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Semiparametric Bayesian analysis of
gene-environment interactions with error in
measurement of environmental covariates and
missing genetic data
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Case-control studies are widely used to detect gene-
environment interactions in the etiology of complex diseases.
Many variables that are of interest to biomedical researchers
are difficult to measure on an individual level, e.g. nutri-
ent intake, cigarette smoking exposure, long-term toxic ex-
posure. Measurement error causes bias in parameter esti-
mates, thus masking key features of data and leading to
loss of power and spurious/masked associations. We develop
a Bayesian methodology for analysis of case-control stud-
ies for the case when measurement error is present in an
environmental covariate and the genetic variable has miss-
ing data. This approach offers several advantages. It allows
prior information to enter the model to make estimation and
inference more precise. The environmental covariates mea-
sured exactly are modeled completely nonparametrically.
Further, information about the probability of disease can be
incorporated in the estimation procedure to improve qual-
ity of parameter estimates, what cannot be done in conven-
tional case-control studies. A unique feature of the proce-
dure under investigation is that the analysis is based on a
pseudo-likelihood function therefore conventional Bayesian
techniques may not be technically correct. We propose an
approach using Markov Chain Monte Carlo sampling as well
as a computationally simple method based on an asymp-
totic posterior distribution. Simulation experiments demon-
strated that our method produced parameter estimates that
are nearly unbiased even for small sample sizes. An applica-
tion of our method is illustrated using a population-based
case-control study of the association between calcium intake
with the risk of colorectal adenoma development.
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1. INTRODUCTION

A key component to prevention and control of complex
diseases, such as cancer, diabetes, hypertension, is to analyze
genetic and environmental factors that lead to the develop-
ment of these complex diseases. The analysis is complicated
by the fact that the genetic and environmental factors in-
terplay while causing complex diseases (Hunter, 2005). Such
gene-environment interactions have the potential to (1) yield
insight into the mechanism of action of the environment un-
der various settings of the genetic background; (2) suggest
disease prevention strategies; (3) obtain a better estimate of
the population-attributable risk for genetic and environmen-
tal risk factors by accounting for their joint interaction; and
(4) result in improved analysis of the association between
environmental factors and complex disease by examining
factors in genetically susceptible individuals. A challenge in
statistical analyses is that a weak overall association may
mask important genetic susceptibility to the effects of the
environmental exposure in the population subgroups. Sep-
arate estimation of the contributions of genes and environ-
ment and ignoring their interaction will lead to an incorrect
estimate of the proportion of the disease (the population
attributable risk) that is explained by genes, environment,
and their joint effect (Hunter, 2005). Restricting analysis of
environmental exposure to individuals who are genetically
susceptible to the exposure is likely to increase the magni-
tude of relative risk, thus improving the ability to detect
association signal.

Further, many variables that are of interest to biomedi-
cal researchers, such as dietary intake and cigarette smoking
exposure are very difficult to measure on individuals. Mea-
surement error causes bias in gene-environment parameter
estimates, thus masking key features of data and leading to
loss of power and spurious/masked associations (Lobach, et
al., 2008). Loss of power prevents the ability to detect im-
portant relationships among variables (Carroll, et al. 2006).
For example, nutrition — defined broadly to indicate diet,
body size, physical activity — is likely to be causally related
to cancer (Schatzkin, et al., 2009). Nevertheless, nutritional
epidemiology of cancer remains problematic, largely because
of persistent concerns that standard instruments measure
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diet and physical activity with too much error. While it
is recognized that information collected about dietary level
contains error, considerable uncertainty remains about their
qualitative and quantitative characteristics (Subar, et al.
2003). Understanding this error is critical to interpreting
findings and surveillance research efforts.

In this paper, we develop a Bayesian methodology for
analysis of case-control data in the situation when measure-
ment error is present in an environmental covariate as well as
the genetic variable contains missing data (unobserved geno-
type or haplotype-phase ambiguity). Conventionally, case-
control data are analyzed using prospective logistic regres-
sion ignoring the fact that under this design subjects are
sampled into the study conditionally on their disease sta-
tus. The validity of this approach relies on the classic re-
sults by Cornfield (1956) who showed the equivalence of
prospective- and retrospective odds-ratios. The efficiency of
the approach was established in two other classic papers by
Andersen (1970) and Prentice and Pyke (1979). Recently,
Chatterjee and Carroll (2005), Spinka, et al. (2005), and
Lobach, et al. (2008, 2010) developed an efficient approach
for analysis of case-control studies, the key idea of which is
to treat retrospectively collected data as if they were coming
from a random sample. Because the retrospectively collected
data are analyzed as if they were coming from a random
sample, the conventional Bayesian techniques are not valid.
The pseudo-likelihood function employed in our analysis is
not the same as the conventional prospective likelihood. Va-
lidity of the Bayesian analysis needs to be examined when
the proposed likelihood function is not a proper likelihood
(Monahan and Boos, 1992). Lazar (2003) has examined the
validity of Bayesian empirical likelihood based methods. We
followed Monahan and Boos (2003) to validate our Bayesian
approach under this pseudo-likelihood function and exploit
it to obtain posterior inferences about the unknown param-
eters. Due to the complexity of the pseudo-likelihood func-
tion, the posterior distribution of the parameters is not in ex-
plicit form, therefore Markov Chain Monte Carlo (MCMC)
algorithms are required to sample from this posterior distri-
bution to make necessary inference.

Our work is motivated by a case-control study of colorec-
tal adenoma (Peters et al., 2004). Briefly, the available data
consist of measures of dietary calcium intake obtained by
a food frequency questionnaire (FFQ), genotype data for
three SNPs in the calcium receptor gene CaSR, and various
individual-level data such as age, sex and race. The main
interest is in studying the interaction between CaSR haplo-
types and dietary calcium intake.

The Colorectal Adenoma study thus has unique features,
specifically the following.

• First, genetic information is missing. We wish to model
the effect of CaSR haplotypes, but these are not ob-
served, and instead we have unphased haplotype infor-
mation in the form of the three SNPs.

• Second, one of the environmental variables (calcium in-
take) is subject to substantial measurement error be-
cause of the use of a FFQ. It is well known that the
FFQ as a measure of long-term diet is subject both to
biases and random errors, as illustrated in the OPEN
study (Subar, et al., 2003).

FFQs as a measure of long-term diet result in massive
amounts of measurement error. It is well known (Schafer
and Purdy, 1996) that huge measurement error often re-
sults in skewed sampling distribution of parameter estimates
and the skewness is more pronounced for small sample sizes.
Hence possibly both estimation and inference are not pre-
cise (Carroll, et al., 2006). In our motivating example the
situation is further complicated by the fact that not only
massive amount of measurement error is present in the en-
vironmental covariate, furthermore the genotype contains
missing values.

We develop a Bayesian approach utilizing the pseudo-
likelihood function to quantify the uncertainty of the model
parameters exactly. Our approach has the ability to shrink
the parameter estimates towards prior using a proper prior
distribution and hence reduce variability of these estimates.
Moreover, Bayesian methods can incorporate available prior
historical or biological information to make inferences more
precise. For example, the proposed pseudo-likelihood func-
tion allows to incorporate prior information about the prob-
ability of disease, which cannot be done in a standard anal-
ysis. Typically a good estimate of a probability of disease is
available a priori. This information can be used to improve
estimation of parameters, especially the intercept.

Our approach is general enough to accommodate any
complicated pseudo-likelihood function and use MCMC
techniques to obtain the parameter estimates with uncer-
tainty bounds. The method will be particularly useful when
this pseudo-likelihood function is multimodal (since MCMC
can search the modes) or when the solution lies on the
boundary (since prior can constrain the solution space).
When the sample size is small or measurement error is mas-
sive, the non-Gaussian behavior of an estimate is very com-
mon. In terms of the Bayesian model and MCMC based
computation, we can perform exact analysis and capture
these non-Gaussian behaviors. On the other hand, when the
sample size is large enough, we can derive the asymptotic
posterior distribution which will ease the computation bur-
den.

Alternative semiparametric Bayesian approach will be
to assign Dirichlet process or some other nonparametric
prior processes to model the unknown joint distribution of
the covariates without measurement error and perform full
Bayesian analysis using MCMC (Müller and Roeder, 1997;
Sinha et al., 2005). In this process we need to estimate
potentially high dimensional nuisance parameters and the
MCMC algorithms are computationally demanding. In addi-
tion, the analysis could be sensitive towards the specification
of the hyper-parameters of these nonparametric processes.
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Our approach avoids the complete specification of this dis-
tribution, hence reduces the computational burden signifi-
cantly. Furthermore, we can obtain the asymptotic poste-
rior distribution of the parameters and can avoid MCMC in
those situations. However it requires a validation step which
could be computationally intensive.

An outline of this paper is as follows. In Section 2 we in-
troduce notation and formally state the problem. Section 3
presents the proposed methodology for parameter estima-
tion based on a pseudo-likelihood function. In Section 4 we
describe the full Bayesian model under various scenarios.
In Section 5 we derive an asymptotic posterior distribution.
Section 6 gives the results of simulation studies, where we
show that our methodology results in parameter estimates
that are nearly unbiased and error rates close to the nominal.
Section 7 analyzes the Colorectal Adenoma Data discussed
above. Section 8 gives concluding remarks.

2. NOTATION AND PSEUDO-LIKELIHOOD
FUNCTION

Suppose a sample consists of n0 controls and nd cases
with disease stage d = 1, 2, . . . ,K to accommodate dif-
ferent subtypes of disease. Let H = (H1, H2) denote the
diplotype status, that is, the two haplotypes that a sub-
ject carries at the loci of interest on the pair of homologous
chromosomes. Note that typically multilocus genotype data
G = (G1, . . . , GM ) are available. Due to lack of haplotype-
phase information, multiple configurations of haplotypes can
be consistent with the same genotype data. For example, if
A/a and B/b denote the major/minor alleles in two bi-allelic
loci (e.g. single nucleotide polymorphisms), then subjects
with genotypes (Aa) and (Bb) at the first and the second
locus, respectively, are considered phase ambiguous: their
genotypes could arise from either the haplotype-pair (A-B,
a-b), or the haplotype pair (A-b, a-B). Humans are diploid
individuals and a pair of haplotypes that a person carries is
called diplotype. Let H denote the set of all possible diplo-
types in the underlying population and HG denote the set
of all possible diplotypes that are consistent with a partic-
ular genotype G. We impose a parametric structure on the
genetic covariate of interest in the form pr(H) = Q(H, θ). In
our example we used Hardy-Weinberg Equilibrium (HWE)
of the following form.

Q(H, θ) = pr{H = (hj , hk)|θ} = θ2
k, if hj = hk;

= 2θkθj , if hj �= hk.

However, the methodology is general enough to allow var-
ious parametric forms of Q(H, θ). For instance, it is possi-
ble to introduce a parameter that models departure from
the HWE. Alternatively, one can specify a parametric dis-
tribution of H given (X, Z) that could account for gene-
environment association (Chatterjee, et al. 2006).

Let (X, Z) denote all of the environmental (non-genetic)
covariates of interest with X denoting the factors suscepti-
ble to measurement errors. We assume that H and (X, Z)
are independently distributed in the underlying population.
Only changes in notation are needed to model genotype and
environment within strata thus relaxing gene-environment
independence assumption. We suppose that the type of ge-
netic covariate measured does not depend on the individual’s
true genetic covariate, given disease status, environmental
covariates and the measured genetic information. Further,
we suppose that the observed genetic variable does not con-
tain any additional information on disease status and true
environmental covariate given the genetic variable of inter-
est.

Recall that the environmental covariate X is mea-
sured with error. Let W denote the error-prone ver-
sion of X. We assume a parametric model of the form
fmem(w|X, H, Z, D; ξ) for the conditional distribution of W
given the true exposure X, additional environmental factors
Z and disease-status D. This model is general enough to cap-
ture a differential on the disease status, genetic and other
environmental variables fmem(w|X, H, Z, D; ξ) can be esti-
mated using replications or an external study. We assume
that the joint distribution of the environmental factors in the
underlying population can be specified according to a semi-
parametric model of the form fX,Z(x, z) = fX(x|z, η)fZ(z),
where fZ(z) is left completely unspecified, thus avoiding the
need to estimate potentially high-dimensional nuisance pa-
rameters.

Given the environmental covariates X and Z and diplo-
type data H, the risk of the disease in the underlying popu-
lation is given by the polytomous logistic regression model

pr(D = d|H, X, Z)

=
exp {β0d + m(H, X, Z, β)}

1 +
∑K

j=1 exp {β0j + m(H, X, Z, β)}
, d ≥ 1.

Here m(·) is a known function parameterizing the joint risk
of the disease from Hdip, X and Z in terms of the odds-
ratio parameters β. Define nd be the number of subjects
with disease status d. Let πd = pr(D = d), κd = β0d +
log(nd/n0)−log(πd/π0), and κ̃ = (κ1, . . . , κK)T. Define κ0 =
β00. Let β̃0 = (β01, . . . , β0K)T. Let Ω = (β̃T

0 , βT, ΘT, κ̃T)T,
B = (ΩT, ηT)T. Define I(d≥1)(d) be the indicator function.
Make the definition

S(d, h, x, z,Ω) =
exp

[
I(d≥1)(d){κd + m(h, x, z, β)}

]
1 +

∑K
j=1 exp{β0j + m(h, x, z, β)}

Q(h, θ).

Consider a sampling scenario where each subject from
the underlying population is selected into the case-control
study using a Bernoulli sampling scheme, where the selec-
tion probability for a subject given his/her disease status
D = d is proportional to nd/pr(D = d). Let R = 1 denote
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the indicator of whether a subject is selected in the case-
control sample under the above Bernoulli sampling scheme.

Lobach, et al. (2008) proposed to use the following func-
tion in place of the likelihood function, that is to ignore the
retrospective design and analyze the data as if it were com-
ing from a random sample. The outlined above Bernoulli
sampling connects the retrospective design employed to col-
lect data and the pretend random sample scheme.

Ln(d, g, w, z,B, ξ) =
n∏

i=1

Li(d, g, w, z,B, ξ);(1)

where

Li(d, g, w, z,B, ξ) = pr(D = di, W = wi,G = gi|Z = zi, R = 1)

=

∫ ∑
h∗∈HG

S(di, h
∗, x, zi, Ω)fmem(wi|di, h

∗, x, zi, ξ)fX(x|zi, η)dx

∫ K+1∑
d∗=0

∑
h∗∈H

S(d∗, h∗, x, zi, Ω)fX(x|zi, η)dx

.

Recall that S(d, h, x, z,Ω) is a product of the dis-
ease risk function and the density of a genetic variable;
fmem(w|d, h, x, z, ξ) defines the measurement error process;
and fX(x|z, η) is the density of environmental variables mea-
sured with error. Further, recall that H is the set of all pos-
sible haplotypes, HG - the set of all haplotypes consistent
with the observed genotype G.

It was shown (Lobach, et al. 2008) that maximization of
Ln, although not the actual retrospective-likelihood for case-
control data, leads to consistent and asymptotically normal
parameter estimates. Note that conditioning on Z in Ln

allows it to be free of the nonparametric density function
fZ(z). In epidemiologic studies the vector of observations Z
is likely to be multidimensional (e.g., age, bmi, race) hence
this formulations allows gains of efficiency by not having to
model parameters associated with these variables.

3. SEMIPARAMETRIC BAYESIAN
ESTIMATION BASED ON
PSEUDO-LIKELIHOOD

Since in our setting the retrospectively collected data is
analyzed as if they were coming from a random sample,
the function (1) is not a real likelihood function and hence
the traditional Bayesian analysis is not technically correct.
Conventional approaches to validity of posterior probability
statements follow from the definition of the likelihood as the
joint density of observations.

Monahan and Boos (1992) introduced a definition based
on coverage of posterior sets that are constructed to con-
tain the correct probability of including a parameter θ, if
the underlying distribution of θ is the prior p(θ), and the
model of data X f(X|θ) are correct. For example, in the one-
dimensional case, the natural posterior coverage set func-
tions are the one-sided intervals I∗α = Rα(X) = (−∞, θ∗α),

where θ∗α is α-percentile of the posterior f(X|θ). Validity
for such a posterior then means that all these intervals I∗α
have the correct coverage α. In practice it is often challeng-
ing to verify the required probability analytically. Monahan
and Boos (1992) proposed a convenient numerical method.
Briefly, define θk, k = 1, . . . , m to be a sample generated
independently from a continuous prior p(θ) and for each θk

let Xk denote a value generated from f(X|θk). Further, for
each k define Hk to be a variable in the following form

(2) Hk =
∫ θk

−∞
f(θ|Xk)dθ.

This corresponds to posterior coverage set functions of the
form (−∞, θk

α), where θk
α is the αth percentile point of pos-

terior density f(θ|Xk). Monahan and Boos (1996) argued
that if the distribution of Hk fails to follow the uniform dis-
tribution for any prior, then the likelihood function cannot
be a coverage proper Bayesian likelihood.

We propose to use the methodology described above
to validate the likelihood function and apply conventional
MCMC techniques to estimate parameters.

4. SEMIPARAMETRIC BAYESIAN
ANALYSIS OF CASE-CONTROL DATA

The Bayesian modeling framework described above pro-
vides a conceptually elegant and general method to model
gene-environment interactions. Practical implementation re-
quires specification of a prior distribution and computations
based on the corresponding posterior distribution. In this
section we describe a Bayesian model including likelihood
and prior distribution for two cases. The first scenario is
based on a setting where all variables are binary. In the
second case we model a continuous environmental covari-
ate, e.g., calcium intake. Moreover, the genetic covariate is
in the form of a haplotype. In both scenarios, we validate
the likelihoods using ideas of Monahan and Boos (1992) as
explained in the Section 3.

4.1 Genotype-based case-control studies

Within this setting we consider the case when the envi-
ronmental covariates (X, W ), genetic variant (G) and dis-
ease status (D) are binary. Let pr(G = 1) = θ, pr(X = 1) =
η. This setting arises in the case when the genetic effect
is recessive or dominant. Define the vector of risk param-
eters B = (βx, βg, βxg)T. Suppose that the genotype and
environment are independent in the population but they
do work together while causing a disease thus creating an
interaction. Consider a multiplicative interaction and let
m(x, g,B) = βgg + βxx + βxgxg. Make the following defi-
nition.

S(d, g, x,B, θ)

=
exp[I(d≥1)(d){κd + m(x, g,B)}]

1 + exp{β0 + m(x, g,B)} θg(1 − θ)1−g.
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If W is an observed environmental covariate, denote the mis-
classification probabilities as pr(W = 1|X = 0) = ξ1 and
pr(W = 0|X = 1) = ξ0, hence the distribution of measure-
ment error process fmem(w|x, ξ0, ξ1) = {wξ1 + (1 − w)(1 −
ξ1)}(1−x)+{w(1−ξ0)+(1−w)ξ0}x. In this situation W is,
e.g. a smoking status reported by the study participant and
X is the true long-term smoking exposure of interest. Note
that, e.g., lung cancer patients who have the suspected risk
factor (e.g., smoking) can blame this risk factor for caus-
ing the disease and therefore they are likely to over-report
smoking, hence the misclassification probabilities can be dif-
ferential in the disease status. In this case the measurement
error process depends on disease status and misclassifica-
tion probabilities need to be specified for cases and controls
separately.

On the risk parameters we impose a Normal prior with
mean μB and covariance matrix ΣB. In the case when a
massive amount of measurement error is present, the sam-
pling distribution of risk parameter estimates is likely to be
skewed (Shafer and Purdy (1996), Lobach, et al. (2008)).

But because the shape of the Normal distribution is sym-
metric, this prior is likely to bring the sampling distribu-
tion of the risk parameter estimates closer to Normal. For
the frequency parameters η and θ we use noninformative
Uniform(0, 1) priors. In this setting the prior information
imposed on θ is non-informative. If a priori information is
available about the genotype frequencies, it can be specified
using a corresponding distribution or HWE.

Then the joint posterior distribution for the model un-
knowns is proportional to

n∏
i=1

1∑
x=0

S(di, gi, x,B, θ)fmem(wi|x, ξ0, ξ1)ηx(1 − η)1−x

1∑
x=0

1∑
d=0

1∑
g=0

S(di, g, x,B, θ)ηx(1 − η)1−x

× |ΣB|−1/2 exp
{
−1

2
(B − μB)TΣ−1

B (B − μB)
}

× I(0,1)(η)I(0,1)(θ).

4.2 Haplotype-based case-control studies

Within this setting we consider continuous environmen-
tal variables and assumed that the genetic risk depends on
the number of copies of a putative haplotype. This setting
is particularly useful in the situations when the available
genetic information consists of a set of markers that are lo-
cated closely to each other. The linkage disequilibrium (LD)
is generally used to measure the degree of dependence be-
tween the genetic markers. When LD is high, the generic
markers can be organized in the haplotype blocks according
to the LD pattern. The continuous environmental variable
can model dietary exposure, such as calcium intake, and X
defines the true unobservable calcium intake, W - calcium
intake measured using FFQ.

Suppose the true environmental exposure is distributed
as Normal with mean μx and variance σ2

x. On mean
and variance of the environmental covariate we impose
Normal(η1, η2) and IG(A, B) prior, respectively. Let θj be
the frequency of haplotype j = 1, . . . , T , then the distri-
bution of diplotypes in the population under consideration
is specified using HWE. On all haplotype frequencies we
impose a Uniform distribution. The true environmental co-
variate is not observable, instead W is subject to classic
additive measurement error. The distribution of observed
environmental covariate fmem(w|x, ξ) is Normal with mean
x and variance ξ. Note, however, that the methodology is
general enough to model various types of measurement er-
ror including differential errors. Suppose h1 is a reference
haplotype, define B = (βx, βh2, . . . , βhk, βxh2, . . . , βxhk) to
be vector of risk parameters. We use a Normal distribution
with mean μB and covariance matrix ΣB as a prior distri-
bution for B. Denote Nj(H), j = 1, . . . , T to be the number
of haplotypes hj observed in a diplotype H. The function
m(x, h,B) allows modeling various types of disease, such
as additive, multiplicative, recessive, dominant, etc. Addi-
tionally, the risk of genotype, environment as well as their
interaction are parameterized within this function. Consider
a model of an additive disease status and multiplicative in-
teraction defined as m(x, h,B) = βxx + βh2N2(H) + · · · +
βhT NT (H)+βxh2xN2(H)+ · · ·+βxhT xNT (H). Finally, de-
fine

S(d, h, x,B, θ) =
exp[I(d≥1)(d){κd + m(x, h,B)}]

1 + exp{β0 + m(x, h,B)} Q(h, θ).

The joint posterior distribution becomes

∝
n∏

i=1

∫ ∑
h∗∈HG

S(di, h
∗, x,B, θ) exp

{
− (wi − x)2

2ξ
− (x − μx)2

2σ2
x

}
dx

∫ 1∑
d∗=0

∑
h∗∈H

S(d, h∗, x,B, θ) exp
{−(x − μx)2

2σ2
x

}
dx

× |ΣB|−1/2 exp
{
−1

2
(B − μB)TΣ−1

B (B − μB)
}

× η
−1/2
2 exp

{
−(μx − η1)

2/(2η2)
}
(σ2

x)−A−1 exp(−B/σ2
x)

×
T∏

t=1

I(0,1)(θt).

We propose to validate the likelihood using ideas of Mon-
ahan and Boos (1992) and then apply conventional MCMC
sampling techniques, such as Metropolis-Hastings algorithm
to obtain the samples from the posterior for Bayesian infer-
ence.

5. ASYMPTOTIC POSTERIOR
DISTRIBUTION

We now consider properties of an asymptotic posterior
distribution based on the pseudo likelihood (1). MCMC
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techniques can be computationally challenging and know-
ing the form of an asymptotic posterior distribution would
ease the computational burden.

Within this setting, for simplicity, we suppose that
the parameter ξ that controls measurement error distri-
bution is known, although this is not required. Denote
Θ0 and Θ̂n to be values that maximize prior and pseudo-
likelihood, respectively. Let Ψ(d, g, w, z,Θ, ξ) be the deriva-
tive of log{Li(d, g, w, z,Θ, ξ)} with respect to Θ and

Λ =
∑

d

nd

n
E{Ψ(D, G, W, Z,Ω, η, ξ)|D = d}

× E{Ψ(D, G, W, Z,Ω, η, ξ)|D = d}T.

Further, if p(Θ) is the prior distribution of the vec-
tor of parameters, define l(Θ) to be the deriva-
tive of log{p(Θ)} with respect to Θ. Then define
Ln(Θ, ξ) =

∑n
i=1 Ψ(Di, Gi, Wi, Zi, Θ, ξ) and matrices

I(Θ) = −E[∂{Ln(Θ,ξ)}
∂(Θ) ] and J (Θ) = −E[∂{l(Θ)}

∂(Θ) ]. The
following theorem and its heuristic proof motivated by
Bernardo and Smith (1994) concerns limiting properties of
the posterior distribution.

Theorem 1. Under suitable regularity conditions the pos-
terior distribution of vector of parameters Θ̂n converges to
a Normal distribution with covariance matrix consistently
estimated by Σ̂n = {I(Θ̂n) + J(Θ0)}−1 and mean vector
M̂n = Σ̂−1

n {I(Θ̂n)Θ̂n + J (Θ0)Θ0}.

Proof. Note that the posterior distribution of the vector of
parameters Θ given data X can be written as

f(Θ|X) ∝ p(Θ)Ln(Θ) = exp[log{p(Θ)} + log{Ln(Θ)}].

Let Θ0 and Θ̂n be maxima of the prior p(Θ) and pseudo-
likelihood function Ln(Θ), respectively. They can be ob-
tained by solving l(Θ) = 0 and Ln(Θ) = 0. Under suit-
able regularity conditions which ensure that the remainder
terms of the following expansion are small for large n, the
logarithm of the prior and pseudo-likelihood function can be
expanded around their maxima in the following manner.

log{p(Θ)} = log{p(Θ0)} − 1/2(Θ − Θ0)TJ (Θ0)(Θ − Θ0);

log{Ln(Θ)} = log{f(X|Θ̂n)}
− 1/2(Θ − Θ̂n)TI(Θ̂n)(Θ − Θ̂n).

Hence

f(Θ|X) ∝ exp{−1/2(Θ − Θ0)TJ (Θ0)(Θ − Θ0)}
× exp{−1/2(Θ − Θ̂n)TI(Θ̂n)(Θ − Θ̂n)}.

Further, it can be easily seen that for large sample sizes

f(Θ|X) ∝ exp{−1/2(Θ −M)TΣ−1(Θ −M)}.

Remark 1. The development of Theorem 1 suggests that
the posterior based on a pseudo-likelihood function has
asymptotic distribution that is the same as Normal with
mean that is equal to the weighted average of a maxi-
mum pseudo-likelihood estimate and a value that maximizes
prior. The precision of this distribution is the sum of the
observed information matrix and the prior precision matrix.
These considerations suggest one approximation, namely if
for large n the prior precision tends to be small compared
to the precision provided by the data, it can be ignored.

Remark 2. It can be easily seen that n−1∂{Ln(B̂, ξ)}/∂BT

is a consistent estimate of I(Θ). Alternatively, if
Σ̂ is the sample covariance matrix of the terms
Ψ(Di, Gi, Wi, Zi, B̂, ξ), then Σ̂ + Λ̂ consistently estimates
I(Θ).

Remark 3. When the sample size is large, we can use
this asymptotic posterior distribution for validation purpose
rather than using the MCMC based approach. That way, we
can reduce the computation burden significantly.

Remark 4. If the parameter ξ controlling the measurement
error distribution is unknown, additional data are necessary
to estimate it. Consider the case of additive mean-zero mea-
surement error with replications of W . Suppose that there
are at most M replications of the W for any individual.
Let Wi denote this ensemble of the M replicates, and let
mi be the number of replicates we actually observe. Let
fmem(w|d, hdip, x, z, m, ξ) be the joint density of the first m
replicates for m = 1, . . . ,M ; Ψ(D, G, W, Z,Ω, η, ξ, j), Ij ,
and Λj be matrices defined earlier for the case with ex-
actly m = j replicates for each individual. Assume that
mi is independent of (Di, Wi, Zi, Gi, Xi, H

dip
i ) and that

pr(mi = j) = p(j). Further, define I =
∑M

j=1 p(j)Ij . Then
Lobach, et al. (2008) showed that the estimating function
for B = (ΩT, ηT, ξT)T can be written in the form

0 =
n∑

i=1

M∑
j=1

I(mi=j)(mi)Ψ(Di, Gi, Wi, Zi, Ω, η, ξ, j).

and the corresponding consistent sequence of solutions is

n1/2(B̂ − B0) ⇒ Normal

[
0, I−1

{
I −

M∑
j=1

p(j)Λj

}
I−1

]
.

The result of Theorem 1 can be readily applied to this sit-
uation when measurement error distribution is estimated
using replications. Consistent estimates of I and Λj can be
obtained by applying formulas that are analogous to those
outlined in the Remark 2.

6. SIMULATION EXPERIMENTS

To illustrate performance of the proposed methodology,
we performed two simulation studies. First, we compared
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Table 1. Biases and Root Mean Squared Errors (RMSEs) for the proposed Bayesian and Pseudo-MLE approaches in a
genotype-based case-control study. Genetic (G) and environmental (X) factors are binary with pr(G = 1) = 0.5 and

pr(X = 1) = 0.5. pr(D = 1) = 0.016 is assumed to be known in the underlying population. Misclassification probabilities are
pr(W = 1|X = 0) = 0.15 and pr(W = 0|X = 1) = 0.10. The results is based on 500 replications of n1 cases and n0 controls

Proposed Bayesian Analysis Pseudo-MLE

Parameter True Value Bias RMSE Bias RMSE

n0 = 200 βx 1.099 −0.007 0.229 0.023 0.339
n1 = 200 βg 0.693 −0.075 0.336 −0.195 1.023

βxg 0.693 0.103 0.461 0.217 1.064
θ 0.500 −0.002 0.002 −0.001 0.021
η 0.500 −0.005 0.003 0.001 0.048

n0 = 1, 000 βx 1.099 −0.003 0.095 0.005 0.155
n1 = 1, 000 βg 0.693 −0.021 0.162 −0.004 0.305

βxg 0.693 0.029 0.206 0.001 0.327
θ 0.500 −0.001 0.001 0.000 0.008
η 0.500 −0.001 0.001 0.002 0.022

performance of the proposed Bayesian approach to the
pseudo-MLE using genotype-based setting. In this setting
all variables are categorical. Further, we investigated prop-
erties of estimation and inference based on the derived form
of the Asymptotic Posterior distribution (Theorem 1) and
its approximation discussed in Remark 1. This analysis does
not require MCMC computations, instead it is uses a derived
form of the Asymptotic Posterior Distribution.

6.1 Genotype-based case-control studies:
Proposed Bayesian analysis vs.
pseudo-MLE approach

We performed a series of simulation experiments to illus-
trate our approach in the setting of genotype-based case-
control study.

We assumed that environmental variables (X, W ), ge-
netic variant (G), and disease status (D) are binary. Given
the values of (G, X) we generated a binary disease out-
come D from the logistic model logit{pr(D|G, X)} = β0 +
βxX + βgG + βxgX ∗ G, with parameters (βx, βg, βxg) =
(1.099, 0.693, 0.693). This setting arises in the presence of
recessive or dominant effect. The misclassification probabil-
ities were pr(W = 0|X = 1) = 0.10 and pr(W = 1|X =
0) = 0.15. The probability of disease in this setting is
0.016 and we assumed it is known in the population. We
investigated the case of small (n0 = n1 = 200) and large
(n0 = n1 = 1, 000) sample sizes.

First, it is necessary to validate the likelihood function.
We validated coverage of the pseudo-likelihood function us-
ing ideas described in Monahan and Boos (1992) for nu-
merous scenarios by setting different values of prior param-
eters, as well as varying sample size and misclassification
probabilities. It was challenging to compute Hk using (2)
since it requires calculations with multiple precision. We
addressed this challenge by using the General Multiple Pre-
cision library in C. Further, the vector of parameters is 5-
dimensional and since integration in (2) requires computa-

tions with high precision and high-dimensional integration
is not feasible, we verified coverage probabilities of each pa-
rameter when all others are fixed at their posterior mean.
For all cases we considered the Kolmogorov-Smirnov test
failed to reject the null hypothesis that the sample Hk comes
from the Uniform(0, 1) distribution at 0.05 significance level.

Since the likelihood function was validated, we proceeded
to parameter estimation using the Metropolis-Hastings al-
gorithm with the following settings. On the risk parameters
B we imposed a Normal(Bmean, ΣB) prior, where Bmean =
(0, 0, 0) and covariance matrix ΣB = diag(32, 32, 32). Note
that in this setting reflects no a priori knowledge about
the risk and mean of the prior distribution is conserva-
tively set to be zero. The only prior information that we
are imposing is that the shape of the distribution is sym-
metric to bring the sampling distribution of the param-
eter estimates closer to Normal. On both η and θ we
imposed a Uniform(0, 1) prior. The a priori information
specified on the frequency parameter θ is non-informative
in this setting. If an estimate about genotype frequen-
cies is available, it can be used while specifying the dis-
tribution. The proposal distribution of the new value Bt

given the current Bt−1 was set to be Normal(Bt−1, Σprop),
where Σprop = diag(0.052, 0.052, 0.052). Proposal distribu-
tion of a new value of θt given θt−1 was chosen to be
Uniform(θt−1−0.05, θt−1 +0.05). The proposal distribution
for η has the same form as that for θ.

Proposed Bayesian approach and Pseudo-MLE The simula-
tion results presented in Table 1 illustrate that for a small
sample size the proposed Bayesian approach produced pa-
rameter estimates that are less biased and less variable than
the estimates obtained using pseudo-MLE approach. More-
over, distribution of the parameter estimates obtained us-
ing pseudo-MLE is skewed, while our simulations illustrated
that the distribution of parameter estimates produced using
our methodology is close to symmetric, when illustrating the
ability of Bayesian methodology to shrink toward prior. In
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Table 2. Biases and Root Mean Squared Errors (RMSEs) of the proposed Bayesian and Pseudo-MLE approaches in a
genotype-based case-control study when genotype is rare. Genetic (G) and environmental (X) factors are binary with
pr(G = 1) = 0.05, 0.025 and pr(X = 1) = 0.5. pr(D = 1) = 0.0148, 0.0140 are assumed to be known. Misclassification

probabilities are pr(W = 1|X = 0) = 0.15 and pr(W = 0|X = 1) = 0.10. The results is based on 500 replications of 1, 000
cases and 1, 000 controls

Proposed Bayesian Analysis Pseudo-MLE

Parameter True Value Bias RMSE Bias RMSE

βx 1.099 0.011 0.257 0.003 0.311
βg 0.693 −0.010 0.318 −0.269 1.379
βxg 0.693 0.004 0.336 0.434 1.473
θ 0.050 −1.6 × 10−4 0.039 0.001 0.044
η 0.500 0.001 0.005 −0.007 0.011

βx 1.099 0.010 0.343 0.006 0.303
βg 0.693 −0.003 0.353 −0.470 1.853
βxg 0.693 0.010 0.039 0.607 1.907
θ 0.025 −1.9 × 10−4 0.026 0.001 0.044
η 0.500 −0.030 0.002 −0.025 0.028

case of a large sample size, the proposed methodology re-
sulted in parameter estimates that are nearly unbiased with
RMSEs that are considerably smaller than the RMSEs of
the pseudo-MLE approach.

In the case of massive measurement error, which is the
case in our motivating example and simulation experiments,
the finite sample distribution of parameter estimates can be
skewed (Schafer and Purdy, 1996). We observed this phe-
nomena in Lobach, et al. (2008) and our simulation studies.
Hence one of the major advantages of the proposed Bayesian
solution is that a symmetric prior can help to bring the fi-
nite sample distribution of the parameter estimates closer
to Normal.

Rare genotype To investigate performance of the proposed
method in the rare genotype case, we performed the fol-
lowing simulation experiment. Genetic and environmental
variables, disease status and measurement error were sim-
ulated using setup described above. However, the genotype
frequency was set up to be θ = 5%, 2.5%. On the geno-
type frequencies we imposed Beta(A, B) distribution with
parameters A = 5, B = 95 and A = 3, B = 97 for
the case of genotype frequency 5% and 2.5%, respectively.
These distributions have means that are equal to the true
values and support indicating that the genotypes are rare.
Table 2 presents simulation results. Pseudo-MLE estima-
tion resulted in genotype frequency estimates that have ele-
vated bias and larger variability. As a result, interaction pa-
rameter estimates and main effects of genotype are largely
biased. The proposed Bayesian approach produced nearly
unbiased estimates and have smaller variability. The sam-
pling distribution of risk parameter estimates obtained us-
ing the pseudo-MLE method was heavily skewed, however
that of our Bayesian estimates was closer to Normal. This
demonstrates the ability of Bayesian approach with sym-
metric prior to bring posterior estimates closer to Normal.

6.2 Haplotype-based case-control studies:
Analysis based on asymptotic posterior
distribution

Following the simulation setup of Lobach, et al. (2008),
we considered a continuous environmental variables and as-
sumed that the genetic risk depends on the number of copies
of a putative haplotype. We simulated the true environmen-
tal covariate (X) from a Normal distribution with zero mean
and variance 0.1. To simulate observed environmental vari-
ables, we used an additive model of the form W = X + U ,
where U is generated from the Normal distribution with
zero mean and variance ξ = 0.25. Note that we are simulat-
ing a case of large measurement error, such as would occur
for dietary measurements. This gives a stern test for our
methodology.

Given the haplotype frequencies (h1, h2, h3, h4, h5, h6) =
(0.25, 0.15, 0.25, 0.1, 0.1, 0.15) we generated diplotypes for
each subject under the assumption of Hardy-Weinberg Equi-
librium. Then we coded haplotype h3 as 1 and all the rest
as 0. Given the diplotype information Hdip and environmen-
tal covariate X we generated binary disease status according
to the following model

pr(D = d|Hdip, X)

=
exp

[
d

{
β0 + βxX + βgN3(Hdip) + βxgXN3(Hdip)

}]
1 + exp {β0 + βxX + βgN3(Hdip) + βxgXN3(Hdip)} ,

where N3(Hdip) is the number of copies of h3 in Hdip. In
this setting we are interested in estimating the relative risk
parameters and the frequency of haplotype h3. For the sake
of computational time we assumed that the probability of
disease is known. Moreover, we assessed the effect of missing
data by assuming that 50% of subjects were not genotyped
and for those who were genotyped, the phase is unknown.
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Table 3. Proposed Bayesian Analysis of a haplotype-based case-control study. Biases, Standard Errors (SE) of the estimates, and
estimated SEs based on derived asymptotic posterior distribution (Theorem 1). The analysis is performed on the observed data
combined with the prior information and the observed data only (see Remark 1). The results are based on a simulation study with
300 replications for 1,000 cases and 1,000 controls, where disease status (D) is binary, environmental variable (X) is Normal
with variance 0.1 and the genetic variant h3 is in the form of diplotype with a multiplicative interaction. The environmental
variable is measured with error and the error variance is 0.25. Genotype is missing for 50% of the subjects and when it is

observed, haplotype-phase ambiguity is present. The �ed value indicates 10%-trimmed estimate, †ed – 2%-trimmed estimates

Observed Data and Prior Information Observed Data Only

Parameter True Value Bias SE Estimated SE Bias SE Estimated SE

βx 1.099 0.0215 0.0942� 0.0726 0.0201 0.0856 0.1108†

βg 0.693 −0.0058 0.0023 0.0025 −0.0003 0.0064 0.0026†

βxg 0.693 −0.0201 0.0528 0.0544 −0.0186 0.0972 0.0742†

θ 0.500 0.0006 0.0001 0.0001 0.0005 0.0004 0.0000†

η1 0.000 −0.0027 0.0010 0.0009 0.0016 0.0005 0.0003†

η2 0.100 0.0000 0.0001 0.0002 −0.0009 0.0002 0.0003†

The pseudo-likelihood function validated in a similar way
as has been described in the discrete situation. Results pre-
sented in the Table 3 are based on the estimates obtained us-
ing an approximation derived in the Theorem 1. Analysis of
the simulation results presented in the Table 3 suggests that
the proposed methodology resulted in parameter estimates
that are nearly unbiased. Moreover, estimated variances of
parameter estimates are very close to observed values, with
one exception, namely βx. This is due to the fact that when
a large amount of measurement error is present in the data,
parameter estimates can have skewed distributions even for
large sample sizes.

Additionally we investigated an approximation discussed
in the Remark 1. To recap, the Theorem 1 illustrates that
the asymptotic precision is the sum of a precision pro-
vided by the observed data and prior precision matrix. Sim-
ilarly, asymptotic mean is the weighted average of a maxi-
mum pseudo-likelihood estimate and a value that maximizes
prior. The results presented in Table 3 are based on an ap-
proximation that ignores the prior precision and the covari-
ance matrix is constructed using precision provided by the
observed data only. Inspection of the results suggests that
parameter estimates are unbiased and estimated standard
errors are close to the observed standard errors. However,
the SE of estimates are generally larger than the SE of es-
timates obtained with the use of prior information. Recall
that in this case the only prior information induced in the
model is on the shape of the parameter estimates distribu-
tion. And this information helped to bring sampling dis-
tribution of the parameter estimates closer to Normal thus
reducing the variability and making the inferences more pre-
cise. Note, however, that absolute values of biases of param-
eter estimates in the case when prior information is used
are generally slightly larger. The reason is that the the prior
mean of the risk parameter estimates is zero, and hence it
forces underestimation of risk parameters. In summary, we
demonstrated that approximation derived in Theorem 1 can

work well in practice and that a symmetric prior can improve
inferences.

7. COLORECTAL ADENOMA STUDY

7.1 Modeling

Here we analyze the colorectal adenoma study data de-
scribed above. To recap, there were 772 cases and 778 con-
trols, the response D was colorectal adenoma status, the
genetic data observed were three SNPs in the calcium re-
ceptor gene CaSR, the environmental variable X measured
with error was log(1+calcium intake), which was measured
by W , the result of a food frequency questionnaire. The
variables Z measured without error were age, sex and race.
The possible haplotypes in the data were ACG, ACT, AGG,
GCG, AGT, GGG, and GCT. Since haplotypes AGT, GGG,
GCT are rare, we pooled them with the next most common
haplotype AGG. The distribution of haplotype frequencies
is not significantly deviating from the HWE. A few subjects
do not have measurements of calcium intake and we elimi-
nated them from the analysis.

Given calcium intake (X) and diplotype information
(Hdip) we considered the following risk model

logit{pr(D = 1|Hdip, X)}
= β0 + βx ∗ X + βh2 ∗ N2(Hdip) + βh4 ∗ N4(Hdip)

+ βh5 ∗ N5(Hdip) + βxh2 ∗ X ∗ N2(Hdip)

+ βxh4 ∗ X ∗ N4(Hdip) + βxh5 ∗ X ∗ N5(Hdip),

where N2(Hdip) is the number of haplotypes ACT observed
in a diplotype, N4(Hdip) is the number of haplotypes GCG
observed in a diplotype and N5(Hdip) is number of haplo-
types AGG, AGT, GGG, or GCT observed in a diplotype.

Using an external data set, Lobach et al. (2008) estimated
the measurement error distribution and found that W =
0.22+0.75X +u, where σ̂2

u = ξ̂ = 0.65. To assess sensitivity
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Table 4. Proposed 95% Credible Intervals of the risk estimates in the Colorectal Adenoma Data. Results are based on the last
5,000 of 100,000 iterations of the Metropolis-Hastings algorithm. The estimated error variance is ξ̂ = 0.65

ξ = 0.10 ξ = 0.60 ξ = 0.65 ξ = 0.70

κ (−0.173, 0.280) (−0.217, 0.215) (−0.172, 0.244) (−0.144, 0.233)
βx (−0.269, 0.125) (−0.324, 0.017) (−0.367, 0.080) (−0.360, 0.058)
βh2 (−0.410, 0.015) (−0.365,−0.010) (−0.365, 0.032) (−0.337, 0.040)
βh4 (−0.451,−0.038) (−0.612,−0.252) (−0.622,−0.244) (−0.642,−0.263)
βh5 (−0.544,−0.157) (−0.938,−0.528) (−0.946,−0.583) (−0.933,−0.592)
βxh2 (−0.163, 0.211) (−0.079, 0.294) (−0.094, 0.290) (−0.101, 0.274)
βxh4 (−0.334, 0.029) (−0.731,−0.357) (−0.806,−0.380) (−0.789,−0.411)
βxh5 (−0.431,−0.019) (−1.135,−0.692) (−1.088,−0.662) (−1.051,−0.711)

to the measurement error model specification, we considered
several scenarios by imposing measurement error structure
estimated using an external data and varying it through σ2

u.

7.2 Estimation

To estimate parameters we employed Metropolis-
Hastings algorithm with the following setting. Denote B to
be the set of risk parameters, Θ to be the vector of haplo-
type frequencies and η to be parameters of the environmen-
tal covariate. Define B̂MLE, Θ̂MLE, and η̂MLE to be the set
of estimates obtained using pseudo-MLE. We performed the
analysis based on zero-mean priors for the risk parameters
and obtained almost identical results. On the risk parame-
ters we imposed Normal(0, ΣB) prior where ΣB is 8×8 diag-
onal matrix with elements 32. For the haplotype frequencies
we used Uniform(Θ̂ − 0.5, Θ̂ + 0.5). Mean of the environ-
mental covariate was chosen to follow Uniform(η̂1MLE, σ2

η1
)

distribution, where σ2
η1

= 1. On the variance of the environ-
mental covariate η2 we imposed Inverse Gamma (IG) prior.
Since we considered several scenarios by assuming various
measurement error variances, we set the values of the IG
distribution such that the mean of the IG distribution is
equal to the pseudo-MLE estimate of the variance η2. The
proposal density of the new values Bt given the current value
Bt−1 is Normal(Bt−1, Σp

B), where Σp
B is a 8×8 diagonal ma-

trix with elements 0.52. The proposal distribution of a new
value ηt

1 given the current ηt−1
2 is Normal(ηt−1

1 , 1). The pro-
posal value of the haplotype frequencies is simulated from
the Uniform(Θt−1 − DΘ, Θt−1 + DΘ) distribution, where
DΘ is 0.01 for common and 0.001 for rare haplotypes. The
proposal density for a new value ηt

2 given the current ηt−1
2

is IG distribution with parameters 5/ηt−1
2 and 5 chosen so

that the mean of the IG distribution is equal to the current
value ηt−1

2 .

7.3 Results

The four sets of parameter estimates presented in the
Table 5 correspond to different values of measurement error
variance. These results illustrate the importance of assessing
the measurement error, since its incorrect specification re-
sults in substantial bias. Table 4 resents 95% posterior cred-
ible intervals obtained based on MCMC sampling. We also

Table 5. Bayesian estimates of the Colorectal Adenoma Data
risk parameters for various values of the measurement error
variance (ξ). Results are based on the last 5,000 of 100,000

iterations of the Metropolis-Hastings algorithm. The
estimated error variance is ξ̂ = 0.65

Parameter ξ = 0.10 ξ = 0.60 ξ = 0.65 ξ = 0.70

κ 0.054 0.024 0.025 0.018
βx −0.067 −0.141 −0.140 −0.179
βh2 −0.198 −0.182 −0.175 −0.144
βh4 −0.229 −0.361 −0.416 −0.522
βh5 −0.366 −0.652 −0.752 −0.932
βxh2 0.028 0.085 0.102 0.123
βxh4 −0.157 −0.467 −0.590 −0.756
βxh5 −0.239 −0.724 −0.887 −0.818

performed the analysis based on an asymptotic posterior dis-
tribution (not shown here). Both parameter estimates and
credible intervals based on the asymptotic posterior are very
close to those obtained using MCMC sampling.

We examined the posterior distribution of risk param-
eter estimates, including the gene-environment interaction
parameters. The distribution of the estimates was roughly
Normal (data not shown), which illustrated the ability of
prior information to bringing the sampling distribution of
parameter estimates to symmetric.

Inspection of the credible intervals reveals that for all
measurement error specifications presented in the Table 4
parameters βxh4 and βxh5 are significantly different from
0 at the 0.05 significance level. This indicates that there is
sufficient evidence to conclude that among carriers of h4 and
h5 increased calcium intake is associated with decreased risk
of colorectal tumor development.

Comparison of results for small (ξ = 0.10) and large
(ξ = 0.60, 0.65, 0.70) amounts of measurement error illus-
trates that ignoring measurement error leads to biased es-
timates and possibly incorrect inferences. For example, the
interaction parameter βxh4 is announced to be not signifi-
cantly different from zero when error variance is set to be
small. However when the measurement error is properly ac-
counted for and the error variance is set to be the value
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that was estimated from an external dataset, the interac-
tion parameter βxh4 is announced to be significant. Further,
sensitivity analysis illustrated that when the measurement
error variance is close to what was estimated, the conclusion
about the risk defined by βxh4 did not change.

8. DISCUSSION

We proposed a Bayesian methodology for analysis of
gene-environment interactions using interaction and using
population based case-control data. A key aspect of our
method is that retrospectively collected data is analyzed
as a random sample allowing gains of efficiency in param-
eter estimates (Lobach, et al., 2008). Because the analysis
is based on a pseudo-likelihood function, the conventional
Bayesian machinery may not be applied directly.

The Bayesian approach allows prior information about
risk parameter estimates to enter the estimation and infer-
ence procedures, which is particularly useful in the case of
massive measurement error. In this case even for large sam-
ples the sampling distribution of risk parameter estimates
can be skewed and hence inferences that use Normality as-
sumption are not precise. A symmetric distribution helps
shrink towards the prior and hence make the sampling dis-
tribution of the estimates be closer to Normal, thus improv-
ing inferences.
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