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Detecting association with rare variants for
common diseases using haplotype-based methods
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Current Genome-Wide Association Studies (GWAS) have
successfully detected many genetic variants contributing to
common diseases but not rare ones. Here two haplotype-
based methods are proposed for detecting rare variants con-
tributing a common disease. One method is a haplotype-
based truncated product method (HTPM), for which we
borrow a p-value combination method from testing for the
multiple hypotheses, but use it for the purpose of clustering
the information on rare risk haplotypes. The other method is
the combined method, for which a set of risk haplotypes are
chosen based on haplotype frequency comparison between
cases and controls, and then testing for association using
the same sample. Our simulation study demonstrates that
both methods have improved power for detecting the asso-
ciation between rare variants and diseases, compared with
other available methods. Both methods are applied to the
Wellcome Trust Case Control Consortium (WTCCC) coro-
nary artery disease and hypertension data and replicated the
previous findings of genes associated with hypertension and
coronary artery disease respectively at a genome-wide sig-
nificance level of 5%. These results suggest that haplotype-
based methods are powerful methods in searching for rare
genetic variants and can be applicable to the data from cur-
rent GWAS.
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ies, Rare variants, Haplotype-based truncated product
method, Combined method, Risk haplotypes.

1. INTRODUCTION

Genome-wide association studies (GWAS) have detected
many common susceptibility genetic variants responsible for
common diseases, with the underlying common disease com-
mon variant (CDCV) hypothesis. However, these common
variants can only account for a limited fraction of the ob-
served familial aggregation with modest odds ratios between
1.2 and 1.5 (Bodmer and Bonilla, 2008). There have been
many cases that follow-up association studies failed to iden-
tify any associated single nucleotide polymorphisms (SNPs)
in regions identified and confirmed by previous family-based
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linkage studies, although it has been argued that linkage
analysis is less powerful than association analysis for identi-
fying complex-disease genes (Risch and Merikangas, 1996).
One emerging explanation for this deficit in follow-up asso-
ciation studies is the common disease multiple rare variants
(CDMRV) hypothesis, which suggests the missing heritabil-
ity for common diseases can be attributable to rare genetic
variants with intermediate penetrance effects (Manolio et
al., 2009).

Recent studies, mainly based on resequencing methods,
have identified multiple rare variants for several common
diseases. One remarkable finding is with breast cancer.
There are ten genes accounting for inherited breast can-
cer and all those genes bear many rare mutations (Walsh
and King, 2007). The accumulated evidence suggests that
the high heterogeneity of inherited breast cancer can be at
least partially explained by a CDMRV model. Other com-
mon diseases are also shown to have a similar pattern of
inheritance. It has been reported that rare variants in three
genes – SLC12A3, SLC12A1 and KCNJ1 – contribute to
the reduction in blood pressure and protection from hyper-
tension (Ji et al., 2008). Also, Cohen et al. (2004) have se-
quenced three genes – ABCA1, APOA1, and LCAT – and
found that multiple rare genetic variants in the coding re-
gions significantly contribute to low plasma HDL cholesterol
level. In addition, multiple rare variants have been reported
to be associated with metabolic phenotypes (Romeo et al.,
2007) and plasma angiotensinogen level (Zhu et al., 2005).

Li and Leal (2008) have developed the Combined Multi-
variate and Collapsing (CMC) method, which first collapses
genotypes across rare variants and then applies multivari-
ate test, e.g., Hotelling’s T2 test, to the collapsed groups.
This method can be applied to analysis of sequence data.
However, under current GWAS design, CMC will be just
similar to multiple-marker test since only common variants
are directly genotyped and thus have a decreased power.
Haplotype-based analysis may provide a better solution be-
cause it has been theoretically proven to be more powerful
compared to single SNP analysis, based on accurate haplo-
type frequency estimates (Zaitlen et al., 2007). There have
been some studies successfully detected rare variants using
haplotype analyses, including a finding of two rare haplo-
types having significant effects on the osteoporosis pheno-
type (Liu et al., 2005) and a report on detection of rare
variants contributing to variation in angiotensinogen levels
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(Zhu et al., 2005). However, methods based on individual
haplotype analysis still face the problem of low power and
thus require large sample sizes to detect rare variants. Zhu
et al. (2010) have developed the two-stage method which
co-classify rare risk haplotypes together and test the co-
classified haplotypes as a set to improve the power to test
association. However, the proposed methods are based on
two stages, which raises the question of optimal sample sizes
for each stage given a fixed total sample size and thus needs
further investigation. In order to take the advantage of us-
ing haplotypes to capture rare variants and avoid allocating
samples into two stages at the same time, two haplotype-
based methods are developed: the Haplotype-based Trun-
cated Product Method (HTPM) and the combined method.
Both methods are shown to be efficient and powerful.

2. METHODS

2.1 Haplotype-based truncated product
method (HTPM)

In a candidate gene or a genomic region, assume there
are m different haplotypes h1, h2, . . . , hm with correspond-
ing haplotype frequencies q = (q1, q2, . . . , qm)′ in the disease
population and q0 = (q0

1 , q0
2 , . . . , q0

m)′ in the control popu-
lation, with

∑m
i=1 qi = 1 and

∑m
i=1 q0

i = 1. Since we are
detecting rare variants that increase the disease risk, we are
interested in testing the one-sided hypothesis for each hap-
lotype:

H0 : qi − q0
i = 0; Ha : qi − q0

i > 0 (i = 1, 2, . . . , m).

Assume a sample of N1 cases and N2 controls is consid-
ered and the observed counts of haplotypes in cases and con-
trols are X = (x1, x2, . . . , xm)′ and Y = (y1, y2, . . . , ym)′,
respectively. For each haplotype, a 2 × 2 contingency table
can be constructed to compare haplotype frequencies be-
tween cases and controls. Usually a chi-square test is used
in this situation. However, we decided to apply Fisher’s ex-
act test here because some expected values in the table may
be small due to rare haplotype counts.

We then apply the truncated product method (TPM) to
combine p-values from individual haplotype tests. The test
statistic is constructed by taking the product of all the p-
values smaller than a fixed value τ :

W =
m∏

i=1

(pi)I(pi≤τ), where I(·) is the indicator function.

Under the null hypothesis, the distribution of W for w <
1 can be evaluated by conditioning on k - the number of the
p-values that are less than τ :

Pr(W ≤ w) =
m∑

k=1

Pr(W ≤ w|k)Pr(k)

=
m∑

k=1

(
m

k

)
(1 − τ)m−k

(
w

k−1∑
s=0

(klnτ − lnw)s

s!

× I(w ≤ τk) + τkI(w > τk)

)
.

The TPM method was originally developed for combining
independent p-values. However the single haplotype tests de-
scribed above are correlated. To deal with non-independent
tests, the empirical distribution of HTPM statistic W was
estimated by permutation tests.

2.2 The combined method

Similarly to the two-stage method, the combined method
involves first co-classifying rare risk haplotypes and then
detecting association by comparing the frequency of classi-
fied haplotypes between cases and controls. The difference
is the combined method uses the same sample for both co-
classification and association testing.

The rare risk haplotypes are co-classified by defining
the rare risk haplotype set as S = {hi|Fisher exact test p-
value of haplotype hi < τ}, where τ is a predefined value.
The frequency of co-classified risk haplotype set S is then
compared between cases and controls. The empirical p-value
is estimated by permutation tests.

2.3 Two-stage method

Two-stage method first co-classify rare risk haplotypes
using cases or affected sibpairs and then test association by
comparing the frequency of classified haplotypes between
cases and controls (Zhu et al., 2010). For the first stage, the
rare risk haplotypes are co-classified by defining the rare risk

haplotype set as S = {hi|qi−q0
i > μ

√
q0

i
(1−q0

i
)

2N }, where N is
the number of a subgroup of cases used for co-classification;
qi and q0

i are the frequencies of rare risk haplotype hi in cases
and the population, respectively; μ is a predefined constant.
Similarly, the rare risk haplotype set can be define by using

affected sibpairs: S = {hi|qi − q0
i > μ

√
q0

i
(1−q0

i
)

3N }, where N
is the number of sibpairs used for co-classification; qi and
q0
i are the frequencies of rare risk haplotype hi in sibpairs

and the population, respectively; μ is a predefined constant.
q0
i can be estimated from control samples under both situa-

tions. For stage 2, the association between haplotype subset
S and disease is tested by comparing the frequency of S
between cases and controls in the rest of sample.

2.4 CMC method

Variants with minor allele frequencies (MAFs) ≤0.001
are collapsed in CMC method. An indicator variable X is

defined for the jth case as Xj =
{1 rare variants present

0 otherwise ,
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Yj is defined in a similar way for controls. Variants with
MAFs >0.001 are not collapsed. Assume in one gene or ge-
nomic region, M variants are collapsed into K groups, a
multivariate Hotelling’s T2 test is then applied for the anal-
ysis of the K groups of genotype data.

2.5 Simulation

We applied the same method as Zhu et al. (2010) to
generate cases and controls. Briefly, the haplotype frequen-
cies in the ACE gene from a previous hypertension study
in African samples were obtained (Zhu et al., 2001). There
were 13 polymorphisms genotyped in this gene, resulting in
a total of 149 different haplotypes with frequencies ≥0.01%.
A total of 8 rare haplotypes, with frequencies in the range
1.0%–1.5% and with a cumulative risk haplotype frequency
of 10%, were set to be risk haplotypes with the assumption
that their effects on the phenotype are the same, i.e. the
penetrance is only dependent on how many risk haplotypes
an individual carried. An individual’s genotype was simu-
lated by randomly drawing two haplotypes according to the
haplotype frequencies and the disease status was simulated
based on the three modes of inheritance (dominant, reces-
sive, and multiplicative). There were 1900 cases and 3000
controls simulated and the total sample size was approxi-
mately equivalent to the WTCCC study.

To assess the type I error, a null model was simulated
that no risk haplotype was assigned. To assess the power, we
assigned 8 rare haplotypes as risk haplotypes, as described
above. The type I error and power were calculated as the
proportion of 1000 simulations that resulted in rejection
of the null hypothesis. To evaluate the performance of the
methods when haplotype phase is unknown, the haplotypes
were inferred from genotypes by Beagle 3.1 (Browning and
Browning, 2007), a software package that can efficiently
infer haplotype phases for genome-wide SNP data sets with
a reasonable accuracy based on a localized haplotype cluster
model (http://faculty.washington.edu/browning/beagle/
beagle.html).

To compare haplotype-based methods with CMC
method, which is designed for resequencing data, HapMap
ENCODE data of one genomic region for the four HapMap
samples were downloaded. The HapMap ENCODE rese-
quencing project was dedicated to provide dense genotypes
which will result in the knowledge of a comprehensive cata-
logue of human genomic components. Ten genomic regions
of 500 kilobases were resequenced in 48 unrelated individu-
als (16 Yoruba, 8 Japanese, 8 Han Chinese, and 16 CEPH).
All newly identified SNPs and SNPs that previously existed
in dbSNP were genotyped in the 269 HapMap DNA samples
(90 Yoruba, 44 Japanese, 45 Han Chinese, and 90 CEPH).
Region ENm010 has the shortest haplotype length and thus
is used in the simulation study to compare haplotype-based
methods and the CMC method. Haplotypes of the individu-
als were inferred by Beagle 3.1. A total of 55 rare haplotypes,
with frequency <1% and with a cumulative risk haplotype

frequency of 10%, are chosen from the 529 haplotypes to be
risk haplotypes, with the assumption that their effects on
the phenotype is the same. Similar simulation strategies as
described in section 3.1 were applied. There were 1900 cases
and 3000 controls simulated and 1000 simulations were used
to compare type I error and power.

2.6 WTCCC data analysis

The Wellcome Trust Case Control Consortium
(WTCCC) coronary artery disease (CAD) and hyper-
tension (HT) data (WTCCC, 2007) were downloaded
from the WTCCC website. The individuals excluded in
the WTCCC study were also excluded in our analysis,
resulting in 1952 HT cases, 1926 CAD cases and 2838
controls, respectively. We applied the same criteria as the
WTCCC study for SNP exclusion, except that we kept all
the SNPs with minor allele frequencies <1%. The HTPM
and combined methods were applied to WTCCC HT and
CAD dataset for a subset of genes identified by using the
2-stage method previously.

3. RESULT

3.1 Evaluation of type I error

The type I error is evaluated for the HTPM method
and combined method and compared to those of two-stage
method (Zhu et al., 2010), at significance levels of 0.05
and 0.01, respectively (Table 1). The type I error is well
controlled for HTPM. When the haplotype phase is known,
the 95% confidence interval of type I error is (0.0347,
0.0608) at a significance level of 0.05 and (0.0047, 0.017) at
a significance level of 0.01. The observed type I error rate
for both HTPM method and combined method falls within
the 95% confidence region. When the haplotype phase
is unknown, the type I error of HTPM still falls in the
95% confidence interval, and so did that of the combined
method. Two-stage method show reasonable type I errors
as well, because the significance levels of 0.05 and 0.01 are
within the 95% confidence intervals of (0.034, 0.072) and
(0.0091, 0.0246), respectively.

3.2 Power of haplotype-based methods

The power of the HTPM and combined method is com-
pared with the power of two-stage method, under different
modes of inheritance and genotypic relative risk (Figure 1).
Single SNP analysis is also performed, by comparing the al-
lele frequencies between cases and controls. The minimum
p-value for testing the set of markers was corrected by the es-
timated effective number of tests or the number of indepen-
dent tests. For the two-stage method, two designs were used,
affected sibpair and unrelated cases, in the co-classification
stage. According to the power analysis comparing the dif-
ferent sample sizes used in the first stage (co-classification
stage) and second stage (testing stage), designs with 800
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Table 1. Type I error rate for simulation data analyzed as haplotype phase known and phase unknown. Genotypes of 13
polymorphisms in ACE gene were simulated for 1900 cases and 3000 controls. For each individual, the genotype was simulated

by randomly drawing two haplotypes according to the haplotype frequencies of 149 haplotypes obtained from previous
hypertension study in African samples (Zhu et al., 2001). To assess the type I error, a null disease model was simulated that

no risk haplotype was assigned

Two-stage method (Zhu et al., 2010)
Type I error rate Affected sibpairs Unrelated cases HTPM* Combined method

Phase known
0.05 0.048 0.047 0.046 0.053
0.01 0.009 0.011 0.009 0.012
Phase unknown
0.05 0.056 0.046 0.048 0.046
0.01 0.015 0.012 0.009 0.009

*HTPM: haplotype-based truncated product method

cases or 400 affected sibpairs in first stage have the best
power (Zhu et al., 2010). Therefore, 800 cases and 400 af-
fected sibpairs are used in the first stage of the two–stage
method in this simulation study.

In general, single SNP analysis has virtually no power,
no matter which mode of inheritance is considered. Under
dominant models, there is a large increase in the power for
all the methods except single SNP analysis, when genotypic
relative risk rises from 1.2 to 2. The power approaches
to 1 when the genotypic relative risk rises above 2. For
the HTPM method and the combined method, the power
is greater than the two-stage method. The multiplicative
model shows a similar pattern, only with a slower increase
in power when genotypic relative risk rises. In general, the
recessive model doesn’t show much power except when
genotypic relative risk is as large as 3.

Figure 1 shows the results when haplotype phase is
known. However, it is difficult to acquire the phase informa-
tion in practice. Therefore, the situation of unknown haplo-
type phase is considered and phase is inferred by software
Beagle 3.1. The power of the HTPM and the combined
method is then compared against the two-stage method
(Figure 2). The power is slightly compromised when the
haplotype phase is inferred, compared to the situation where
we know the haplotype phase. However, the HTPM and the
combined method still show reasonable power when geno-
typic relative risk is above 1.5 for the dominant model and
above 2 for the multiplicative model. Overall, the power of
the HTPM and the combined method is greater than that
of the two-stage method. Under the multiplicative model,
the two-stage method has substantially lower power than
both the HTPM and the combined method, when the co-
classification of rare haplotypes is performed with unrelated
cases. Co-classifying rare haplotypes in affected sibpairs still
have reasonable power, under both dominant and multi-
plicative modes. When the haplotype phase is unknown
and inferred, the combined method shows substantially bet-
ter power than HTPM, especially under the multiplicative
model.

3.3 Comparison of CMC
and haplotype-based methods

The CMC method was originally designed for application
to analysis of resequencing data. To perform a fair compar-
ison of haplotype-based methods and the CMC method in
term of efficacy and power, the HapMap ENCODE rese-
quencing data (ENCODE, 2004) is used in our simulation
studies.

The CMC method is based on multivariate tests of col-
lapsed groups. However, only rare variants are collapsed,
while common variants are still included as one variant per
group in the multivariate analysis. In this particular sim-
ulation study, the total number of variants is 808 within a
500 kb region, with the number of rare variants varying from
180 to 220 for different repeat of simulation. Therefore, the
number of variables involved in multivariate analysis can
be as large as 600, with many of them highly correlated. A
large degree of freedom for the test statistic of Hotelling’s T2

test can thus be expected. In an initial analysis including all
the common variants, the type I error of the CMC methods
shows an unreasonable value of 0. The explanation for the
abnormal value of type I error exhibited by CMC method
lies in the large number of variables included in multivariate
analysis, which may affect the validity of the null distribu-
tion assumption of test statistics. A similar CMC test has
been applied with only 1 common variant and 1 group of
collapsed rare variants included. The results showed a rea-
sonable type I error of 0.048 at a significance level of 0.05.
Above evidence suggested that the CMC method fails when
a large number of non causal high-frequency variants are
included in the analysis.

To make a fair comparison with the haplotype-based
methods, a CMC test with 30 randomly chosen common
variants included was performed. Table 2 compares the type
I error of haplotype-based methods with the CMC method.
The two haplotype methods – HTPM and the combined
methods – can control type I error reasonably well. The
type I error of the CMC methods is reasonable for both
significance levels of 0.05 and 0.01.
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Figure 1. Power comparison of single-SNP analysis, two-stage method, HTPM and combined method, when haplotype phase
is known. Power is plotted against genotypic relative risk at 1, 1.2, 1.5, 2, 2.5, and 3. Penetrance is simulated as 10%.

The power of haplotype-based methods has also been
compared to the CMC method (figure 3). Under each ge-
netic model, HTPM and the combined method have very

similar power. Both HTPM and combined methods showed
reasonable power under additive model. Lower power is ob-
served in the multiplicative model compared to the additive
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Figure 2. Power comparison of single-SNP analysis, two-stage method, HTPM and combined method, when haplotype phase
is unknown. Power is plotted against genotypic relative risk at 1, 1.2, 1.5, 2, 2.5, and 3. Penetrance is simulated as 10%.
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Table 2. Type I error rate comparison of haplotype-based methods and the Combined Multivariate and Collapsing (CMC)
method using simulations based on ENCODE re-sequencing data. Genotypes of 808 polymorphisms in a genomic region of 500
kb were simulated for 1900 cases and 3000 controls. For each individual, the genotype was simulated by randomly drawing two

haplotypes according to the haplotype frequencies of 529 haplotypes obtained from the HapMap ENCODE resequencing
project (ENCODE, 2004). To assess the type I error, a null disease model was simulated that no risk haplotype was assigned

Type I error rate CMC (Li and Leal, 2008) HTPM* Combined method

0.05 0.043 0.057 0.057
0.01 0.012 0.014 0.016

*HTPM: haplotype-based truncated product method

Figure 3. Power comparisons of CMC method, HTPM and combined method using simulations based on ENCODE
re-sequencing data.

model, and the recessive model has virtually no power, as
expected.

Under the additive model, the power of haplotype-based
methods is lower for the ENCODE data based simulation

study when genotypic relative risk equals to 1.5 compared to
the previous simulation (shown in figure 2), but reaches over
90% when the genotypic relative risk rises to 2. ENCODE-
based simulation considered much larger numbers of SNPs
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Figure 4. Power comparisons of single SNP analysis, HTPM and combined method using simulations based on ACE gene data
when using common haplotype only (up panel) or using common and rare haplotype together (down panel) as risk haplotype.

(808 SNPs) than the previous simulation (13 SNPs). The ac-
curacy of haplotype inference may decrease when the num-
ber of SNPs increases greatly, which may be a reason for the
observed reduced power.

The power of the CMC method is consistently lower than
the power of haplotype-based methods. The difference be-
tween CMC method and haplotype-based methods increases
as the genotypic relative risk increases, under both the ad-
ditive model and the multiplicative model.

3.4 Power when common variants only,
or a mixture of common and rare
variants as the risk variants

Previous we only simulated the disease models with mul-
tiple rare risk haplotypes. We now considered the situations
when common haplotypes, or a mixture of common and rare
haplotypes as the risk haplotypes contributing a disease. We
simulated the following two scenarios: 1) only a common
haplotype with its frequency 0.088 as the risk haplotype;
2) a common haplotype with its frequency 0.061 together
with rare haplotypes as the disease risk haplotypes and the
accumulated frequency is 0.117. The power of single SNP
test, HTPM method and combined method was presented
in figure 4. In general, we observed that HTPM method and

combined method have better power than the single SNP
analysis, which is consistent with we observed above.

3.5 Application to WTCCC HT and CAD
data

Using two-stage method, Zhu et al. (2010) observed 3
genes associated with CAD (EIF4H, HFE2 and CDKN2B)
and 1 gene (ZFAT1) associated with HT at a genome-wide
significance level (p-value ≤10−6). In addition, PSRC1 was
identified to be associated with CAD with a moderate signal
(p-value ≤10−4). Those results provided the rationale that
multiple rare variants may contribute to the variation of
hypertension and CAD. Therefore, haplotype-based meth-
ods are now applied to the WTCCC CAD and HT data to
confirm the results of the two-stage method.

Table 3 summarizes the HTPM and combined method
test results of genes identified previously using a two-stage
method in the WTCCC HT and CAD data. For CAD data,
the two-stage method identified HFE2 on chromosome 1,
EIF4H on chromosome 7 and CDKN2B on chromosome 9,
with p-value ≤10−6. The results of both the HTPM and
combined methods have replicated the findings of those
three genes with p-value smaller than 10−6, except that
HTPM has a p-value of 3×10−5 for the CDKN2B gene. The
two-stage method also identified PSRC1 on chromosome 1
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Table 3. List of genes showing association to hypertension (HT) or Coronary artery disease (CAD) in WTCCC data

Disease Chr Gene Range (MB) Two-stage p-value HTPM* p-value Combined method p-value

CAD 1 HFE2 144.11–144.15 <1E-06 <1E-06 <1E-06
CAD 1 PSRC1 109.62–109.62 1.60E-05 1.30E-05 1.40E-05
CAD 7 EIF4H 73.20–73.25 <1E-06 <1E-06 <1E-06
CAD 9 CDKN2B 21.99–22.12 1.00E-06 3.00E-05 <1E-06
HT 8 ZFAT1 135.57–135.67 <1E-06 <1E-06 <1E-06

*HTPM: haplotype-based truncated product method

of a moderate effect with p-value 1.60×10−5, which was also
identified by HTPM and combined methods with p-values
of 1.30×10−5 and 1.40×10−5, respectively.

For the HT data, the two-stage method has identified
ZFAT1 on chromosome 8 with p-value ≤10−6. The results
of both the HTPM and combined methods replicated this
finding with p-values smaller than 10−6.

4. DISCUSSION

Two haplotype-based methods have been developed to
test association of rare variants with common diseases.
Both simulation studies and the WTCCC data application
demonstrated that the haplotype-based methods have rea-
sonable power to detect rare variants, with well-controlled
type I error. The single SNP analysis generally shows no
power in detecting rare variants.

The methods are developed based on haplotypes rather
than genotypes because haplotypes may capture un-
genotyped rare variants in current genome-wide studies. Ide-
ally, we wish the haplotype phase is known. However, in
practice haplotype phase has to be inferred most of the time.
As shown in the results, power decreases when phase is in-
ferred by software Beagle 3.1, comparing to the situation
where phase is known. However the loss in the power is not
substantial. Beagle 3.1 is based on the localized haplotype-
cluster model and was used in this study because it is fairly
accurate in inferring haplotypes at reasonable computation
cost. As suggested by Browning and Browning (2007), Bea-
gle 3.1 outperforms the other existing software such as Hap-
loRec, 2SNP and HAP. We simulated two data set using
HapMap haplotype frequencies in CEU and YRI samples.
The dataset using CEU data includes 18 haplotypes and the
other using YRI data includes 59 haplotypes. In each dataset
we simulated 2,000 unrelated individuals. We next evaluated
the performances of Beagle and fastPHASE. For the dataset
using CEU, the performances of Beagle and fastPhase are
similar, with 98.6% and 98.5% haplotypes being inferred cor-
rectly by Beagle and fastPhase, respectively. For the dataset
using YRI, the accuracy remains for Beagle (94.5%) but be-
comes worse for fastPhase (88.6%). We thus used Beagle 3.1
to infer haplotypes in this study.

The power of the HTPM and the combined methods is
superior to that of the two-stage method, no matter whether
the haplotype phase is known or unknown. The two-stage

method allocates the sample into two independent parts,
for a co-classification stage and an association testing stage,
respectively. For the co-classification stage, we applied one-
side test because our methods try to classify the risk haplo-
types together. Similarly, we can classify all protective hap-
lotypes together when we are interested in searching protec-
tive haplotypes. The power of detecting association may be
decreased due to a smaller sample size used in the associa-
tion test. With a fixed total sample size, the optimal sample
size for each stage needs to be determined. Therefore, the
HTPM and the combined methods have the unified advan-
tage of an increased power by using the entire sample in the
association test.

The combined method has a greater power than the
HTPM when the haplotype phase is unknown and inferred
using Beagle 3.1. For the same dataset, the HTPM and the
combined methods identify the same set of risk haplotypes.
The difference between the two methods is that HTPM uses
the product of p-values while the combined method com-
bines the frequencies of haplotypes and then conducts the
association test by comparing the combined haplotype fre-
quencies between cases and controls. As shown in the simula-
tion study based on ENCODE data with many more SNPs,
the difference in the power between the HTPM and the com-
bined methods is negligible. Since the combined method has
less computation burden, it is preferred in practice.

Here the haplotype-based methods are developed for cur-
rent GWAS design. However, the methods can be applied
to sequence data as well. Long-range haplotype informa-
tion provided by next-generation sequencing data and the
1000 genomes project will offer a significant advantage over
SNP data in detecting rare variants, especially for accurately
inferring haplotypes (The 1000 Genomes Project Consor-
tium, 2010). In the simulation study based on ENCODE
re-sequencing data, the HTPM and the combined methods
both show greater power than the CMC method. The sim-
ulation study is based on a region of 808 variants and the
number of collapsed rare variants with an allele frequency
<1% is around 200. The rest large number of variants is
not collapsed and thus contributes to a large degree of free-
dom for the CMC method. The power of CMC method is
compromised when many variants are not collapsed and thus
are included individually in the multi-marker test. However,
the power of the HTPM and combined methods is still rea-
sonable with long-range haplotypes. Another advantage of
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haplotype-based method over CMC method is that CMC
method can’t be applied to current GWAS design, where
rare variants are not genotyped.

A drawback of the HTPM and combined methods is that
they are both computationally intensive, since permutation
tests are required to determine empirical p-values. Limited
by computation speed, currently it is not practical to ap-
ply these haplotype-based methods on a genome-wide scale.
However, they can still be used in the situation where can-
didate genes are identified by the two-stage method. A pos-
sible solution to the computation time problem is to allow
the number of permutations to change dynamically when
applied to GWAS data, in a way that the number of permu-
tation tests varies depending on how many rejections have
been observed. It should be noted that the co-classification
of very rare haplotypes in our methods will suffer sampling
error, winner’s curse and false negative when the sample size
is limited. These issues are common for statistical methods
detecting rare variants. We suggest our methods are only
suitable for detecting rare haplotypes with MAFs at least
0.5% in order to have a reasonable power for the typical
sample sizes of current GWAS, i.e 2,000 cases and 2000 con-
trols, respectively. When the sample size is large, we expect
rare variants with MAFs >0.5% can be reasonably well rep-
resented by haplotypes (The 1000 Genomes Project Consor-
tium, 2010).

Currently the haplotype-based methods are developed for
a dichotomous trait. However, the methods can be easily
adapted to be applied to continuous traits. A thought is
to apply ANOVA test to each haplotype and then com-
bine individual p-values together in a similar way as de-
scribed in previous sections. The individual haplotypes can
be grouped into 3 groups (risk, protective, non-risk/non-
protective) at the minimum within-group difference and the
maximum between-group difference of the trait. Our meth-
ods have not considered incorporating any covariates, which
is important in practice. However, the combined method can
be extended to incorporate covariates. For example, we can
code individual’s haplotypes as 0, 1 or 2 according to how
many risk haplotypes he/she carries. In this way, we can
apply the logistic regression adjusting for covariates. This
method warrants further studies.

In summary, we have developed two haplotype-based
methods that are more powerful than the two-stage method
we developed before. The methods we developed can be use-
ful to identify rare variants underlying complex traits.
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