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A faster pedigree-based generalized multifactor
dimensionality reduction method for detecting
gene-gene interactions

Guo-Bo Chen, Jun Zhu and Xiang-Yang Lou
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We proposed a faster pedigree-based generalized mul-
tifactor dimensionality reduction algorithm, called PedG-
MDR II (PII), to detect gene-gene interactions underlying
complex traits. Inherited from our previous framework of
PedGMDR (PI), PII can handle both dichotomous and con-
tinuous traits in pedigree-based designs and allows for co-
variate adjustment. Compared with PI, this faster version
can theoretically halve the computing burden and memory
requirement. To evaluate the performance of PII, we per-
formed comprehensive simulations across a wide variety of
experimental scenarios, in which we considered two study
designs, discordant sib pairs and mixed families of varying
size, and, for each study design, we considered five com-
mon factors that may potentially affect statistical power:
minor allele frequency, missing rate of parental genotypes,
covariate effect, gene-gene interaction, and scheme to adjust
phenotypic outcomes. Simulations showed that PII gave well
controlled type I error rates against population admixture.
Under a total of 4,096 scenarios simulated, PII, in general,
had a higher average power than PI for both dichotomous
and continuous traits, and the advantage was more pro-
nounced for continuous traits. PII also appeared to be less
sensitive than PI to changes in the other four factors than
the magnitude of genetic effects considered in this study.
Applied to the Mid-South Tobacco Family study, PII de-
tected a significant interaction with a p value of 5.4 × 10−5

between two taster receptor genes, TAS2R16 and TAS2R38,
responsible for nicotine dependence. In conclusion, PII is a
faster supplementary version of our previous PI for detecting
multifactor interactions.

Keywords and phrases: Gene-gene interaction, Pedigree-
based design, GMDR, Population admixture, Statistical
power.

1. INTRODUCTION

Although their exact inheritance pattern remains un-
known, complex traits are influenced by a combination
of relevant genes and environmental factors, and often
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lack a one-to-one genotype to phenotype correspondence
(Phillips 2008). This poses a great challenge in dissect-
ing the genetic architecture underlying them. The tradi-
tional single factor-based statistical strategies assuming that
a gene causes a detectable perturbation in a phenotypic out-
come, although having achieved a limited success in hunt-
ing determinants for complex traits, are underpowered for
most risk factors given the widespread existence of gene-
gene (G×G) and gene-environment (G×E) interactions.
A preferable strategy is to tackle interacting factors simul-
taneously as much as possible.

Many approaches have been proposed to detect G×G
interactions for various genetic designs. Logistic regression
methods are well adapted to estimate the effects of inter-
actions (Bastone et al. 2004; Cook et al. 2004; Kooper-

berg et al. 2001; Tahri-Daizadeh et al. 2003; Zhu and
Hastie 2004) but confront a dramatic explosion of param-
eters in terms of multifactor dimension searching of inter-
acting terms. Recently, a novel category of methods that
can project multi-dimension searching of interaction down
to one-dimension space have been proposed, alleviating the
restrictions associated with the logistic regression methods.
Depending on the category of a phenotypic outcome, mul-
tifactor dimensionality reduction (MDR) method (Ritchie

et al. 2001) and its modifications offer solutions for detect-
ing interactions for dichotomous traits (Hahn and Moore

2004; Hahn et al. 2003; Lee et al. 2007; Moore et al.
2006), while the combinatorial partition method (Nelson

et al. 2001) and its variants (Culverhouse et al. 2004)
are dedicated to quantitative traits. By implanting the gen-
eralized linear model into the MDR framework, Lou et al.
(2007) proposed a generalized multifactor dimensionality re-
duction (GMDR) approach, which provides a unified frame-
work for handling both continuous and discrete traits and
further permits adjustment of phenotypes for covariates.
These methods aforementioned, however, are largely appli-
cable to population-based design (MDR can analyze dis-
cordant sib pairs, viewed as a special case of case-control
samples), a genetic design that is well appreciated but re-
quires control and case samples of a homogeneous genetic
origin, and, if possible, being well matched on other related
factors. A population-based design is subject to spurious as-
sociation in the presence of population admixture and thus
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a technical adjustment is usually performed prior to associ-
ation analysis, to rule out effects of population admixture
(Price et al. 2006).

Pedigree-based design, another popular alternative in ge-
netic studies, is inherently robust against the effect of pop-
ulation admixture in population-based design. In sexual re-
production, a pair of genetic complementary haploids is pro-
duced from diploid germline cells in a form of cell divi-
sion called meiosis; a human genome is composed of two,
from each of one’s parents respectively, haploid genomes.
Instead of recruiting a control that can potentially come
from a heterogeneous population, we can use the untrans-
mitted genetic counterpart of an offspring, which is in-
ferable given sufficient pedigree information, as an inter-
nal control, so pedigree-based design largely reduces spu-
rious association even in the existence of population ad-
mixture, balancing a sound statistical power and a con-
trolled type I error rate. Martin et al. (2006) proposed
a pedigree-based MDR to detect G×G interactions. To uti-
lize the genetic information in pedigrees more thoroughly
and handle both dichotomous and continuous traits, we de-
veloped PedGMDR (abbreviated as PI thereafter), which
built a minimal sufficient statistic approach (Rabinowitz

and Laird 2000) into the GMDR framework (Lou et al.
2008).

In the present study, we propose a new pedigree-based
framework, called PedGMDR II (PII), that can handle both
dichotomous and continuous traits and permits adjustment
of covariates with arbitrary missing marker information. PII
is more computationally efficient and also, as demonstrated
in simulation, outperforms, or is comparable to, PI espe-
cially for quantitative traits.

2. METHODS

2.1 Test statistics for PII

Consider a set of biallelic loci and there are up to three
genotypes at each locus, e.g., aa, Aa, and AA for locus A,
and bb, Bb, and BB for locus B, and so on. Let g(xij) denote
an indicator vector of xij , a set of genotypes at loci of inter-
est for individual j in family i, whose length is determined
by the number of loci for a G×G interaction being tested.
Let yij denote the phenotypic value of offspring j in family
i, and t(yij) is its phenotypic function, which can take the
form of score statistics in the exponential family class of dis-
tributions by choosing appropriate link functions (Lunetta

et al. 2000). Let μ = E(yij) and l(·) be an appropriate link
function depending on the distributions of phenotypic out-
comes, and a generalized linear model can be expressed as
follows,

(1) l(μij) = β0 + β1g(xij) + β2zij

where β0 is the intercept, β1 is a vector of the effects
of the loci being tested, g(xij) indicates a vector coding

for genotype xij , β2 represents the effects of the covari-
ate(s), and zij is the covariate value(s). The above model
is easy to extend by adding other covariates or interaction
terms if there are any. When yij follows a normal distri-
bution, the natural link function is the identity; or it can
be,

logit(μij) = logit
[

μij

1 − μij

]
= β0 + β1g(xij) + β2zij

if yij is a dichotomous trait. We can further define a general
score statistic,

(2) sij = t(yij)g(xij)

as an analogue to the statistic in the FBAT (Laird et al.
2000). However, here xij refers to a combination of loci,
whereas xij codes a single locus only in the FBAT statistic,
viewed as a special case of our statistics. We suggest here
to use the score of Eq. (1) under the null hypothesis:
β1 = 0, in the place of t(yij), and different schemes for
covariate adjustment can be considered in generating the
score statistics — for example, we can either adjust the
phenotypes with covariates or not, and either include the
founders or not in adjustment.

Different from PI in which an informative nonfounder
generates a pair of statistics for transmitted and pseudo
nontransmitted individuals, respectively, we only use here
the transmitted to construct the statistic, but the non-
transmitted individuals contribute to construct the geno-
typic distribution under the null hypothesis of G×G inter-
action associated with a trait being tested. Thus, in con-
trast to PI, the sample size entering into multifactor re-
duction will be halved, as is the computing burden and
memory requirement, thus providing a faster implementa-
tion.

2.2 Multifactor-reduction algorithm

The new method is devised by integrating the family
statistic defined in Eq. (2) into the GMDR framework,
whose implementation of k-fold cross-validation is summa-
rized as follows. The six steps involved in PII are illustrated
in Figure 1.

In step one, randomly partition the nonfounder in-
dividuals, regardless of their family origins, into k even
or nearly even subdivisions. We use k = 10, which can
be other integers, throughout the paper. Motsinger and
Ritchie (2006) showed that reducing the number of CV
intervals from ten to five caused no loss of power and accu-
racy.

In step two, a subset of γ discrete factors of either ge-
netic and/or environmental origin are selected from all ω
factors of interest. We have a total of

(
ω
γ

)
combinations.

In step three, this set of factors stretches into γ-
dimensional space, and each genotyped subject in the
training set is allocated to a cell accordingly. The values
ofstatistic, defined in equation 2, are averaged over each cell
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Figure 1. Illustration of the multifactor reduction algorithm of PII. Summary of the steps involved in implementing the
data reduction algorithm (adapted from the work of Lou et al. (2007)) in PII, under the context of discordant sib pair
design and without adjustment of phenotypic outcomes with the covariate(s). For a detailed description of the steps,

please see the “Multifactor-reduction algorithm” subsection. In step 3, bars represent hypothetical distributions of affected
individuals ( left, dark shading) and unaffected individuals ( right, light shading); numbers not in parentheses above bars are
the numbers of affected and unaffected individuals, and those in parentheses are the sums of the scores. In steps 4 and 6,
numbers not in parentheses are the ratios of the number of cases to the number of controls, and those in parentheses are
the average scores. “High-risk” cells are indicated by dark shading, “low-risk” cells by light shading, and “empty” cells by

no shading.

respectively. Each nonempty cell is labeled either high-risk
if its average statistic value is not less than some threshold

T (T =
∑

sij

n , where n is the number of individuals em-
ployed in the multifactor-reduction algorithm, the overall
mean that is a natural extension of T = 0 to unbalanced
case-control studies, is used throughout the paragraphs be-
low), or low-risk otherwise.

In step four, an interaction model is formed by pooling
high- and low-risk cells into two distinct groups, i.e., high-
risk and low-risk groups. The classification accuracy can be

assessed by the averages of the statistic values in the high-
risk and the low-risk groups: a higher accuracy indicates a
better classification for the two groups.

In step five, all other possible γ factor combinations in
the training set are iterated, and the best γ-factor model is
selected based on the classification accuracy.

In step six, the independent testing set is used to eval-
uate the best model from step five.

As there are k different pairs of training-testing sets, the
above procedure repeats k rounds on the k training sets.
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2.3 Distribution of the test statistic
for interaction

The PII allows different statistics to evaluate an interac-
tion, and we employed testing accuracy (TA) as a testing
statistic

(3) TA =
TP+TN

TP+TN+FP+FN

where TP is True Positive defined as having a high-risk value
in the high-risk group, TN is True Negative defined as hav-
ing a low-risk value in the low-risk group, FP is False Posi-
tive defined as having a low-risk value in the high-risk group,
and FN is False Negative defined as having a high-risk value
in the low-risk group. Although the theoretical distribution
of TA remains unknown, when the sample size is sufficiently
large, as the result of the central limit theorem, an approx-
imate Z score statistic can be constructed Z = TA−E(TA)√

Var(TA)
,

where E(TA) and Var(TA) are the mathematical expecta-
tion and the variance of TA under the null hypothesis.

The test procedure takes the genetic dependence among
the relatives into account. Given a mating type (parental
genotypes) or its minimal sufficient statistic, we have the
genotypic distribution of offspring under the null hypothe-
sis, denoted by GM ; different mating types have their re-
spective genotypic distributions of offspring. Each of these
genotypic distributions follows Mendel’s law only, and thus
is independent of any phenotype and can serve as the ref-
erence distribution. Nevertheless, the genotypic distribution
of offspring may differ conditional on the mating type and a
trait of interest in the presence of genotype-phenotype asso-
ciation, denoted by GM,T . The difference between GM and
GM,T is the basis for detecting gene-gene interactions under-
lying the trait. Noticeably, the numerator of Testing Accu-
racy consists of two parts which are respectively calculated
from the observed family data, following GM,T , and evalu-
ated from the null hypothesis, following GM . As the genetic
dependency affects both parts in parallel, the discrepancy
between them will ascribe to the association of the combina-
tion of loci with the trait only, thus eventually eliminating
the impact from genetic dependency through comparison
between GM,T and its reference distribution GM .

Evaluating the p value of the Z score test above needs
to calculate the three terms involved, where the first term,
TA, can be calculated directly conditioning on the traits
and the marker scores, yet its mathematical expectation
and variance under the null hypothesis, the second and the
third terms accordingly, closely depend on the distributions
of genotypes and the traits observed, the ascertainment
condition, and other factors which might be unavailable.
However, these two terms can be investigated empirically
conditioning on the traits observed and the offspring’s
genotypes under the null hypothesis of no association of
interacting factors with the phenotype. Following Mendel’s
law, each parent transmits either allele to each offspring

independently with a probability of 0.5, and the genotypic
distribution under the null hypothesis is easily constructed
when all parent genotypes are available. It is plausible
that the genotypes of founders are incomplete for late
onset diseases, e.g., Parkinson’s disease and Alzheimer’s
disease. Rabinowitz and Laird gave a unified algorithm
(Rabinowitz and Laird 2000) on constructing the geno-
type distribution of offspring under the null hypothesis
for various scenarios of incomplete parental genotypes. In
general, conditioning on the traits and the null distribution
of offspring genotypes, E(TA) and Var(TA) under the null
distribution can be evaluated by Monte Carlo simulations.

3. MONTE CARLO SIMULATIONS

To evaluate the performance of the proposed method and
compare with PI, we carried out a comprehensive simulation
study. Without loss of generality, we considered a total of
10 independent diallelic markers in Hardy-Weinberg equilib-
rium, none of and two of which are functional loci, respec-
tively, for assessment of the Type I error rate and the power.
In the latter case, loci 1 and 3 were chosen as interacting
loci, and two digenic interaction models of low marginal ef-
fects were adopted to demonstrate the ability of identifying
interacting loci: checkerboard models (aaBb, Aabb, AaBB,
and AABb are labeled to a high-value genetic group and the
rest to low) and diagonal models (aabb, AaBb, and AABB
are labeled to a high-value genotypic group and the rest to
low) (Culverhouse et al. 2004). Eq. (1) was used to simu-
late phenotypic outcomes, and corresponding to the type of
phenotypes, we chose an appropriate link function, i.e., logit
for dichotomous traits or identity for continuous traits. We
set β0 = −5.3 for dichotomous traits and 0 for continuous
ones, xij = 1 for high risk genotype and 0 otherwise, and
zij ∼ N(0, 1). We set four levels of the interaction: β1=0.25,
0.50, 0.75, and 1.00, respectively, for dichotomous traits, and
β1 = 0.125, 0.250, 0.375, and 0.500, respectively, for contin-
uous traits. β2 was assigned the values of 0.25, 0.50, 0.75,
and 1.00, respectively. Thus, there are up to 16 combina-
tions of the two factors, genotype relative risk of high- to
low-risk genotypes ranging from 1.25 to 2.60 for dichoto-
mous traits, and for continuous traits heritability ranged
from about 0.0018 to 0.0500 given equi-frequent biallelic
loci; such ranges are reasonably well established in the lit-
erature (Flint and Mackay 2009; Iles 2008). In addition,
three other factors that potentially affect statistical power
were examined in simulations: minor allele frequency (MAF)
(three levels: 0.10, 0.25, 0.50), average genotype missing rate
for each parent (five levels: 0.00, 0.25, 0.50, 0.75, 1.00), and
the schemes for generating score statistics (four schemes:
scheme 1, using the phenotype of both parents and offspring
with covariate adjustment; scheme 2, using the phenotype
of offspring with covariate adjustment; scheme 3, using the
phenotype of both parents and offspring without adjust-
ment; scheme 4, using the phenotype of offspring without
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adjustment). These five factors took up to 960 scenarios,
a comprehensive coverage that was expected to provide a
broad reference for the method investigated.

The samples were simulated based on two genetic designs
in this study. The first one was a discordant sib pair (DSP)
design consisting of 300 families. If a sibling was affected
for a dichotomous trait, or a continuous phenotypic value
of interest located in the upper 10% of the distribution of
a phenotype simulated, this individual was identified as a
proband. When a full sib of the proband did not reach the
criterion for proband status, these two sibs as well as their
parents were recruited to the study. The second one com-
prised a mixture of three categories of families (MF) con-
sisting of two, three, and four sibs, respectively, and each
category had 100 families, of which at least two sibs had
proband phenotypes. In the MF design, the MAF of each
locus was randomly assigned either 0.10, 0.25, or 0.50, and
parental genotype was set to a missing rate of 0.25.

Type I error rates of PII were examined with a DSP de-
sign consisting of a total of 300 families for both dichoto-
mous and continuous outcomes to verify the robustness to
population admixture. To generate an admixed population,
we portioned the 300 families into 3 even groups; families in
each group were randomly assigned an MAF of either 0.10,
0.25, or 0.50 to each locus, and simulated samples according
to the ascertainment criteria described above. Furthermore,
we adopted β2 = 1 to check whether the existence of covari-
ates would inflate type I error rates under different schemes
of calculating score statistics. Simulations were replicated
for 500 times and the empirical Type I error rate was calcu-
lated. The simulated data were analyzed with PI and PII.
In an exhaustive searching strategy for all possible digenic
models, the one that had the greatest CVC (the one with
the greatest TA was preferred if there was a tie in CVC)
after 10 cross-validations was selected. After the mathemat-
ical expectation and variance of TA were computed, the p
value of the Z score could be calculated, and we counted the
interaction was significant at alpha level 0.05 if its p value
was less than 0.05. Statistical power was calculated as the
proportion of the simulations yielding a significant p value
at 0.05 significance level and the correct model in all 200
simulations. For PI, 1,000 replications of shuffling the trans-
mitted set and the nontransmitted set, with each family as
a permuting unit of phenotypic score, were used to evaluate
the empirical cutoff point of nominal 0.05 significance level
(Lou et al. 2008).

The simulation results showed that, under the given sce-
narios, the empirical type I error rates were well controlled
as indicated in Table 1, regardless of population admixture
and schemes of generating score statistics, verifying the va-
lidity of the proposed test procedure.

To provide an overall picture of comparison between PI
and PII, the average powers were listed in Table 2. Each
number derived from the DSP design listed in Table 2 was
the mean of 960 scenarios, whereas for the MF design that

was the mean of 64 scenarios because different levels of MAF
and parental genotype missing rates had already been ran-
domly assigned in the MF design. In general, PII outper-
formed PI in average power for all cases except for one; the
average improvement in power for PII ranged from 0 to 0.14.
The only outlier was under the MF design for dichotomous
traits simulated under the diagonal models: PI was advanced
by 0.02 in power. For both genetic designs, the power differ-
ence of the two methods was < 0.10 for dichotomous traits
but > 0.10 for continuous traits. In three respects, PII ap-
peared to perform better for continuous traits. First, there
was a higher averaged power compared with that for di-
chotomous traits. Second, the advantage of averaged power
of PII over PI was bigger for the continuous traits. Third, for
two genetic designs used, the greatest average powers were
observed for continuous traits; those of the DSP design and
the MF design were 0.46 and 0.54, respectively, under the
checkerboard interaction model.

To better demonstrate and compare the performance of
two PedGMDR versions, we detailed two sets, highlighted
in bold in Table 2, of statistical power, in which one was of
the DSP design for dichotomous traits simulated under the
checkerboard model and the other was of the MF design for
continuous traits simulated under the diagonal model, by
drawing Probability-Probability (PP) plots in which points
should go along the diagonal if the two methods were of
equivalent performance in power. For the case of the DSP
design for dichotomous traits, simulated under the checker-
board model where the average powers were of 0.40 for PII
and of 0.35 for PI, respectively, the scattered points seemed
to largely fall in four groups as shown in the PP plot (Figure
2). Although a small proportion of points was located off the
diagonal due to a dropping of power of PI when interaction
was either of 0.75 or of 1, most points fell on or near the di-
agonal area, in which, given a scenario, the power difference
of PII and PI was not greater than 0.20. To further inves-
tigate the robustness of both methods in regard to power
given different factors, we projected each point into two sets
of secondary panels, vertically oriented and horizontally ori-
ented, generating the distribution of 960 power scores along
a simulation parameter in each panel. In PII (Figure 2),
the power of 960 scenarios (points) was distributed in four
clearly cut blocks defined by the size of epistatic interac-
tion effects (highlighted in yellow) while in PI, the power
blocks appeared to overlap with their neighboring one(s),
suggesting that the interaction effect size is a key determi-
nant of power and that PII has a better discriminability.
There was no recognized difference in power distribution
across different levels of covariate effects, implying that the
impact of covariates can be controlled in both PI and PII.
Although, compared with that of PI, the power distribution
of PII seemed more unevenly distributed at different levels
of MAF, the effect of MAF was not essential for PII (nei-
ther for PI). Neither parental genotype missing rates nor
schemes of adjusting phenotypes were major players in de-
termining power distributions. The powers of both methods
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Table 1. Type I error rate of PII at 0.05 significance level

Dichotomous Traits Continuous Traits
Including Founders Adjustment Without Adjustment Adjustment Without Adjustment

True 0.044 0.044 0.050 0.048
False 0.060 0.045 0.050 0.036

We simulated 300, of three subpopulations consisting of 100 families in each, discordant sib pairs. For families in each category, the
MAF of each locus was randomly assigned either 0.1, 0.25, or 0.5 independently.

Table 2. Average power of PII and PI under various scenarios

Dichotomous Traits Continuous Traits
Design Model PII PI PII PI

DSPa Checkerboard 0.40 0.35 0.46 0.35
Diagonal 0.32 0.32 0.41 0.29

MFb Checkerboard 0.46 0.38 0.54 0.40
Diagonal 0.34 0.36 0.45 0.34

a For the DSP design, the power was averaged over 960 scenarios from different combinations of 5 factors, MAF, genotype missing
rate of parents, magnitude of a covariate, magnitude of a interaction, and the scheme of adjusting phenotypes.
b For the MF design, the power was averaged over 64 scenarios from different combinations of 3 factors, excluding the MAF and
genotype missing rate of parents, which were built into the MF design. Average powers in bold were compared and illustrated in
Figures 2 and 3.

were largely determined by the size of epistatic effects and
remained robust to the other factors. A similar trend was
also found in the comparison of power for all dichotomous
traits studied (data not shown).

For continuous traits simulated under the diagonal model
in the MF design, we plotted a PP distribution for the power
values of PII and PI (Figure 3), where there was a difference
of 0.11 in the average power as listed in Table 2. As the MAF
and a genotype missing rate of 0.25 had already been used
for generating the MF design, only three factors remained,
yielding a total of 64 scenarios (points). As shown in Fig-
ure 3, the power points were largely located in the lower
triangles, indicating a dominant performance of PII, which
carried out an average power of 0.45 compared with that of
0.34 for PI. When the effect of interaction was small, where
the powers of both PI and PII were close to zero, PII did
not have a distinguishably better power than that of PI. But
PII had increased power when the interaction effect param-
eter was greater than 0.25. As with the dichotomous traits,
the magnitude of interaction effects was the major factor af-
fecting statistical power. The magnitude of covariate effects
and the schemes on adjusting phenotypes did not appear
to influence the power very much. For the other three aver-
age power comparisons between PII and PI for continuous
traits, the PP plots had a similar pattern (data not shown).
In general, PII appeared to have a better power than PI in
detecting interaction underlying continuous traits.

4. WORKED EXAMPLE

We applied PII to detect susceptibility genes to nicotine
dependence (ND) in the U.S. Mid-South Tobacco Family.
The data come from our previous reports (Lou et al. 2008;
Mangold et al. 2008). Briefly, all the participants involved

Table 3. Information on the SNPs scored in the two genes in
this study

Gene Chromosome dbSNP ID Positiona Allele

TAS2R38 7 rs713598 141319814 C/G
rs1726866 141319174 G/A
rs10246939 141319073 T/C

TAS2R16 7 rs2233989 122422465 A/G
rs846664 122422409 A/C
rs1204014 122422079 C/T

a The information was provided at NCBI dbSNP Build 131 for
Human.

in this study were recruited primarily from Tennessee,
Mississippi, and Arkansas in the U.S. during 1999–2004,
and are of either African-American (AA) or European-
American (EA) origin. A proband smoker was required
to have smoked for at least the last 5 years, to smoke an
average of 20 or more cigarettes per day for the last 12
months, and to be at least 21 years of age. Once a smoker
proband was identified, all siblings and biological parents
of the proband of interest were recruited whenever possible,
regardless of their smoking status. In this sample, there
were a total of 2,037 individuals, 1,366 individuals from 402
AA families, and 671 individuals from 200 EA families. For
more detailed demographic and clinical characteristics of
this study, please refer to previous reports (Li et al. 2005;
Li et al. 2006). All participants provided informed consent.
Institutional review boards approved all protocols, forms,
and procedures used in this study.

We focused on a pair of taste receptor genes TAS2R16
and TAS2R38 both on chromosome 7, and each of them
had three SNPs genotyped. The detailed genetic informa-
tion of the six SNPs is shown in Table 3. To demon-
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Figure 2. A Probability-Probability plot of the power of PI and PII across 960 scenarios for dichotomous traits simulated
under the checkerboard model in the discordant sib pair design. In the main panel, the top-right one, the horizontal and the

vertical axes are statistical powers of PII and PI, respectively, and the horizontal and the vertical coordinates of each point are
determined by the statistical power of PII and PI of a given scenario. The distributions of the simulation parameters are

represented graphically in the vertically tiled panels and the horizontally tiled panels for PI and PII, respectively. The horizontal
axes of the vertically tiled panels are the power of PII; the vertical axes of the horizontally tiled panels are the power of PI.

strate the use of the proposed PII method and investigate
whether there was an epistatic interaction between these two
genes, we used the Fagerström Test for ND score (FTND)
(Heatherton et al. 1991), a well appreciated measure for
ND, as phenotype. The phenotype was adjusted for covari-
ates age, sex, and ethnicity. The PII results are summa-

rized in Table 4. As shown in Table 4, a trilocus model
of rs846664 from TAS2R16, and rs1726866 and rs10246939
from TAS2R38, gave a significant interaction with a p value
of 5.4 × 10−5.

Human taste receptors, including type 2 taste receptor
(TAS2Rs) are rich in taste buds of gustatory papillae on the
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Figure 3. A Probability-Probability plot of the power of PI and PII across 64 scenarios for continuous traits simulated under
the diagonal model in the mixed families design. In the main panel, the horizontal and the vertical axes are statistical powers

of PII and PI, respectively, and the horizontal and the vertical coordinates of each point are determined by the statistical
power of PII and PI of a given scenario. The distributions of the simulation parameters are represented graphically in the

vertical panels and the horizontal panels for PI and PII, respectively (in the mixed families design, minor allele frequency and
parental missing genotype rates were built-in parameters in generating populations). The distributions of the simulation
parameters are represented graphically in the vertical panels and the horizontal panels for PI and PII, respectively. The

meanings of the vertical and horizontal axes are the same as in their corresponding panels in Figure 2.

tongue surface and palate epithelia. Bitter sensitivity varies
among individuals, and previous genetic studies pointed to
association between genetic variants with TAS2R and di-
verse bitterness sensitivity (Kim et al. 2003). Psychologi-
cally, stimulation at the receptors of bitterness in human

tongues feedbacks a rejection of a substance to avoid a po-
tential toxic. As tobacco smoking basically exerts on human
tongues a pharmacological signal equivalent to bitterness,
interaction among genes seems possible to associate with
ND. However, the role of TAS2R in the plasticity of smok-
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Table 4. Interaction of TAS2R16 and TAS2R38 detected by PII

No. of Loci Model Testing Accuracy Z score p value

1 rs846664 0.745 1.29 0.099
2 rs1204014, rs846664 0.745 −0.27 0.606
3 rs846664, rs1726866 , rs10246939 0.816 3.87 5.4×10−5

4 rs846664, rs713598, rs1726866, rs10246939 0.818 3.19 0.00071
5 rs1204014, rs846664, rs713598, rs1726866, rs10246939 0.823 3.24 0.00060

The SNP IDs in italic font are located in TAS2R38.

ing behavior is complex; to profile their metabolic details,
further investigation is required.

5. DISCUSSION

To detect G×G interactions poses a great challenge to
statistical genetics in both the aspects of statistical method-
ologies and computation feasibility. GMDR was recognized
as an efficient method to detect interactions, and in this
study we proposed a new pedigree-based approach to de-
tecting G×G interactions underlying complex traits. As a
pedigree-based approach, it was robust to population admix-
ture. Compared with a previously proposed pedigree-based
GMDR approach (Lou et al. 2008), the proposed method
showed an increased statistical power in a comprehensive
set of simulation scenarios. As only transmitted genotypes
are used, PII halves the computing sample size compared
with PI, which uses both transmitted and nontransmitted
genotypes. PII is consequently faster and more economical
in utilizing computer memory, representing a progress that
may be nontrivial in the exercise of genome-wide association
studies for detecting G×G interactions.

Both PII and PI combine GMDR and sufficient statis-
tics together, but they are different in using the transmitted
and nontransmitted genotypes. PI infers the nontransmit-
ted genotypes of an individual to construct a control for
each offspring, doubling the sample size. Then statistics,
such as TA and CVC, are calculated. Permutation is em-
ployed to evaluate the significance of a selected interaction
in PI. However, PII calculates the statistics on the observed
sample directly, and evaluates their p values by construct-
ing the empirical reference distributions on the basis of the
sufficient statistic on a null distribution. An analytical solu-
tion, in the context of discordant sib pair design, profiles the
mechanical difference of PII and PI in details (Chen 2009).
Compared with other similar methods, PII is advanced in
tackling both dichotomous and continuous traits and allows
phenotypic outcomes to be adjusted with covariates.

As simulation studies remain a rule of thumb in evalu-
ating the performance of methods, we carried out an inten-
sive simulation study of 4,096 scenarios, covering a set of
consensus factors probably perturbing the power of statis-
tical methods in genetic epidemiological studies. Given the
present study, it was demonstrated that PII rivaled PI for
dichotomous traits and was more advantageous to detect
interactions for continuous traits. However, the real world

involves more complicated circumstances which cannot be
thoroughly scrutinized but may distort statistical power of
PII and PI. As the simulation study had largely focused
on digenic epistasis, whether the conclusion can straightfor-
wardly be applied to detect G×G interaction over two loci
still needs to be determined by simulations.

PII is model free, but prior information on genetic mod-
els can be taken into account because g() promises flexibil-
ity to code additional information. For example, if there is
evidence supporting biological equivalence of a pair of geno-
types, say, AA and Aa, we can tune g() to code AA and Aa
the same indicator. Currently, high throughput genotyping
platforms generate high density SNP data, promising a pro-
ductive future for genome-wide association studies of G×G
interactions. To enhance the selection of tagging SNPs, it
may be important to select biologically relevant SNPs to
control the burden of computation.

In general, as the generalized linear model is embedded to
handle both continuous and dichotomous traits, it is feasible
to accommodate various kinds of data in genetic epidemiol-
ogy. The frameworks of PII, as well as PI, are flexible in that
after some straightforward modification, they can evolve to
handle other kinds of issues in genetic epidemiological stud-
ies. If we change the coding schema of t(), replacing it with
a output score given survival analysis, it can be applied to
survival analysis in terms of the fundamental roles of G×G
interaction. It should also be noted that, in genetic epidemi-
ological studies, a set of related phenotypes, such as longi-
tudinal data, are measured, and PII can be easily extended
to accommodate phenotypes of interest, and a test statistic
can be constructed as [TA−E(TA)]T V −[TA−E(TA)] ∼ χ2,
where V is the variance-covariance matrix of TA (a vector),
has an asymptotically central χ2 distribution with its de-
grees equal to the rank of V . However, heterogeneity of inter-
actions, probably common in ethnicity-specific diseases, can
be a concern to the current approach, which only chooses the
best model but discards other competitive ones that poten-
tially reveal diseases of different etiologies. The appropriate
methods to entertain such heterogeneities are needed.
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