated from these subsets can have strong bias,
which leads to higher variance estimates. The repeated mea-
surements approach, as expected, was more affected by these
biases than were the internal reliability measures. When we
considered 220 AIMS, there seemed to be enough informa-
tion such that not much was gained by allocating markers
proportional to subset size. Finally, the number of subsets
considered appeared to be a significant predictor of the per-
formance of these methods. The repeated measurement ap-
proach with equal weights yielded acceptable results when
22 subsets were considered, but failed when only 4 subsets
were used, with estimates that were more than twice as large
as the true ME variance.
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Table 6. Performance of the repeated measurement approach and multivariate reliability when k = 3 and 220 AIMs are used
to estimate the individual ancestry proportions

Number
of
subsets

True measurement
error covariance

Repeated Measurement Multivariate Reliability

Allocation equal Allocation proportional Allocation equal Allocation proportional

22

0.0050 −0.0028 0.0024 −0.0013 0.0042 −0.0023 0.0041 −0.0022 0.0046 −0.0025
0.0005 0.0005 0.0003 0.0004 0.0006 0.0008 0.0001 0.0001 0.0002 0.0002
−0.0028 0.0029 −0.0013 0.0017 −0.0023 0.0036 −0.0022 0.0029 −0.0025 0.0035
0.0005 0.0005 0.0004 0.0004 0.0008 0.0008 0.0001 0.0001 0.0002 0.0002

4

0.0050 −0.0027 0.0019 −0.0010 0.0036 −0.0019 0.0047 −0.0025 0.0045 −0.0023
0.0006 0.0005 0.0001 0.0001 0.0006 0.0005 0.0002 0.0002 0.0002 0.0002
−0.0027 0.0029 −0.0010 0.0011 −0.0027 0.0029 −0.0025 0.0028 −0.0023 0.0026
0.0005 0.0005 0.0001 0.0001 0.0005 0.0005 0.0001 0.0001 0.0001 0.0001

Table 7. Frobrenius norm between the estimated covariance using each approach and true error covariance

Number
of subsets

Subset Repeated Measurement Multivariate Reliability
Equal Proportional Equal Proportional

220
22 0.0036 0.0013 0.0012 0.0008
4 0.0044 0.0017 0.0005 0.0009

110
22 0.0061 0.0041 0.0026 0.0020
4 0.0025 0.0069 0.0009 0.0007

We observed similar results when we considered the case

in which the number of ancestral populations was equal to

3. Because the IAPEs must total 1, the ME covariance ma-

trix can be represented by a (2, 2) matrix. Comparisons be-

tween each ME covariance estimation approach and the true

ME covariance are presented in Tables 5 and 6. These ta-

bles show the error covariance matrix estimated after 10,000

replications. The elements of each covariance matrix are

shown in bold. We present the standard error associated

with the estimation of each element in italic below this ele-

ment. We focus on the case in which the IAPEs were com-

puted with 110 AIMs in Table 5. Table 6 is very similar

to Table 5, except that it presents the results for the case

in which 220 AIMs were used to estimate the IAPEs. Each

table also compares the effect of equal vs. allocation propor-

tional to subset size as well as the effect of dividing the total

number of AIMs in 22 vs. 4 subsets. Both tables confirm the

observations made in the univariate case. That is, (1) the

reliability approach leads to more accurate and less biased

estimates of the true covariance matrix than the repeated

measurement approach, and (2) the allocation of markers

proportionally to the number of markers in the subset ap-

pears to be beneficial only when 110 AIMs are considered.

Table 7 presents the Frobenius norm, the L-2 norm for a

matrix, between the estimated covariance matrices and the

true covariance matrix is the 4 scenarios shown in Tables

5 and 6. This table confirms that the internal reliability

approach seemed to perform better in the context of esti-

mating the ME associated with the estimation of individual

ancestry proportions.

5. DISCUSSION

Population stratification and admixture-induced linkage
disequilibrium remain a concern in genetic association tests.
These tests are often conducted under the assumption that
the measure of genetic background that is used to control for
the confounding effect caused by population stratification
and admixture is obtained without errors. This assumption
is not likely to hold, however. Consequently, the type I error
and the power of these studies are not likely to remain at
their nominal levels. We presented here a simple procedure
that can be applied in conjunction with well known ME cor-
rection methods to help to account for these Measurement
errors.

We show that a generalization of Cronbach’s alpha can be
used to estimate the ME covariance matrix. This estimate
performed better than the one obtained by using the repea-
ted measurement approach. We note that repeated measure-
ments are the most widely used approach to estimating the
ME variance in ME correction efforts. The reliability ap-
proach relies on several assumptions. First, it is assumed
that the estimate computed on each subset is measuring the
same underlying latent variable, which in this case is the true
individual ancestry proportion. This assumption is likely to
hold when the subsets are created so that they each yield
an estimate of the overall ancestry proportion. We note that
this assumption is likely violated, however, in efforts to es-
timate local ancestry because of local variations in the an-
cestry estimate. We did not evaluate the robustness of this
approach under this type of violation and do not advocate
its application in efforts to estimate the ME associated with
local ancestry estimates. Second, we note that Carroll et al.
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(page 3, ref #8) for example, referred to the error contam-
inated variables W and the ME variable U as conditional
distributions, where the conditioning is done on the true un-
observed variable (X). In this case, Uij |Xi and Uil|Xi will
be independent assuming that the subsets of AIMS used to
estimate the individual admixture proportions are disjoint
and they are selected far enough from each other such that
admixture induced LD is the only source of correlation. By
conditioning on the true ancestry, the admixture induced
LD is eliminated. We ran a simulation study to evaluate the
magnitude of this correlation. We only consider the univari-
ate case for simplicity and apply the same simulation pro-
cedure described in the manuscript in Section 3. Briefly, we
draw the true individual ancestry (Xi) from a beta distribu-
tion, we simulate 2 sets (M = 5, 10) of ancestry informative
markers conditional on the underlying ancestry proportion
and compute an admixture proportion estimate for each set
(Wi1 and Wi2), we then obtained the ME variables (Ui1 and
Ui2) as the difference between Wi1 and Wi2 and Xi, and
compute the correlation between the differences. We chose
to present the correlations instead of the covariances sim-
ply for ease of interpretation. The average correlation after
a 1,000 iterations was 8 × 10−4 with a standard error of
5 × 10−3 for M = 5 and 2 × 10−3 with a standard error
of 3 × 10−3 for M = 10. The simulation showed that these
correlations are very small, which implies that the assump-
tion of independence is not too strong to invalidate the pro-
posed methods. The correlation between Wij and Wil is also
always positive, which means that the covariance between
these two variables is also always positive.

Third, a closer look at equation (12) shows that the re-
peated measurement estimate of the ME variance does not
make use of these assumptions. Therefore, the resulting es-
timate should not be affected if these assumptions do not
hold. However, the estimates based on the reliability ap-
proach may be biased and equations (3) and (16) would
have to be modified to account for the correlation in the
Measurement errors.

We considered two possible ways of partitioning the AIMs
into subsets. The first partition consisted of dividing the
AIMs into 22 subsets. This partition can be seen as a nat-
ural way of dividing the data when an investigator seeks
to obtain an estimate for each chromosome. In the second
partition, we divided the AIMs into 4 subsets. We chose
this partition to evaluate whether the second method would
perform better when fewer subsets with a larger number of
AIMs were considered. We observed an advantage of consid-
ering fewer but larger subsets only in the case in which 110
markers were used.

In conclusion, our results offer information that can be
used to enhance the estimation of the degree of ME or, con-
versely, the reliability of individual ancestry proportion esti-
mates. The estimate of ME variance can in turn be incorpo-
rated into other analyses, such as genetic association tests
in candidate gene and genome-wide association studies.

APPENDIX A. TABLE OF ABBREVIATIONS

ME Measurement error
RM Repeated measurement
SATs Structured association tests
IAPE Individual admixture

proportion estimates
AIMs Ancestry informative markers
PCA Principal component analysis
Linkage disequilibrium LD
GWAS Genome wide association studies
CTM Classical true score model

APPENDIX B. PROOF THAT EQUATION
(12) IS UNBIASED

Let

(22) Wij = Xi + Uij .

Assume that {
E(Uij) = 0, ∀j,
Var(Uij) = σ2

j .

Let πj be a set of weights such that πj ≥ 0 and
∑p

j=1 πj = 1,
where p is the number of subsets of AIMs.

Define

(23) W i =

p∑
j=1

Wij .

Let

(24) σ2
j =

σ2

πj
.

Therefore, W i is minimum variance unbiased linear estima-
tor E(Xi). From equation (1) we have E(Wij) = E(Xi).

Note that from (1) and (2), we also have

(25) W i = X + U i,

where U i =
∑p

j=1 Uij .
Subtracting (3) from (1) we have

(26) Wij −W i = Uij − U i,

which leads to

p∑
j=1

πj(Wij −W i)
2 =

p∑
j=1

πj(Uij − U i)
2(27)

= σ2

p∑
j=1

(Uij − U i)
2

σ2
j

,

E

{
p∑

j=1

πj(Wij −W i)
2

}
= σ2E

{
p∑

j=1

(Uij − U i)
2

σ2
j

}
,(28)
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E

{
p∑

j=1

πj(Wij −W i)
2

}
= σ2(p− 1).(29)

Finally,

E(σ̂2) =
1

n(p− 1)

n∑
i=1

E

{
p∑

j=1

πj(Wij −W i)
2

}
= σ2.

The same approach can be taken to show that equa-
tion (17) also provides an unbiased estimate of the ME vari-
ance when k > 2.
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