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Using ascertainment for targeted resequencing
to increase power to identify causal variants

M. D. SwArTZz*, B. PENG, C. REYES-GIBBY AND S. SHETE

Researchers continue to use genome-wide association
studies (GWAS) to find the genetic markers associated with
disease. Recent studies have added to the typical two-stage
analysis a third stage that uses targeted resequencing on a
randomly selected subset of the cases to detect the causal
single-nucleotide polymorphism (SNP). We propose a de-
sign for targeted resequencing that increases the power to
detect the causal variant. The design features an ascertain-
ment scheme wherein only those cases with the presence of
a risk allele are selected for targeted resequencing. We sim-
ulated a disease with a single causal SNP to evaluate our
method versus a targeted resequencing design using ran-
domly selected individuals. The simulation studies showed
that ascertaining individuals for the targeted resequencing
can substantially increase the power to detect a causal SNP,
without increasing the false-positive rate.

KEYWORDS AND PHRASES: Ascertainment, Genome-wide
association study, Causal polymorphism, Targeted rese-
quencing.

1. INTRODUCTION

Genome-wide association studies (GWAS) have success-
fully identified polymorphisms associated with complex dis-
eases such as lung cancer (Amos, et al. 2008, Hung, et al.
2008, Thorgeirsson, et al. 2008), prostate cancer (Eeles, et al.
2008, Thomas, et al. 2008), glioma (Shete, et al. 2009), and
type II diabetes (Sladek, et al. 2007) and complex traits such
as body mass index (BMI) (Frayling, et al. 2007). Often, a
large number of subjects is required to achieve adequate
power in a GWAS because the odds ratio of a given single-
nucleotide polymorphism (SNP) associated with a complex
disease can be small (Eberle, et al. 2007, Hirschhorn and
Daly 2005, Marchini, Donnelly and Cardon 2005).

Typically, for a GWAS, researchers collect a large sample
of individuals and divide the sample into two groups for a
two-stage analysis. For stage 1, the investigator genotypes
many markers spread across the genome using a contempo-
rary commodity array of SNPs, such as Illumina’s Human
Hap 550 and Human 1M Duo chips or Affymetrix SNP ar-
ray 6.0 (Satagopan and Elston 2003, Wellcome Trust Case
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Control Consortium 2007). Then, the investigator analyzes
the data using a statistical test of choice and uses some
screening criteria to select SNPs likely to be associated with
the disease. For stage 2, the investigator selects the top n
SNPs identified by the smallest p-values for association from
stage 1 (Satagopan and Elston 2003). Originally, stage 1 and
stage 2 were analyzed separately, with stage 2 treated as an
independent replication set for the findings in stage 1, but
Skol et al. showed that, under certain assumptions, it is more
powerful to pool the information from stage 1 and stage 2
(Skol, et al. 2006, Skol, et al. 2007).

Recently, researchers have added a type of third stage to
GWAS: for the set of SNPs that reach genome-wide signif-
icance, they sequence regions surrounding those SNPs and
compare genotype distributions or allele frequencies in the
cases with the distributions or frequencies computed from
public sources, such as HapMap data or the 1000 Genome
Project (Yamada, et al. 2009). This method, known as tar-
geted resequencing, allows for the analysis of denser SNPs
to better locate the causal variant.

Commonly, the true causal SNP can have lower minor
allele frequency and, therefore, be somewhat sparsely repre-
sented in a randomly collected sample. Unless the SNP has
complete penetrance for a disease, a SNP with a low mi-
nor allele frequency could have a lower occurrence among
cases. Therefore, in a targeted sequencing analysis, even
when sampling from cases only, the probability of sequenc-
ing the causal SNP is very low, and this probability can be
increased through proper ascertainment.

Here, we propose a simple way to increase the probability
of including the causal SNP in the sample selected for tar-
geted resequencing and, as a result, improve the power of the
analysis. The two-stage analysis remains the same. However,
instead of randomly selecting a subset of the cases and then
performing targeted resequencing analysis, as in (Yamada,
et al. 2009), we randomly selected individuals from the cases
carrying the minor alleles of SNPs achieving genome-wide
significance from the GWAS. The rationale for this type of
ascertainment is to increase the probability that the rese-
quencing sample will include the causal allele. By defini-
tion of linkage disequilibrium (LD), the SNPs in strong LD
would have similar frequencies, and thus the minor allele of
the tagging SNP would be most likely in LD with the true
rare causal allele. In Appendix A, we show that in the pres-
ence of LD between the tagging SNP and the causal SNP
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the probability of the causal sequence being contained in
the sample increases if one uses ascertainment based on the
minor allele of a SNP known to be tagging the causal allele.
The SNPs identified by the two stage GWAS will most likely
have the strongest association with the causal SNP. We call
this method “ascertained targeted resequencing” because we
ascertain samples based on the presence of the minor alleles
at those SNPs detected by the two-stage GWAS. We ana-
lyzed simulated data and showed that ascertaining a sample
based on the presence of an allele found to be significant in
a two-stage GWAS does increase the power to detect the
causal SNP using targeted resequencing.

2. METHODS

We investigated the usefulness of the ascertained targeted
resequencing design by using simulation studies. We sim-
ulated 100 replicates of GWAS data for a disease gener-
ated by one disease locus. The data were simulated using a
simuPOP (Peng and Kimmel 2005) script that extends the
Hap-Sample method proposed in (Wright, et al. 2007). This
method essentially resamples existing HapMap sequences
using simulated recombination events. If a single-locus
disease model is specified, it simulates genotypes at the
disease susceptibility locus of cases and controls using
Pr(genotype | affection status) before genotypes at other
loci are simulated. The simulated datasets were validated ac-
cording to their resemblance to the original HapMap dataset
in terms of marker allele frequency, observed heterozygosity,
Hardy-Weinberg deviation, and decay of linkage disequilib-
rium as a function of marker distance.

Using the simuPOP script, we simulated a total of 2000
cases and 2000 controls for each replicate. We used HapMap
SNPs (Phase IT data) from a 4.4 Mb region of chromosome 2.
We simulated our genetic disease from a single SNP, as many
GWAS have found only one SNP (Amos, et al. 2008, Hung,
et al. 2008, Thorgeirsson, et al. 2008). To avoid overpow-
ering the study, we simulated an odds ratio of 1.8 for the
risk allele in the single-locus model. The SNP selected to
be the causal SNP has a minor allele frequency on the or-
der of 0.20. For each replicate, we used 1000 cases and 1000
controls for each stage. Since it is rare to have the causal
SNP in stage 1 of a GWAS, the SNP we simulated as causal
was not included in the Illumina Infinium Human Hap550
SNP chip set. However, when we simulated our disease, we
generated two sets of replicates where the LD (measured by
r?) between the causal SNP and at least one marker on the
HumanHap550 chip varied from 0.8 to .95, as described in
more detail later.

For the stage 1 analysis, we used the SNPs from the Hu-
manHap550 chip along chromosome 2. We conducted uni-
variate logistic regression analyses to test for the association
of each SNP with the disease of interest. For stage 2, we fol-
lowed up the top 30 SNPs from stage 1 and ran an indepen-
dent univariate logistic regression analysis on an additional
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1000 cases and 1000 controls. (We chose 30 SNPs because
that is on order with the numbers followed up in recently
published GWA studies (Alberts 2002, Hung, et al. 2008,
Shete, et al. 2009, Sladek, et al. 2007, Thorgeirsson, et al.
2008, Wu, et al. 2009). We used Fisher’s method for meta
analyses (Fisher 1932) to combine the stage 1 and stage 2
p-values, selecting SNPs with genome-wide significance (p-
values less than 1077).

We performed the targeted resequencing analysis in two
different ways: with and without ascertainment. We used the
following ascertainment procedure. The SNPs with p-values
less than 10~7 were denoted as the risk-associated SNPs for
the purpose of ascertainment, and their minor alleles were
denoted as the risk-associated alleles. Then, from the subset
of cases carrying the risk-associated alleles, we ascertained
96 individuals for targeted resequencing. For the targeted re-
sequencing analysis without ascertainment, which was con-
sidered the standard method, we randomly selected 96 cases.
For each set of cases (with and without ascertainment), we
selected SNPs from within a 300-kb window around each
SNP that passed genome-wide significance. For each SNP
found, we compared allele frequencies with those from the
HapMap dataset using the normal approximation test for
proportions, as in (Yamada, et al. 2009). Then for each set
we examined the distance, in base pairs, between the top-
ranking SNP from the resequencing analysis and the true
disease SNP. We also compared the rank of the p-value of
the causal SNP in the ascertainment set with its rank in the
standard targeted resequencing set.

To show the effect of varying LD on our ascertainment
method, we analyzed two different simulated populations.
The first population of replicates was simulated with the
disease SNP being in LD with a SNP on the Hap550 chip
on the order of 0.95. The second population of replicates
was simulated with a disease SNP in LD with SNPs on the
Hap550 chip on the order of 0.80. We refer to the first anal-
ysis as the “high-LD analysis,” since it included one marker
SNP in tight LD with the causal SNP (72 ~ 0.95), and to the
second analysis as the “moderate-LD analysis.” We present
a picture of the LD pattern of the stage 2 SNPs in Fig. 1. We
performed both analyses with and without ascertainment.

To fully evaluate the ascertained targeted resequencing,
we also simulated 100 null sets, using a method similar to
that described in (Swartz, Yu and Shete 2008), such that
there is no association between the SNPs and disease. This
method disrupts the disease-gene association but on aver-
age maintains the case-control ratio. We then followed the
same analysis protocol as above, analyzing the data using
the same targeted resequencing analysis (with and without
ascertainment) after two-stage GWAS.

3. RESULTS
3.1 High-LD analysis

In the high-LD analysis, 90 of 100 simulated genetic
disease replicates had SNPs that were significant at the



Plot of Linkage Disequilibrium Surrounding Causal SNP

i T

i

TS 184TS

12619100

res0a243

e
811503
-
m0as0aen
10as0ta:
™
ress
s
rsats

kS
i
.

-

. CowCmree —_— o "
= i H H § § 8 3 § 2 B o : %
I i E g i i o d o H e B L e R
Pioroe fo:@Eo§od g I g i : : o8 F oz & § @ @

Block 1 (0 k) [Biock 2 (1 i)
B
" : &

3 »

&
&
2z

Figure 1. Plot of the Linkage Disequilibrium (LD) pattern in the 50 SNPs surrounding the causal SNP (circled) in the stage 2
data, computed from Haploview.

genome-wide level. In these 90 replicates, we compared the
differences in rankings of the top-ranked SNP and the true
SNP between the ascertained and the standard targeted se-
quence analyses. We found that with the non-ascertained
data, the causal SNP was ranked as low as 536th among the
SNPs investigated, whereas with ascertainment, the lowest
ranking was 34th. On average, the ranking of the p-values for
the causal SNP was much higher with ascertainment (mean
rank = 2.68, standard deviation (SD) = 4.26) than without
ascertainment (mean rank = 40.8, SD = 78). Figure 2 plots
the ranks of the p-values for the causal SNPs comparing
the allele frequencies with HapMap frequencies across the
90 replicates that underwent targeted resequencing anal-
ysis. Note that of the non-ascertained replicates, roughly
half of them ranked the true SNP outside of the 10 most
significant SNPs, while almost all of the ascertained tar-
geted sequencing replicates (89 of the 90) ranked the true
SNP within the top 10 most significant SNPs. Also note
the rankings were much more widely dispersed among the
replicates using non-ascertainment than among those using
ascertainment. Furthermore, with ascertainment, the most
significant SNP was typically closer to the true SNP. On av-
erage, the p-values comparing the allele frequencies from the
targeted resequencing analysis with ascertainment (mean =

0.000074, SD = 0.00071) were much lower than the p-values
from the targeted resequencing analysis without ascertain-
ment (mean = 0.1065, SD = 0.132). Additionally, with as-
certained targeted resequencing, 50% of the iterations re-
ported the true SNP with a p-value less than 10720, while
the standard method reported p-values for the true SNP
greater than 1075 across all replicates.

Likewise, we compared the distance (in base pairs) be-
tween the top-ranking SNP and the causal SNP. Figure 3
shows these distances and how they varied across the 90
replicates that warranted targeted resequencing. Note that
the most significant SNPs were located much closer on the
chromosome to the causal SNP when ascertainment was
used. The bottom line is that ascertaining the targeted re-
sequencing sample resulted in higher-ranking p-values for
the true SNP and in the detection of SNPs closer to the
true SNP location than did non-ascertainment targeted re-
sequencing.

3.2 Moderate-LD analysis

In the case of reduced LD between the causal SNP and
the markers, 87 simulated replicates had SNPs significant
at or beyond the genome-wide significance level (<1077).
In the presence of lower LD, the spread of the difference in
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Figure 2. This plot shows the differences in ranking of the causal SNP relative to the top-ranked SNP (top ranked minus
causal) for the ascertained targeted sequencing (+) and the non-ascertained targeted sequencing (O), when analyzing the

higher-LD replicates.

Plot of Distance (in Base Pairs) Between Causal SNP and Top Ranked SNP, High LD
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Figure 3. Plot of distances from the most significant SNP to the causal SNP. This plot shows the number of base pairs from
the top-ranked SNP to the causal SNP for each replicate (iteration) of the design, comparing the ascertained targeted
resequencing analysis (+) to the standard resequencing analysis (O) for higher LD.

rank of the true SNP was larger, but still, in the majority was lower for both methods, we saw fewer replicates rank-
of replicates using ascertainment, the true SNP was ranked ing the true SNP within the top 20, let alone the top 10, yet
higher than in those under non-ascertainment. Since the LD  the true SNP was more often among the 20 most significant
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Rank Plot of Ranks for Causal SNP, Moderate LD
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Figure 4. This plot shows the differences in ranking of the causal SNP relative to the top-ranked SNP (top ranked minus
causal) for the ascertained targeted sequencing (+) and the non-ascertained targeted sequencing (O), when analyzing the
lower-LD replicates.

SNPs when ascertained targeted resequencing was used. On
average, using ascertainment for targeted resequencing sam-
ples led to better ranking of the causal SNP (mean rank =
78.6, SD = 109.9) than non-ascertained targeted resequenc-
ing (mean rank = 320, SD = 192.9).

Figure 4 plots the p-value rankings for the causal SNP
computed by comparing the sample allele frequency with
that from HapMap for ascertained and non-ascertained tar-
geted resequencing samples across the 87 replicates that
warranted targeted resequencing analysis. With ascertain-
ment, 28 replicates reported the true SNP within the 20
most significant SNPs, while without ascertainment, only 6
replicates reported the true SNP within the 20 most signif-
icant SNPs. Figure 5 plots the distances between the SNP
with the smallest computed p-value and the causal SNP for
all 87 replicates using both ascertained and non-ascertained
targeted resequencing. The distances from the SNP with the
smallest p-value to the true SNP across replicates were more
widely dispersed than in the higher-LD analysis, but still the
distances under ascertainment were typically smaller than
the distances under non-ascertainment. On average, the as-
certained targeted resequencing continued to report lower
p-values (mean = 0.09, SD = 0.17) than the standard tar-
geted resequencing (mean = 0.51, SD = 0.24) under lower
LD. Thus, even with lower LD, similar to that typical of tag-
ging SNPs, using ascertainment for targeted resequencing
generally resulted in the most significant SNP being closer
to the true SNP, with a smaller p-value, than typically found
with non-ascertainment.

For the 100 null replicates, both under high and low LD,
we did not find any SNPs significant at the genome-wide
level after stage 2. Therefore, we did not perform targeted
resequencing analysis, either with or without ascertainment,
on the null replicates.

4. DISCUSSION

Our simulation studies show that applying ascertainment
to select the sample used for targeted resequencing greatly
increases the power to detect the causal SNP. We show that
the greatest increase in power occurs when the causal SNP
is in high LD with tagging SNPs on the standard high-
throughput SNP chips used for GWAS. More importantly,
we show that the increase in power persists with lower LD,
which is more typical of the minimum LD found among tag-
ging SNPs. Therefore, ascertaining on the basis of the minor
allele of the best candidate SNPs at the conclusion of a two-
stage GWAS can boost the signal to find the causal SNP
with targeted resequencing.

Ascertaining on the basis of a tagging SNP allows us to
use the LD between the causal SNP and tagging SNP to
increase the power by enriching the sample with the causal
allele. Since we base our ascertainment on all tagging SNPs
that are significant on the genome-wide level, we are poten-
tially selecting multiple SNPs (1-3 SNPs) in LD with the
causal SNP. When multiple SNPs are tagging the causal lo-
cus, the ascertainment scheme increases the probability of
capturing the causal SNP for resequencing even more. If the
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Figure 5. Plot of distances from the most significant SNP to the causal SNP. This plot shows the number of base pairs from
the top-ranked SNP to the causal SNP for each replicate (iteration) of the design, comparing the ascertained targeted
resequencing analysis (+) to the standard resequencing analysis (O) for lower LD.

LD is close to 0, however, tagging SNPs would not be de-
tected in the two-stage design, and there would not be any
SNPs to follow up with resequencing.

Although Appendix A shows that tagging SNPs based
on 72 measures of LD won’t tag a rare variant with a ma-
jor allele, it is possible for a major allele to have D' = 1
with a minor allele, even though the 72 is low. This may re-
sult in a non-causal allele being tagged with higher 72 than
the causal locus and may inflate false positives. However,
our simulation with moderate LD (r2) between the causal
SNP and the tagging SNP, the causal SNP is still ranked
higher on average, and closer to the top ranked SNP than
without ascertainment. This implies that although ascer-
tainment can “enrich” for those non-causal SNPs in tighter
LD with the tagging SNP than the causal SNP, it still en-
riches for the causal SNP as well. Referring to Fig. 4, we see
that under ascertainment, the causal ranked SNP is ranked
more often in the top 100 most significant SNPs than under
non-ascertainment. Therefore, the false positive rate is not
inflated over that of non-ascertainment, even if the tagging
SNP is also tagging a non-causal allele.

Appendix A also guarantees improvement in power when
the rare causal variant is in positive LD with the tagging
SNP’s minor allele. However, it is possible for protective al-
leles to be tagged by minor alleles. When the association of
the tagging SNP is in the protective direction, conceivably,
ascertaining the cases on the major allele should provide
some improvement of power, however, the statistical prop-
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erties of how to ascertain when the association is in the
protective directions still needs to be investigated.

As a discovery method, the real false positive con-
trol comes from the two stage design. This ascertainment
method will not correct for any false positive results that re-
main through the two stage design. The focus of this method
is to increase the power to discover the causal SNP by enrich-
ing the sample frequency of potentially causal SNPs based
on the two stage design. Therefore, some enriching will oc-
cur if a false positive was ascertained at the end of the two
stage design. Furthermore, true positives and false positives
can be determined by further biological validation of the se-
quences. Therefore, it is not surprising that when comparing
the performance of the ascertainment method with the stan-
dard method on a data set with no disease association, the
false positive rates were similar.

In this paper, we used a type 1 error control and com-
pared ascertaining versus not ascertaining individuals for
targeted resequencing. We used the typical Bonferonni-
type multiple comparison correction for both the two stage
GWAS and the targeted resequencing p-values. This ascer-
tainment method easily generalizes to be used in conjunction
with any type 1 error control of choice, for example, select-
ing SNPs on the false discovery rate correction (Benjamini
and Hochberg 1995).

The method described here applies after completion of a
two-stage GWAS. There are multiple issues regarding SNP
coverage of the genome and power to detect a signal in a



GWAS (Anderson, et al. 2008, Barrett and Cardon 2006,
Eberle, et al. 2007), and all these issues still apply when
considering this method. Additionally, there has been dis-
cussion about selecting the proportion of the overall sample
to be used in stage 1 and its effect on power (Gail, et al.
2008, Gail, et al. 2008). Our method can be applied after
those decisions are made, and the current study assesses
the additional effects on power of ascertainment after such
important design decisions have been made.

Since this method describes sampling based on the signif-
icance of an association study, an inherent limitation, com-
mon to all associations studies, is that the probability of
detecting the underlying causal SNP depends on the un-
derlying LD between the causal SNP and tagging SNPs. If
the proband tagging SNP for ascertainment is in stronger
LD with non-causal SNPs, this method may result in some
non-causal SNPs having a higher ranking than the causal
SNP. However, the causal SNP will be among the top ranked
SNPs, if not the top ranked SNP, by nature of the associa-
tion study.

This study develops a novel design for targeted rese-
quencing, tested on realistic simulated data sets. One of
the strengths of this study is that we resampled haplotypes,
and used odds ratios for disease as found in the literature.
A minor limitation of this study is that we only simulate
one disease locus. However, most current two stage GWAS
only detect one major locus. The fact that we ascertained
on multiple SNPs suggest this strategy would generalize to
multiple loci.

With the development of denser SNP chips (such as the 1
million SNP chip), there will come a day when the SNP chip
for genome-wide studies will most likely include a marker in
high LD with the causal SNP, or even the causal SNP itself.
There is also some discussion in the field regarding GWAS
with low-resolution sequence data, which would involve even
denser SNPs, and again, the high LD required to maximize
the benefit of this ascertainment method will be available.

Essentially, our proposed targeted resequencing design
with ascertainment can increase the power to find the causal
SNP, following a two-stage GWAS, without increasing false
positives. This simulation study supports using ascertain-
ment in a targeted resequencing design to increase the power
of genome-wide association studies, especially as the SNP
chips become denser.
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APPENDIX A. ASCERTAINING INCREASES
THE PROBABILITY OF
SEQUENCING THE DISEASE
SNP

Here we show that ascertaining cases for resequencing
based on the minor allele of the tagging SNP increases the
probability of finding the causal SNP, assuming that the
tagging SNP used for ascertainment actually tags the causal
SNP. We consider the haplotypes consisting of the disease
locus (D) and the Tag locus (T"). We denote the minor alleles
with lower-case letters and the major alleles with upper-case
letters. Let § denote the linkage disequilibrium parameter,
and let p denote the sample allele frequency of the d allele,
and ¢ denote the sample allele frequency of the ¢ allele. Then
we can define the haplotype frequencies as:

Hgy =pg+46
Har =p(1—q)—0
Hpy=(1-p)g—9
Hpr =(1-p)(1—q)+é.
From the above haplotype frequencies, we can construct

the diplotype frequencies of observed individuals in the sam-
ple. We have 10 different diplotypes, denoted as G.

G1=HgHa
G2 =2H4Hyr
G3 =2H4Hpy
G4 =2H4yuHpr
Gs = HyrHyr
G = 2Hyr Hpy
G7 =2HyrHpr
Gs = HpHpy
Go =2HpiHpr

Gio = HprHpr.

Given the above diplotype definitions, the probability of
unconditionally sampling the disease SNP for targeted rese-
quencing can be computed by:

(1)

P(d € resequencing sample)

1 1 1 1
:G1+G2+§G3+§G4+G5+§G6+§G7=p.

Using ascertainment for targeted resequencing to increase power to identify causal variants 291



While the probability of sampling the disease SNP for tar-
geted resequencing ascertained with the tagging SNP is
given by:

(2) P(d € resequencing sample | t)
_ Gi+Ga+ 3G+ 3Gu + 3G
B 1 — (G5 + G7 + Gho)
=6 —2pq+ 6q + pq?

q(q—2)

It is straightforward to see that in the absence of linkage dis-
equilibrium (LD), P(d € resequencing sample | t) = P(d €
resequencing sample) = p. Assuming LD between the tag-
ging SNP and the causal SNP, we next show that

P(d € resequencing sample | t)
> P(d € resequencing sample).

Subtracting the unconditional probability from the condi-
tional probability yields

og—1)

) q(q —

Upon inspection of (3), we see that the quantity is not af-
fected by the value of the disease allele frequency, p. There-
fore, for § > 0, and any ¢ € (0,1), the difference will be
positive, and we have greater probability of including the
causal SNP in our resequencing sample when we ascertain
on the basis of the minor allele of a tagging SNP.

However, notice that the probability of detecting the
causal allele is smaller under ascertainment if 6 < 0. Con-
sider 6 = Hg; — pq, then by definition, Hy is constrained
to be in the interval [max(0,p + ¢ — 1), min(p, ¢)] (VanLiere
and Rosenberg 2008). Since d and ¢ are both minor alleles,
then p < 0.5, and ¢ < 0.5, which implies p+ ¢ < 1, reducing
the interval to [0, min(p, q)].

Also, since § = Hgy — pq, then § < 0 when Hy is in
the interval [0,pq), and 6 > 0 when Hy is in the interval
[pg, min(p, q)]. We have already shown above that under the
latter case, ascertainment improves power. When 6 < 0,
consider 72 computed by

@) 2= _Ha —pa)® 52
p(1—p)gl—q) p(l—p)gl—q)

When Hy; € [0,pq], then r? is maximum when Hg = 0.
Furthermore, Hy = 0 implies

max(rQ) = L
5<0 p(1 —p)g(1 —q)

Rearranging equation (5), we get

(5 5)

()

2y —
et =

(6)
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From equation (6), it is easy to see that since both ¢ and d
are minor alleles, for 2 to be big enough for a tagging SNP,
p and ¢ have to be close to 0.5. For tagging SNPs, we are
interested in the r2 > c. Additionally, since d is our disease
allele, we are interested in how large p has to be for r? large
enough to be a tagging SNP. The smallest admissible values
for p would occur when ¢ = 0.5. Then we consider

2 p

(7) max(r?) = ;7
which implies that p > ¢/(1—c¢). Typically, for tagging SNPs,
we use ¢ = 0.8, which implies p > 0.44. If ¢ = 0.5, then
p > 0.33, which is still high for a disease allele frequency,
when the allele is assumed to be rare. Therefore, for a typical
rare disease allele, when < 0 between the disease allele and
a marker allele, it won’t be tagged by that marker.

This generalizes to the marker SNP major allele as well.
When § < 0 between the minor allele of the disease locus
and the minor allele of the marker, it implies § > 0 between
the minor allele of the disease locus and the major allele of
the marker locus. Therefore, we can say that the likelihood
of a rare disease allele being tagged by a common marker
allele is also rare, and ascertaining on the minor allele will
improve the power for most studies, especially using tagging

SNPs with 72 > 0.8.
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