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Controlling population structure in human genetic
association studies with samples of unrelated

individuals
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In genetic studies, associations between genotypes and
phenotypes may be confounded by unrecognized population
structure and/or admixture. Studies have shown that even
in European populations, which are thought to be relatively
homogeneous, population stratification exists and can affect
the validity of association studies. A number of methods
have been proposed to address this issue in recent years.
Among them, the mixed-model based approach and the
principal component-based approach have several advan-
tages over other methods. However, these approaches have
not been thoroughly evaluated on large human datasets. The
objectives of this study are to (1) evaluate and compare the
performance of the mixed-model approach and the princi-
pal component-based approach for genetic association map-
ping using human data consisting of unrelated individuals,
and (2) understand the relationship between these two ap-
proaches. To achieve these goals, we simulate datasets based
on the HapMap data under various scenarios. Our results in-
dicate that the mixed-model approach performs well in con-
trolling for population structure/admixture. It has a similar
performance as that based on principal component analysis.
However, the approach combining mixed-model and princi-
pal component analysis does not perform as well as either
method itself.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62P10,
9208; secondary 6207.

KEYWORDS AND PHRASES: Mixed-effects model, Principal
component analysis, Population structure/admixture, Ge-
netic association analysis.

1. INTRODUCTION

Genetic association studies have become prominent with
the availability of dense single nucleotide polymorphisms
(SNPs), rapid reduction in high-throughput genotyping
costs, and successful identifications of thousands of variants
with hundreds of human traits. However, it is well known
that population structure/admixture can confound genetic
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association studies (Ewens and Spielman, 1995). This con-
founding can lead to either false positive or false nega-
tive associations. Several simulation studies have affirmed
the potential confounding effect of variations in ancestry
(Deng, 2001; Heiman et al., 2004a; Heiman et al., 2004b).
In the work of Marchini et al. (2004), the authors simulated
data with relatively simple and moderate level of popula-
tion structure (i.e., departures from genotypic frequencies
expected under panmixia) observed in samples with a sin-
gle continental origin (e.g., all Europeans). They concluded
that, “For the size of study needed to detect typical genetic
effects in common diseases, even the modest levels of popu-
lation structure within population groups cannot safely be
ignored.” In addition to the well known admixed popula-
tions, such as African-American, recent studies (Campbell
et al., 2005; Dolan et al., 2005; Helgason et al., 2005) have
shown that even in relatively homogenous populations, such
as Irish and Icelander, there still exists population substruc-
ture. Hence for genetic studies, attention needs to be paid
to control for the confounding effects because of population
structure, even if such structure cannot be detected by stan-
dard methods, as suggested in Campbell et al. (2005).
Various methods have been proposed to deal with po-
tential confounding from population structure/admixture
(Price et al., 2010). Although using differently, these meth-
ods all need to use a set of unlinked genetic markers. The
genomic control (GC) approach rescales the statistics, which
may not follow a central distribution under the null hypothe-
sis when population structure/admixture exists (Devlin and
Roeder, 1999). Another approach is called “structured asso-
ciation test (SAT)”, where a set of unlinked genetic markers
are used to estimate the ancestry probabilities for each indi-
vidual (Falush et al., 2003; Pritchard and Rosenberg, 1999;
Pritchard et al., 2000; Redden et al., 2006; Satten et al.,
2001; Tang et al., 2005; Wu et al., 2006). These estimates of
ancestry probabilities are then used in association analysis
to control for population structure/admixture (Pritchard et
al., 2000; Redden et al., 2006; Satten et al., 2001; Yu et al.,
2006; Zhao et al., 2007). A third approach uses genetic back-
ground derived from a set of independent genetic markers
to control for population structure/admixture in association
analysis (Bauchet et al., 2007; Chen et al., 2003; Paschou
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et al., 2008; Price et al., 2006; Zhang et al., 2003; Zhu et al.,
2008; Zhu et al., 2002; Zou et al., 2010). Usually, principal
component analysis (PCA) is used to derive genetic back-
ground, although there are some variants (Liu and Zhao,
2006; Zhu and Yu, 2009). In recent years, methods based on
mixed-model have been proposed to control for population
structure/admixture (Kang et al., 2010; Kang et al., 2008;
Yu et al., 2006; Zhang et al., 2010). The basic idea is to use
a set of genetic markers to estimate pairwise kinship coeffi-
cients between the individuals under study. This marker-
based kinship is then used in the random effects of the
mixed-model to control for potential confounding from pop-
ulation structure/admixture. The latter two approaches (i.e.
the approaches based on PCA and mixed-model) have been
shown to have several advantages over other approaches (e.g.
GC and SAT) and are more preferred. However, the mixed-
model approach has been introduced from the animal ge-
netics literature. It has been evaluated mainly using animal
and plant data, and has not been thoroughly evaluated on
large human datasets (Stich and Melchinger, 2009; Stich et
al., 2008; Yu et al., 2006; Zhao et al., 2007). As indicated
in Zhao et al. (2007), “Comprehensive simulation studies
(with known null distributions) would be required to de-
termine how the different methods perform in terms of the
false-positive rate.” Similarly, in a recent paper Price et al.
(2010) stated that “mixed models are relatively new and
untested” in this context.

In this report, we evaluate the performance of the PCA
and mixed-model approaches for controlling population
structure/admixture in human genetic association studies
with samples of unrelated individuals. We simulate various
scenarios using human data from the HapMap Project. In
addition, we aim to understand the relationship between the
PCA approach and the mixed-model approach.

2. METHODS

Following the simulation procedure of Zhu et al. (2008),
we simulated data under four scenarios: discrete model with
two ancestral populations, admixed model with two ances-
tral populations, discrete model with three ancestral pop-
ulations, and admixed model with three ancestral popula-
tions. The simulations with discrete models aim to illus-
trate the performance of the statistical methods with ran-
domly chosen markers when samples are from two and three
discrete populations, respectively. The simulations with ad-
mixed models aim to illustrate the performance of statistical
methods when randomly chosen markers are used for sam-
ples from a population admixed by two and three ancestral
populations, respectively.

In our simulation study, we generated samples with two
or three ancestral populations using the haplotype data re-
leased by the HapMap project (Phase 2 HapMap project,
HapMap release #21) (http://hapmap.ncbi.nlm.nih.gov/).
There are four populations in the HapMap project: 30 trios
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who are European descendants living in the USA (CEU), 30
trios from Ibadan, Nigeria (YRI), 45 unrelated Han Chinese
individuals from Beijing, China (CHB), and 44 unrelated
Japanese from Tokyo, Japan (JPT). In these simulations,
we used only the unrelated individuals from HapMap data
and only haplotype data on chromosome 22 (i.e. 120 Eu-
ropean haplotypes from the CEU, 120 African haplotypes
from YRI, and 178 East Asian haplotypes from the pooled
CHB and JPT). For the discrete model simulations, we
used software HapGen (Marchini et al., 2007; Spencer et al.,
2009) to create more independent chromosomes than in the
original HapMap data. This way, we can have more data
and keep the linkage disequilibrium (LD) structure across
a chromosome for SNPs that are closely located. We first
simulated 50,000 individuals from each of the three afore-
mentioned HapMap populations using their haplotype data
on chromosome 22. Therefore we had three large pseudo-
populations, each with 50,000 individuals. Then we ran-
domly drew individuals from the simulated larger popula-
tions to create datasets. Specifically, for the discrete model
simulation with two sub-populations, we randomly drew 400
individuals from the 50,000 European individuals simulated
using HapGen, and 600 individuals from the 50,000 African
individuals simulated the same way. For the discrete model
simulation with three sub-populations, we randomly drew
200 individuals from the simulated European population
of 50,000 individuals, 300 individuals from simulated East
Asian population of 50,000 individuals, and 500 individuals
from the simulated African population of 50,000 individuals.
The phenotype was simulated following Zhang et al. (2003).
Based on the genotype at the candidate locus, the trait val-
ues were generated according to the following model:

Yij = pi + o Aij + BiDij + ey,

where p; = poo X Ry, a; = Bi = po X Ri, ej; is a nor-
mal random variable with mean 0 and variance 1, 4;; and
D;,;are the additive and dominant genetic scores (additive
and dominant genetic scores are the scores for the geno-
type each individual carries at one locus assuming additive
and dominant genetic effects, respectively. Specifically, ad-
ditive genetic score is the number of minor allele one in-
dividual carries at that locus, dominant genetic score is 1
if one individual carries at least one minor allele at that
locus, 0 otherwise) of the j-th individual in the i-th sub-
population. The concept behind the modeling is to have a
common background disease risk (controlled byugg) across
all populations, specific disease risks (controlled byR; ) for
each population, and genetic-related risk (controlled bypg)
in one model. Following Zhang et al. (2003), in our simula-
tions, we set R; = 1 for individuals from Yoruba, R; = 1/2
for individuals from placeEast Asia, R; = 1/4 for individu-
als from CEU, and pgg = 2. Furthermore, we set 9 = 0 and
o = 0.2 for type I error examination and power evaluation,
respectively. A total of 10,000 randomly selected SNPs on
chromosome 22 were used in the analyses for calculating the



principal components and kinship matrix. The test marker,
the marker that is under study, was randomly chosen on
the chromosome but was not included in the above 10,000
random markers.

For the admixed model simulations, we used a Poisson
process to mimic the evolution of population admixture, fol-
lowing Zhu et al. (2008). Specifically, using a Poisson pro-
cess, we first generated haplotype exchange points on the
chromosome among the populations. Same as in Zhu et al.
(2008), we used an average of 6 crossovers per Morgan to
simulate a population that has been admixed for an average
of 6 generations. Between two exchange points generated by
the Poisson process, we drew haplotype from one ancestral
population chosen from a distribution of admixture propor-
tions of Africans, Europeans, and East Asians, which we set
to be (0.7, 0.2, 0.1) (for admixed model with two ances-
tral populations, we used African and European HapMap
samples with admixture proportions (0.7, 0.3)), following
Zhu et al. (2008). We then applied the same method as
in the discrete model to generate an individual’s genotypes
based on the selected ancestral population. For the admixed
model simulation with two ancestral populations, we simu-
lated 1,000 individuals from the European population and
the African population. For the admixed model simulation
with three ancestral populations, we simulated 1,000 indi-
viduals from the European population, the East Asian pop-
ulations, and the African population. For data with three
ancestral populations, the trait values were generated ac-
cording to the following model:

Yi = i + oAy + BiD; + ey,

where p1; = poo X (Rid1 + Rode + R3A3), a; = B =
1o X (R1A1 + RoAa + R3)s), e; is a normal random variable
with mean 0 and variance 1, A; and D;are the additive and
dominant genetic scores of the i-th individual. In our simu-
lations, we set Ry = 1 for alleles from Yoruba, Ry = 1/2 for
alleles from East Asia, R3 = 1/4 for alleles from CEU, and
oo = 2. (A1, A2, A3) are the admixture proportions of an
individual from the three sub-populations. The same as in
the discrete model with two sub-populations, we used CEU
and Yoruba HapMap data for the admixed model simula-
tion with two ancestral populations. Furthermore, we set
o = 0 and pg = 0.2 for type I error examination and power
evaluation, respectively. A total of 10,000 randomly selected
SNPs on chromosome 22 were used in the analyses for cal-
culating principal components and kinship matrix. The test
marker was randomly chosen on the chromosome but was
not included in the above 10,000 random markers. Again,
this way the LD structure across a chromosome is preserved
for adjacent SNPs.

We have compared four statistical approaches under each
of the four scenarios described above: linear model with-
out considering population structure/admixture (denoted
as “None” below), the approach using PCA to control for

population structure/admixture (denoted as “P” as in liter-
ature), mixed-model using kinship matrix (denoted as “K”
as in literature), and mixed-model with both kinship matrix
and principal components (denoted as “K+P” following lit-
erature). The four statistical models can be expressed in the
following form:

y=XpP+ Pa+ Zu+e,

where y is a vector of observed phenotypes, X is a matrix of
predictor variables, here is the genotypes of genetic markers.
0 is a vector of coefficients corresponding to fixed effects. P
contains the top principal components, with corresponding
effects contained in «. Z is an incidence matrix. u is the ran-
dom effect of the mixed model with variance Var(u) = 02K,
where K is the matrix of kinship coefficients (a kinship coef-
ficient is a measure of degree of genetic correlation between
two individuals), 03 is the genetic variance that may cap-
ture the extent of similarity in phenotype for individuals
who are similar in genotype. e is the random error vector
with variance-covariance matrix Var(e) = 021, where o2 is
the variance of a single random error and I is identity ma-
trix. Therefore the phenotypic variance-covariance matrix is
Var(y) = 02K + 021. Model “None” corresponds to equa-
tion (1) without terms Pa and Zu. Model “P” corresponds
to equation (1) without term Zu. Model “K” corresponds
to equation (1) without term Pa. Model “P+XK” is the full
model in equation (1). Mixed model with kinship matrix
is usually used in analysis of pedigree data where the kin-
ship coefficients can be estimated from the consanguineous
relationship of the individuals in the pedigree. Here the kin-
ship coeflicients are inferred from the individuals’ genotypes.
Different methods have been proposed to estimate the kin-
ship coefficients from genotypes and studies have shown that
these marker-based kinship estimates are useful in genetic
studies (Balding and Nichols, 1995; Kang et al., 2010; Lynch
and Ritland, 1999; Ritland, 2005, 2009; Yu et al., 2006).

All analyses were performed using EMMA (Kang et al.,
2008) which is an R package for association mapping correct-
ing for population structure/admixture using mixed-model.
SmartPCA (Patterson et al., 2006) was used to generate
principal components. Following Zhu et al. (2008), we used
only the first 10 principal components in our study.

3. RESULTS

To compare the performance of these four statistical ap-
proaches, we mainly focused on type I error rate and power.
Table 1 presents the type I error rates and power values
from the four statistical approaches under different simu-
lated scenarios. Because the “None” model can not control
type I error rate, we don’t include the power values for it in
table 1. In general, ignoring population structure/admixture
may induce substantially inflated type I error rate, and some
loss in power (i.e. mild inflated type II error rate). This is
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Table 1. Type | error rates and power under different scenarios at significance levels 5% and 1%

Statistical model

Discrete genetic model

Admixed genetic model

Two ancestral

Three ancestral

Two ancestral

Three ancestral

populations populations populations populations
No kinship or PCA 0.879 0.824 0.237 0.213

0.840 0.764 0.117 0.092
Kinship only 0.067 (0.903) 0.049 (0.919) 0.039 (0.953) 0.053 (0.972)

0.014 (0.813) 0.007 (0.816) 0.006 (0.873) 0.011 (0.913)
PCA only 0.061 (0.895) 0.046 (0.922) 0.046 (0.952) 0.052 (0.973)

0.014 (0.820) 0.010 (0.833) 0.005 (0.893) 0.011 (0.909)
Both kinship and PCA 0.054 (0.803) 0.045 (0.842) 0.042 (0.885) 0.047 (0.906)

0.005 (0.532) 0.003 (0.549) 0.000 (0.649) 0.001 (0.666)

Note: In each cell, the upper numbers are for a = 0.05; the lower numbers for are a = 0.01. The numbers are Type I error rates
and power (in parentheses). Each entry is based on 1,000 data sets with sample size 1,000.

not surprising and is consistent with previous studies. The
problem is more severe for data under discrete genetic mod-
els (i.e. population structure) than under admixed genetic
models (i.e. population admixture). The performance of “K”
and “P” models are comparable and exceed all other mod-
els under all scenarios considered. The “K+4P” model has a
slightly conserved type I error rate, and lower power. Fig-
ure 1 shows the QQ-plots for the four statistical models un-
der null hypothesis with discrete model with two ancestral
populations. It is clear that the “None” model has severe
type I error rate. The other three statistical methods can
control the type I error well. The figures are similar for other
simulated scenarios (data not shown). Figure 2 shows the
ROC curves of the four statistical methods under four sim-
ulated scenarios. Clearly, “K” and “P” perform consistently
and significantly better. The “K+4P” model performs better
than the “None” model. The difference in performance be-
tween these two models is larger under discrete model than
admixed model, and is the smallest under admixed model
with three ancestral populations.

In addition, all statistical approaches seem to perform
better under admixed genetic models (i.e. population ad-
mixture) than under discrete genetic models (i.e. population
structure), with three ancestral populations than with two
ancestral populations. This is expected.

4. DISCUSSION

Genetic association studies are very promising in disease
fine mapping but can suffer from the potential confounding
from population structure/admixture. With the availabil-
ity of genome-wide genetic markers, this issue may be han-
dled more efficiently. Many statistical methods have been
proposed for this purpose. Among them, mixed-model ap-
proach seems to be very appealing. However, this approach
is mainly used and evaluated in animal and plant genet-
ics. Although it has been applied to human studies, its
performance is still not comprehensively evaluated. In this
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study, we compared the performance of some statistical ap-
proaches, including the mixed-model approach, in control-
ling the confounding from population structure/admixture
using human data with unrelated individuals.

In our simulation study, the performance of the “P”
model and the “K” model is comparable and better than
other models under all scenarios simulated. Not surpris-
ingly, our study showed that ignoring population struc-
ture/admixture may induce substantially inflated type I
error rate and mild type II error rate, in genetic associ-
ation studies with samples of unrelated individuals. This
is consistent with previous finding. Surprisingly, the ap-
proach with both random effects (i.e. with kinship matrix)
and principal components does not perform as well as ei-
ther the mixed-model approach (i.e. with kinship matrix)
or the principal component approach. From previous stud-
ies, this “P+K” model performed better, at least as good
as, the other two approaches (Stich and Melchinger, 2009;
Stich et al., 2008; Zhao et al., 2007). The major difference
is that we used human data consisting of unrelated sam-
ples, whereas the aforementioned previous studies used plant
data where inbreds are usually included. The “P+K” ap-
proach can be thought of as a two stage model: The first
stage is the “P” model. After fitting the “P” model, we
can calculate the residual which is then used as response
in the second stage. In the second stage, the “K” model is
fitted with residual from the first stage as response. This
may explain the potential problem of the “P+K” approach.
In the first stage, the population structure/admixture is
taken into account by the principal components. If the “P”
model works well (this is supported by our study and previ-
ous studies), the potential confounding effect from popula-
tion structure/admixture should be eliminated. This means
that population structure/admixture should not confound
the residual from the “P” model. In the second stage, how-
ever, the “K” model takes into account the population struc-
ture/admixture, which should no longer exist with the resid-
ual. We conjecture that it is this “double control” of popu-
lation structure/admixture that affects the performance of
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Figure 1. QQ plot (nominal p-values vs. observed p-values) under null hypothesis with discrete model with two ancestral
populations using different statistical approaches. Each plot is based on 1,000 data sets with sample size 1,000.

the “P+K” approach. To test our conjecture, we conducted
two simulations. Both simulations were performed under the
alternative model with discrete and admixed models with
two ancestral populations. In the first simulation, we used
only the first two principal components in the “P” model
and “P+K” model. In the second simulation, we conducted
a two-stage analysis as described above: in the first stage,
we used only the top 10 principal components as covari-
ates to fit the model; in the second stage, we used residual
from the first stage as response, and used two “K” models.
In the first “K” model, the kinship matrix was estimated
from the genotypes, the same as in the “P+K” model. In
the second “K” model, an identity matrix was used as the
kinship matrix. Therefore, this model is actually the “P”

model with two-stage, but with the same number of param-
eters as the two-stage “P+K” model. In our first simulation,
the power values are a little bit higher (less than 2% in abso-
lute value) than that using ten principal components (data
not shown), indicating that adding more principal compo-
nents (i.e. with extra parameters in the model) may lower
the power slightly, if any. But this amount of power decrease
may not explain the power decrease of the “P+K” model. In
our second simulation study, for the scenario of two discrete
populations, the power values are 0.818 and 0.381 at a =
0.01 and 0.859 and 0.717 at a = 0.05, for approaches using
identity kinship matrix and marker-based kinship matrix,
respectively; for the scenario of two admixed populations,
the power values are 0.837 and 0.588 at o« = 0.01 and 0.912
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Figure 2. ROC plots comparing true and false-positive rates of four statistical models. Panels A to D are for simulated
scenarios of discrete model with two ancestral populations, discrete model with three ancestral populations, admixed model
with two ancestral populations, and admixed model with three ancestral populations, respectively. Each plot is based on 1,000
data sets with sample size 1,000.

and 0.838 at a = 0.05, for approaches using identity kin-
ship matrix and marker-based kinship matrix, respectively.
Although the power values for the two-stage approaches are
slightly lower than their one-stage counterparts, which is ex-
pected, the general pattern is the same. This confirms our
conjecture that the lower power of “K+P” model is mainly
due to the “double control”, instead of the extra parameters
that are estimated in the “K+4P” model. It is also interest-
ing that the “P+K” approach has reasonable type I error
rate (may be a little bit conserved), which is consistent with
the finding in Price et al. (2010), but inflated type II error
rate (i.e. loss in power).
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Price et al. (2010) reviewed the approaches to population
stratification in genome-wide association studies. They also
conducted simulations to evaluate the performance of these
methods. There are some differences between that paper
and our work. First, they considered population structure
and family structure or cryptic relatedness together. That
is, they mainly focused on pedigree data, although they had
one simulation with unrelated individuals. Our study fo-
cused on unrelated individuals only. Second, they focused on
type I error, as they said “Power to detect causal variants
may vary between methods, but our focus here was on cor-
recting false-positive associations.” However, we evaluated



both type I error rate and power. In their simulation study,
they had one scenario with unusually differentiated markers
(allele frequency difference equal to 0.6). Our simulations
were based on real data and may be more realistic. The al-
lele frequency differences in our simulation range from 0 to
0.47. There is no marker in our study having such unusual
allele frequency difference among the ancestry populations,
therefore our findings do not apply to this unusual case.

Although models “P” and “K” performed similarly, the
computation time differed greatly. Running EMMA on clus-
ter with 3.0GHz quad-core Intel Xeon E5450 processors, it
took about 1550s to calculate the likelihood ratio test (the
“K” model) (it took about 1535s to compute kinship ma-
trix, and about 15s to run the mixed-model). It took about
30s to run the “P” model (it took about 15s to calculate the
principal components using smartPCA). It took about 10s
to run the “None” model. Calculating the kinship matrix is
extremely time-consuming.

The choice of number of principal components in the “P”
(and “P4+K”) model is a practical concern. In our analysis,
we used top 10 principal components to control for popu-
lation structure/admixture. This number was suggested by
Price et al. (2006) and used by Zhu et al. (2008). Because we
had only two and three ancestral populations in our simula-
tion studies, we think that this number should be sufficient.
To further investigate the effect of number of principal com-
ponents, we performed more simulation studies (data not
shown). In addition to the use of top ten principal com-
ponents in the “P” model, we have tried using one and
two principal components in all our simulations. Our results
showed that using an insufficient number of principal com-
ponents may not fully control the confounding effect of pop-
ulation structure, resulting in both inflated false positives
and false negatives. On the other hand, using more princi-
pal components may have slightly increased type I error rate
and decreased power, but the effect is subtle. In our simula-
tion, for the scenario of discrete model with three ancestry
populations, two principal components may be enough. For
all other scenarios, one principal component may be suffi-
cient.

When using principal components to control for popu-
lation structure, a practical approach is to include all the
covariates, including the candidate marker and some top
principal components in the model and see if these principal
components are significant or not. If the principal compo-
nents are significant, then keep them in the analysis; if not,
exclude them from the analysis, i.e. do not control popula-
tion structure. It has been discussed in the literature that
this is not the correct way to handle confounding, as stated
in (Kleinbaum et al., 1998) (Page 195) “One approach some-
times used (incorrectly) to assess confounding is, for exam-
ple, to conduct a statistical test of Hy : 32 = 0.... Such a
test does not address confounding, but rather precision.”
Redden et al. (2006) mentioned this as well. We will il-
lustrate in a very simple scenario where there is only one

candidate marker and no other covariates. We denote Y as
the trait, S stands for population structure, and M stands
for candidate marker. We assume that there is correlation
between trait and population structure, between the can-
didate marker and population structure, but no correlation
between trait and the candidate marker after controlling for
population structure. That is, 7(Y,S) # 0, (M, S) # 0 and
r[Y, (M|S)] = 0, where the first two are correlations and the
last one is a semipartial correlation between the candidate
marker and trait after controlling the candidate marker for
population structure. We know that (Kleinbaum et al., 1998;
Muller and Fetterman, 2002)

r(Y,M)—r(Y,S) -r(M,S)

r[Y, (M|S)] = 1
—r(M,S)?

o1y, sian) = Tt 2 AL
—r(M,S)?

Therefore we have r(Y, M) = r(Y,S) - r(M,S) # 0 which
means that the candidate marker is correlated with the
trait if not controlling for population structure. When
|r(Y,S)| = |r(Y,M)|, or equivalently |r(M,S)| =1, we can
have r[Y, (S|M)] = 0, which means that semipartial correla-
tion between trait and population structure controlling for
the candidate marker could be zero if the candidate marker
and population structure are highly correlated. We know
that testing covariates (variable added-last test) equal to
zero is equivalent to testing semipartial correlations equal
to zero (Muller and Fetterman, 2002). The above means
that even if population structure is a confounder, the test of
it could be zero with all the covariates in the linear model.
Therefore if it is removed from the model (i.e., no control
for population structure), there will be false positives.
Because now the model contains only the candidate marker
and we know that r(Y,S) # 0, which means that now
the test of the candidate marker is not zero, even though
we know that when controlling for population structure,
candidate marker and trait are not correlated. Because of
the relationship between semipartial correlation and full
partial correlation, the above observation holds even if we
control both trait and candidate marker for population
structure, as in Price et al. (2006). In short, excluding
principal components from the “P” model based on the
test of them in the model may not be appropriate.

Another practical consideration in using principal com-
ponents to control for population structure is how to control,
on trait, on candidate marker, or on both. In order for pop-
ulation structure to be a confounder, it should be correlated
with both the trait and the candidate marker. Therefore in
terms of controlling for confounding, we can control either
trait, or candidate marker, or both for population struc-
ture, as long as such controlling can eliminate the correla-
tion with population structure. This can also be seen from
the relationship between semipartial and full partial correla-
tions, and the relationship between partial correlations and
regression.
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r(v]s), m] = " M) - r(Y,S) - Z(M, s)
—r(Y,S)

r(Y,M)—r(Y,S) -r(M,S)
VA =r(M,8)?2) 1 —r(Y,5)?2)

r{(Y, M)|S] =

with the same notation as above. From these equations we
can see that the full partial and semipartial correlations have
the same numerators, and we know that testing full partial
and semipartial correlations equal to zero is equivalent to
variable-added last test of regression coefficients to be zero
(Muller and Fetterman, 2002), therefore controlling trait,
candidate marker, or both for population structure should
have the same type I error rate. The difference may be in
power. We conducted simulations under both the null and
alternative models with discrete and admixed models with
two ancestral populations. We controlled both trait and can-
didate marker for population structure, as did in Price et al.
(2006) (Price et al., 2006). However, the type I error rates
and power values were the same as those from the “P” model
as shown in table 1. Further studies may be needed to eval-
uate the benefits of this approach.

EMMA provides two tests: a likelihood ratio test and
a t-test. Our simulation study showed that the likelihood
ratio test performed as good as, or better (depends on the
simulation scenarios) than, the t-test (data not shown). The
results in this report are from the likelihood ratio test.

Recently we have data from a genome-wide association
study on warfarin dose response. Warfarin is the most widely
used oral anticoagulant and has become the case-study
for pharmacogenetics. The evolution of our understanding
of warfarin pharmacodynamics and pharmacokinetics and
the recognition of genetic regulation of warfarin response
has stimulated efforts aimed at quantifying this influence
(Cooper et al., 2008; Klein et al., 2009; Limdi et al., 2008;
Limdi et al., 2010; Rieder et al., 2005; Takeuchi et al., 2009).
Our data consist of 290 unrelated African-American patients
who were at least 20 years of age and were followed monthly
for up to two years from initiation of therapy. Genotyp-
ing was performed using the Ilumina 1M array with an
overall 99.5% genotyping call rate and no gender discrep-
ancies. After quality control, 991,457 SNPs on autosomes
were left for subsequent analysis. Because our samples are
all African-Americans, a well known admixed population,
we may have the potential confounding effect from popula-
tion admixture. Based on our results in this work, currently
we are using the top two principal components to control
for potential confounding effect from population admixture.
We think that this should control the potential confounding
but without incurring much computational burden. Actu-
ally, this dataset serves as our practical motivation for our
current work.

In summary, we evaluated and compared the performance
of some statistical methods for controlling the confound-
ing effect from population structure/admixture in human
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genetic association studies with samples of unrelated indi-
viduals. Our results confirmed the conclusion that ignoring
population structure/admixture in human genetic studies
may incur severe false positive rates and mild false negative
rates. We also showed that the mixed-model with princi-
pal components (i.e. the “K+P” model) did not perform
very well, with inflated type I error rate (loss in power).
In addition, we showed empirically that the performance of
the mixed-model (the “K” model) and the principal compo-
nent approach (the “P” model) were comparable. We also
showed through simulation that inclusion of additional prin-
cipal components may have little effect on type I error rate
and power. We showed theoretically that removing principal
components from “P” based on testing may not be appro-
priate. Based on our results, we suggest that it is always
prudent to control for population structure if there is no
strong evidence for its existence. It should be noted that
our simulations are based on human data with unrelated
individuals. Therefore these results may only apply to this
kind of data. In addition, theoretical work is certainly war-
ranted to access the relationship between the “P”model and
“K” model. Further studies are needed for other data such
as pedigree data.
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