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An extension of max autoregressive models∗

Philippe Naveau
†
, Zhengjun Zhang

‡,§
and Bin Zhu

To model clustered maxima behaviors in time series anal-
ysis, max-autoregressive (MAR) and moving maxima (MM)
processes are naturally adapted from linear autoregressive
(AR) and moving average (MA) models. Yet, applications of
MAR and MM processes are still sparse due to some difficul-
ties of parameter inference and some abnormality of the pro-
cesses. Basically, some ratios of observations can take con-
stant values in MAR models. The objective of this present
work is to introduce a new model that is closely related to
the MAR processes and is free of the aforementioned abnor-
mality. A logarithm transformation of the new model leads
to time series models with log-positive alpha stable noises
and hidden max Gumbel shocks. Theoretical properties of
the new models are derived.
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1. MOTIVATION

Recordings of daily, weekly or yearly maxima in environ-
mental time series are classically fitted by the Generalized
Extreme Value (GEV) distribution that originates from the
well established Extreme Value Theory (EVT). To capture
temporal dependencies and clustered peak values, linear au-
toregressive (AR) processes and moving average (MA) pro-
cesses offer a simple and elegant framework. [3] introduced
Max-ARMA processes; [11] generalized Deheuvels’ [4] mov-
ing minima processes to multivariate maxima of moving
maxima (M4) processes. However, applications of the Max-
ARMA processes and the M4 processes have been rare due
to some inferential difficulties and some abnormality of the
processes. Ratios of consecutive observations drawn from ei-
ther a Max-ARMA process or an M4 process can take con-
stant values. These constant ratios form signature patterns
in simulated processes, see [3, 16] for example. These signa-
ture patterns have not been observed in real data analysis
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even if processes are transformed into Fréchet scales as re-
quired in either a Max-ARMA model or an M4 model. As
a result, models with more flexible dependence patterns are
needed. This paper aims to propose such a kind of mod-
els.

One of the simple Max-ARMA processes is the following
one

(1) Yt = max(aYt−1, εt),

where a < 1 is a positive constant and εt corresponds to an
iid sequence of unit Fréchet random variables, i.e. P (εt <
u) = exp(−1/u), u > 0. We note that the marginal choice
of εt being unit Fréchet is not essential. Suppose that εt has
the heavy-tailed extreme value distribution exp{−1/uτ} for
some τ > 0, then one can transform back to the unit Fréchet
case by taking 1/τ powers in the Max-ARMA recursion (1);
see [3] for detailed arguments.

This simple model can be viewed as an entry point
of our discussions and it can also be rewritten as Yt =
maxj=0,1,...(a

jεt−j). Its main drawback is that the ran-
dom ratio Yt/Yt−1 equals the constant a whenever we have
aYt−1 > εt. This implies that the value of a can be esti-
mated exactly. In practice it is highly improbable to find an
application with such a behavior. To remove this undesirable
effect, we propose the following model

(2) Zt,α = cmax(a(St,αZt−1,α)
α, εt),

where c ∈ (0, 1] is a scale parameter, a ∈ (0, 1] is an auto-
regressive parameter, and the sequence {St,α} is indepen-
dent of the iid sequence {εt}. {St,α} represents an iid se-
quence of positive α-stable variables defined by its Laplace
transform

(3) E(exp(−uS)) = exp(−uα), for all u ≥ 0,

where α ∈ (0, 1]. Here St,α and Zt−1,α in (2) are also inde-
pendent.

Recall that a random variable S is said to be stable if
for all non-negative real numbers c1, c2, there exists a pos-
itive real a and a real b such that c1S1 + c2S2 is equal in
distribution to aS + b where S1, S2 are iid copies of S. The
case α = 1 in (2) means that S = 1. This situation corre-
sponds to model (1). Whenever α < 1, the ratio Zt,α/Zt−1,α

depends on the random variable St,α, and consequently it
cannot be equal to a constant. As a result, model (2) does
not possess the aforementioned limitation of model (1).
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Figure 1. 250 Observations in model (4) with different sets of
parameter values of (a, c, α). Respectively, the top-left uses
(0.3047, 0.0260, 0.3488), the top-right uses (0.7330, 0.5100,
0.6630), the bottom-left uses (0.5758, 0.2365, 0.1601), and

the bottom-right uses (0.7208, 0.8124, 0.2137).

One building block behind (2) is an additive relationship
between Gumbel and log positive α-stable variables. If X
is Gumbel distributed with parameters μ and σ and is in-
dependent of S, a positive α-stable variable, then the sum
X + σ logS is also Gumbel distributed with parameters μ
and σ/α. Such an additive property has been recently stud-
ied by [15] in an environmental context and [5] in a mixture
context. In the literature, [2, 7, 13] also worked with such
distributions in survival analysis and the modeling of mul-
tivariate extremes.

Our proposed model (2) contains three parameters. First,
α is a shape parameter. When either Zt−1,α or St,α is very
large, (St,αZt−1,α)

α has a tendency to become smaller com-
paring with the original values. Second, a is the parameter
that describes the auto-regressive of our model. Third, the
parameter c can be viewed as a scale parameter or a location
parameter after a log transformation of Zt,α. A logarithm
transformation of (2) yields the following time series model:

(4) Xt,α = μ+max{γ + α log(St,α) + αXt−1,α, ξt},

where μ = log(c), γ = log(a), Xt,α = log(Zt,α), ξt =
log(εt). In the model, μ is a location parameter, and both
Xt,α and ξt are Gumbel distributed. We can regard (4)
as a time series model with log of positive α stable noises
log(St,α) and hidden max Gumbel shocks ξt. The idea is as
follows. Suppose that ξt = −∞ for all t. Then model (4) is
a pure autoregressive signal process. Alternatively, suppose
that P (ξt > −∞) = 1 in (4) at time t. If the signal value of
ξt is stronger than the signal resulted from the autoregres-
sive signal process, then ξt is the new observed signal value,

i.e. the signal process is altered by a hidden (max) Gumbel
shock. Figure 1 illustrates four different simulated processes
using four different sets of parameter values in (4).

It is clear that model (4) generates skewed data and asym-
metry in the upper and lower tails. Model (4) shares the
spirit of the seminal nonlinear time series model, i.e. thresh-
old autoregression models introduced by [14]. Model (4) uses
a random threshold ξt and takes value of the threshold itself
as long as the value is larger than the computed autoregres-
sive sum. This new model can also be regarded as a model
with an infinite number of change points.

Model (2) and model (4) being basically equivalent, we
will only consider (2) in the subsequent sections and derive
its theoretical properties.

Before closing this section, we can remark that at least
two extensions of model (2) are possible. The following gen-
eral form

(5) Zt,α = cmax
([

St,α max
1≤i≤p

{aiZt−i,α}
]α

, εt

)

corresponds to a max autoregressive process with positive
alpha stable moving coefficients and unit Fréchet shocks. We
denote this process as MAPα(p). Another possible extension
for model (2) follows the idea of [5] to take advantage of the
α−stability. This allows to introduce

Zt,α = cmax

(
a

{[ ∞∑
j=0

cjSt−j,α

]
Zt−1,α

}α

, εt

)
.

The rest of the paper is structured as follows. In sections
2 and 3, we present some theoretical properties of model
(2), i.e. MAPα(1) processes. Section 3.2 deals with statis-
tical estimations of parameters in MAPα(1) models with
the positive α stable noises being Lévy distributed. Simula-
tion examples are shown in Section 4. In Section 5, we fit a
MAPα(1) model to weekly maxima of river flow rate data
for two rivers: the Eagle River and the Crystal River, located
in the mountains of western Colorado in the United States.
Section 6 concludes. In Appendix, we present all technical
derivations of theoretical results and proofs of propositions.

2. THEORETICAL PROPERTIES OF
MAPα(1) PROCESSES

2.1 Stationarity

The following proposition shows that model (2) quickly
produces a stationary process as t increases.

Proposition 1. In the context of (2), suppose that the dis-
tribution of Z0,α is Fréchet with scale parameter b0 > 0, i.e.
P (Z0,α ≤ z) = exp(−b0/z). Then Zt,α is Fréchet with scale
parameter satisfying

(6) bt = acbαt−1 + c

254 P. Naveau, Z. Zhang and B. Zhu



for t = 1, 2, . . . , and {bt} has a limit d satisfying

(7) acdα + c = d

as t → ∞.
Furthermore, if b0 = d, we have for any constant values

z0, z1, . . .,

P (Z0,α ≤ z0, . . . , Zt,α ≤ zt)

= P (Zk,α ≤ z0, . . . , Zk+t,α ≤ zt),

for any t ≥ 0 and k ≥ 0

which implies that the process is stationary.

We note that if b0 = d satisfies (7), the derivation in the
proof of Proposition 1 indicates that model (2) corresponds
to a stationary process in which the marginal distribution
is Fréchet with the scale parameter being d.

On the other hand, if b0 is not equal to d, then bt con-
verges at least linearly, and it has a rate of approximately
(d − c)α/d. Numerically, except the case of a = c = α = 1,
in a few iterations (t < 20), bt has already closed to d up
to many decimal places. For this reason, we will assume the
process generated from (2) is stationary with d as its pa-
rameter, i.e. we assume b0 = d.

We note that in model (2), it is not necessary to require
a < 1. In the case of a = 1, we still can have stationary
processes, which will be seen in our real data analysis.

2.2 Causality

In Max-ARMA model, [3] called a stationary process
causal if it can be expressed as a max-linear process. Fol-
lowing their lead, we call a stationary process causal if there
exist constants βj ≥ 0, j ≥ 0 and

(8) Zt,α = β0εt ∨
[ ∨

j≥1

βj

(
j−1∏
i=0

Sαi+1

t−i

)
εα

j

t−j

]
< ∞ a.s.

To simplify notations, the subscript α was dropped in St,α

that simply becomes St. We now study the causal properties
of model (2). Substituting (8) in our proposed MAPα(1)
process (2), we have

β0εt ∨ β1S
α
t ε

α
t−1 ∨

[ ∨
j≥2

βj

(
j−1∏
i=0

Sαi+1

t−i

)
εα

j

t−j

]

= cεt ∨ acβα
0 S

α
t ε

α
t−1 ∨

[ ∨
j≥1

acβα
j S

α
t

(
j−1∏
i=0

Sαi+2

t−1−i

)
εα

j+1

t−1−j

]

= cεt ∨ acβα
0 S

α
t ε

α
t−1 ∨

[ ∨
j≥2

acβα
j−1S

α
t

(
j−2∏
i=0

Sαi+2

t−1−i

)
εα

j

t−j

]

= cεt ∨ acβα
0 S

α
t ε

α
t−1 ∨

[ ∨
j≥2

acβα
j−1

(
j−1∏
i=0

Sαi+1

t−i

)
εα

j

t−j

]
.

Comparing all coefficients in the first formula and the last
formula from the four formulas above, we have

β0 = c, βj = acβα
j−1, j ≥ 1.(9)

It is possible to show (see the Appendix) that the distribu-
tion of Zt,α defined by (8) and (9) coincides with the limiting
marginal distribution of the MAPα(1) process (2) in Propo-
sition 1. We summarize these arguments in Proposition 2.

Proposition 2. A MAPα(1) process is causal, i.e. (8)
holds.

2.3 Temporal dependence among maxima

To better understand the temporal structure of (2), we
compute the following bivariate probability in Result #1.

Result #1.

P (Zt,α ≤ zt, St,αZt−1,α ≤ zt−1)

= exp

(
−max

{
d

zt
,

c

zt
+

dα

zαt−1

})
.

When c = α = 1 and d = 1/(1− a), the formula above can
be compared to model (1) from which we have

P (Yt ≤ zt, Yt−1 ≤ zt−1)

= exp

(
−max

{
1

(1− a)zt
,

1

zt
+

1

(1− a)zt−1

})
.

It can be deduced as

lim
α↑1,c↑1

P (Zt,α ≤ zt, St,αZt−1,α ≤ zt−1)

= P (Yt ≤ zt, Yt−1 ≤ zt−1).

This equation tells that the joint probability of (Yt, Yt−1)
can arbitrarily closely be approximated by the joint proba-
bility of the limit process of (Zt,α, Zt−1,α).

The bivariate vector (Yt, Yt−1) possesses the max-
stability property

Pu(Yt ≤ uzt, Yt−1 ≤ uzt−1)

= P (Yt ≤ zt, Yt−1 ≤ zt−1), for any u > 0,

that represents the foundation of the Extreme Value Theory.
Does this fundamental property still hold for the bivariate
vector (Zt,α, Zt−1,α)? We can write that

Pu(Zt,α ≤ uzt, St,αZt−1,α ≤ uzt−1)

= exp

(
−max

{
d

zt
,

c

zt
+

dαu1−α

zαt−1

})

which implies that

log
Pu(Zt,α ≤ uzt, St,αZt−1,α ≤ uzt−1)

P (Zt,α ≤ zt, St,αZt−1,α ≤ zt−1)

= max

[
acdα

zt
,
dα

zαt−1

]
−max

[
acdα

zt
,
dαu1−α

zαt−1

]
.
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Figure 2. Illustrations of asymptotic dependence of log(Yt−1) (X-axis) and log(Yt) (Y-axis) in model (1) in the left panel, and
asymptotic independence of Xt−1 (X-axis) and Xt (Y-axis) in model (4) with parameter values a = 0.3112, c = 0.7325,
α = 0.5020. The middle panel is without max-shock noise, i.e. ξt = −∞, while the right panel is with max-shock noise.

As α ↑ 1, c ↑ 1, one can see that the bivariate vector
(Zt,α, Zt−1,α) becomes more and more max-stable.

To study the joint tail behavior, we examine the so called
asymptotic dependence index introduced by [10]. We give
the following definition.

Definition 1. Two identically distributed random variables
X and Y with distribution function F are called “asymp-
totically independent”, if

(10) λ = lim
u→x

F

P (Y > u | X > u)

is 0, where x
F
= sup{x ∈ R : F (x) < 1}. The quantity λ, if

it exists, is called the bivariate asymptotic dependence index
which quantifies the amount of dependence of the bivariate
upper tails. If λ > 0, then X and Y are called “asymptoti-
cally dependent.”

The model (1) gives λ = a, i.e. Yt and Yt−1 are asymp-
totically dependent. In viewing (4), one can see that Xt

and Xt−1 are more likely to be asymptotically independent
mainly because the additive log-positive stable noise in Xt is
heavy tailed and is independent of Xt−1, and the max-shock
noise is also independent of Xt−1. To prove the asymptotic
(in)dependence of these two random variables, we may need
to know the density of St. In Section 3, we will prove the
asymptotic independence when St is a positive α-stable Lévy
random variable. In Figure 2, we illustrate three simulated
examples which are showing asymptotic (in)dependencies.
The left panel depicts log(Yt−1) and log(Yt) in model (1)
with parameter value a = 0.3112. The middle panel is for
model (4) with a = 0.3112, c = 0.7325, α = 0.5020, and
without max-shock noise, i.e. ξt = −∞. The right panel is
for model (4) with a = 0.3112, c = 0.7325, α = 0.5020, and
with max-shock noises.

From the left panel in Figure 2, one can clearly see the
existence of a signature pattern, while the middle panel and
the right panel do not show such kind of patterns. One can
also see that model (2) can model a wide range of depen-
dence in asymptotic independence.

3. A SPECIAL CASE, THE MAP1/2(1)
PROCESS

In the literature, Lévy distribution has been widely ap-
plied to many real data applications. A Lévy distributed
random variable S has the following density function:

fL(s, δ) =

√
δ

2π
e−

δ
2s

1

s3/2
, for all s > 0

where δ is a positive parameter, and we denote S ∼
Lévy(0, δ). The following proposition shows that Lévy(0, δ)
is positive α-stable if and only if δ = 1

2 .

Proposition 3. Suppose S ∼ Lévy(0, δ). Then S is positive
α-stable if and only if δ = α = 1

2 .

For notational convenience, we drop the subindex α =
1/2 in Zt,1/2, i.e. use Zt, and the same is true for St. We also
suppose that Zt is Fréchet distributed with scale parameter
d, where d satisfies the equation acd

1
2 + c = d.

3.1 The tail dependence coefficient

To study the dependence among extremes, [8, 9] intro-
duced a very useful concept, the coefficient of tail depen-
dence that provides a finer picture than the parameter λ.
We now give a brief description of this coefficient denoted
by η characterized in Definition 1. For a broad range of joint
distributions with unit Fréchet marginal variables, [8, 9] con-
sider the following model

(11) P (X > u, Y > u) ∼ L

(
1

P (X > u)

)
P (X > u)

1/η

as u → ∞, where L is a slowly varying function, i.e.
L(tu)/L(u) → 1 as u → ∞ for any fixed t > 0, and η ∈ (0, 1]
is a constant. Using their terminology, the η value effectively
determines the decay rate of the joint bivariate survival func-
tion evaluated at the same large u, and η is termed as the
coefficient of tail dependence. Two marginal variables are
called positively associated when 1/2 < η ≤ 1; nearly in-
dependent when η = 1/2; and negatively associated when
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0 < η < 1/2. Equation (11) can be expressed as

(12) P (Y > u|X > u) ∼ L

(
1

P (X > u)

)
P (X > u)

1/η−1

as u → ∞, which shows how λ changes with η. It is easy
to see that the two variables X and Y are asymptotically
dependent when η = 1 and L(u) � 0 as u → ∞, and are
asymptotically independent otherwise.

In our case, we would like to find η of lag-1 tail depen-
dence for stationary MAP1/2(1) process. Let u be a thresh-
old, we have P (Zt ≤ u) = P (Zt−1 ≤ u) = exp(−d/u) and
the following joint probabilities in Result #2.

Result #2.

P (Zt ≤ u, Zt−1 ≤ u)

(13)

= exp

(
− c

u

){
2 exp

(
−d

u

)
− 2 exp

(
−d

u

)
Φ

(
ac√
2u

)

− exp

(
ac
√
d

u

)[
1− Φ

(
ac+ 2

√
d√

2u

)]

+ exp

(
−ac

√
d

u

)
Φ

(
ac− 2

√
d√

2u

)}
.

Then, we are able to calculate the following joint survival
function of (Zt−1, Zt) in the form of equation (11) in Result
#3.

Result #3.

P (Zt > u,Zt−1 > u) ∼ 2acd√
π
u− 3

2(14)

∼ cst P (Zt > u)1/η.

Since Zt follows Fréchet distribution with scale parameter
d, it is immediately from (14) that the coefficient of lag-1
tail dependence for stationary MAP1/2(1) process is η = 2/3

and the corresponding slowly varying function L(u) = 2ac√
dπ

.

With η = 2/3, we conclude that there exists positive depen-
dence in MAP1/2(1) processes and an asymptotic indepen-
dence in the sense that limP (Zt > u|Zt−1 > u) = 0 as u
increases.

3.2 Statistical estimation

Although MAPα(1) processes have attractive probabilis-
tic properties, there are difficulties in applying standard
statistical estimation methods such as the maximum likeli-
hood. This difficulty has been noted previously for M4 pro-
cesses, the max-autoregressive moving average or MARMA
processes of [3]. [6] got around this difficulty by defining a
class of estimators based on empirical processes. [12] applied
the generalized method of moment estimation to a class of
sparse moving maxima models. The method proposed here
for MAPα(1) models is similarly motivated.

In this section, we assume that the MAP1/2(1) process is
stationary. We first have the following results.

Result #4.

E

(
exp

{
− 1

Zt, 12

})
=

d

d+ 1
,

and

E

(
exp

{
− 1

Zt, 12

− 1

Zt−1, 12

})
=

cd+ acd
√
d+ 1

(d+ 1)(c+ 1 + ac
√
d+ 1)

.

Using the stationary condition ac
√
d + c = d, we can con-

struct generalized method of moments estimators for all
three parameters. Our proposed estimator for θ = (d, a, c)
is

θ̂ = argmin
θ∈R+×(0,1]2

[(
1

n

n∑
i=1

exp{− 1

Zt+i, 12

} − d

d+ 1

)2

+

(
1

n

n∑
i=1

exp

{
− 1

Zt+i, 12

− 1

Zt−1+i, 12

}

− cd+ acd
√
d+ 1

(d+ 1)(c+ 1 + ac
√
d+ 1)

)2]
.

By ergodic theorem,

1

n

n∑
i=1

exp

{
− 1

Zt+i, 12

}
a.s.→ d

d+ 1
,

1

n

n∑
i=1

exp

{
− 1

Zt+i, 12

− 1

Zt−1+i, 12

}

a.s.→ cd+ acd
√
d+ 1

(d+ 1)(c+ 1 + ac
√
d+ 1)

.

Then by continuous mapping theorem, it is not difficult
to see that our proposed estimators are strongly consistent.
Due to the complexity of the joint distributions of {Zt,1/2},
the asymptotics of the estimators do not have an explicit
form. In this work, we propose to report Monte Carlo con-
fidence intervals for simulation examples and real data ex-
ample as well.

4. SIMULATION EXAMPLES

In this section, we simulate the MAP1/2(1) processes with
different choices of parameters a and c. It has been shown
that for each set of parameter values, a generated process
is a non-stationary process with its limit being stationary.
Moreover, the process will reach its stationary limit quickly
regardless of the initial value. Motivated from this fact, in
each simulation, we discard the first 3,000 values of Zt, 12

,
and then simply treat the remaining simulated sequence as
a stationary MAP1/2(1) process.
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Table 1. Fitted parameter values and Monte Carlo confidence intervals for simulated data

a = .8 c = .8 d = 1.6128

size 95% M.C.I. mean median 95% M.C.I. mean median mean

1000 (.4964, 1.0000) .7890 .7932 (.6838, 1.0000) .8148 .8035 1.6149
2000 (.5513, 1.0000) .7965 .7980 (.6980, .9550) .8077 .8029 1.6139
5000 (.6332, 1.0000) .8046 .8005 (.7123, .8964) .8002 .7992 1.6123
10000 (.6783, .9441) .8029 .8002 (.7329, .8691) .7999 .7996 1.6127

a = .2 c = .2 d = .2187

size 95% M.C.I. mean median 95% M.C.I. mean median mean

1000 (.0000, .5799) .2124 .1932 (.1660, .2324) .1998 .1998 .2187
2000 (.0033, .4570) .2078 .1998 (.1762, .2235) .1998 .1997 .2187
5000 (.0693, .3536) .2017 .1999 (.1851, .2154) .2000 .1999 .2187
10000 (.1043, .3089) .2008 .1999 (.1894, .2107) .2000 .2000 .2187

a = .1 c = .9 d = .9895

size 95% M.C.I. mean median 95% M.C.I. mean median mean

1000 (.0000, .2418) .1036 .0967 (.7840, 1.0000) .8996 .9009 .9894
2000 (.0219, .1938) .1014 .0991 (.8170, .9876) .9005 .9002 .9897
5000 (.0473, .1588) .1000 .0988 (.8465, .9558) .9010 .9010 .9895
10000 (.0619, .1415) .1004 .0998 (.8623, .9384) .9000 .8996 .9896

Table 2. Fitted parameter values and Monte Carlo confidence intervals for simulated data

a = .9 c = .1 d = .1328

size 95% M.C.I. mean median 95% M.C.I. mean median mean

1000 (.2628, 1.0000) .7896 .8999 (.0878, .1247) .1038 .1028 .1332
2000 (.4061, 1.0000) .8020 .8999 (.0905, .1176) .1023 .1015 .1328
5000 (.5830, 1.0000) .8676 .9000 (.0933, .1113) .1010 .1006 .1328
10000 (.6702, 1.0000) .8855 .9000 (.0949, .1077) .1005 .1001 .1328

a = .4 c = .6 d = .8169

size 95% M.C.I. mean median 95% M.C.I. mean median mean

1000 (.1996, .6867) .4043 .3934 (.4996, .7053) .6021 .6016 .8170
2000 (.2533, .5803) .4036 .3983 (.5295, .6747) .6007 .6000 .8176
5000 (.3045, .5089) .3998 .3976 (.5562, .6454) .6007 .6007 .8169
10000 (.3284, .4771) .4001 .3995 (.5691, .6334) .6004 .6005 .8171

a = .6 c = .4 d = .5833

size 95% M.C.I. mean median 95% M.C.I. mean median mean

1000 (.3097, 1.0000) .6088 .5970 (.3320, .4788) .4012 .4006 .5837
2000 (.3906, .8648) .6051 .5958 (.3481, .4540) .4010 .4009 .5843
5000 (.4625, .7609) .6015 .5982 (.3661, .4343) .4003 .4003 .5833
10000 (.5004, .7155) .6021 .6000 (.3762, .4233) .3998 .3998 .5832

For each set of parameters a, c and each pre-specified sam-
ple size, we simulate the process 5,000 times. By using the
estimation method discussed in the previous section, we get
the estimators â, ĉ for each simulated sequence. Tables 1 and
2 show the simulation results. In the tables, the size column
shows the sample size after trimming the first 3,000 values,
the M.C.I. column gives the lower limit and the upper limit
of a 95% Monte Carlo confidence interval based on 5,000
estimated values, the mean column shows the mean value
of 5,000 estimated values, and similarly the median column
shows the median of 5,000 estimated values.

From these two tables, one can see that the mean values
and the median values are very close to their corresponding
true parameter values, and the 95% Monte Carlo confidence
intervals are short in length. These empirical evidences sug-

gest that our proposed parameter estimators are consistent,
and they well approximate true parameter values.

5. REAL DATA APPLICATION

In this section, we use river flow rate data to demon-
strate the applications of our proposed new time series mod-
els. Particularly, we fit a MAP1/2(1) model to deseasonal-
ized weekly maxima of river flow rates of the Eagle River
which is a tributary of the Colorado River, approximately
70 miles long, in west central Colorado. Our data source
is the US Geological Survey (USGS). The site number of
the Eagle is 09070000. “The Eagle rises in southeastern Ea-
gle County, at the continental divide, and flows northwest
past Gilman, Minturn and Avon. Near Wolcott, it turns
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Figure 3. Weekly maxima of river flow rates (ft3/sec) in the Eagle River (left panel) and in the Crystal River (right panel).

Table 3. Fitted parameter values in MAP1/2(1) with real data and Monte Carlo confidence intervals

The Eagle River The Crystal River

Parameter Estimate M.C.I Estimate M.C.I

a 1.0000 (.5594, 1) 1.0000 (.5809, 1)

c .5903 (.5644, .7864) .5987 (.5569, .7699)

d 1.2504 1.2745

west, flowing past Eagle and Gypsum, and joins the Col-
orado at Dotsero, in western Eagle County. The Eagle is
navigable by typical small river craft upstream to Vail in
most of the time. Its flow ranges from 200 cfs in late sum-
mer of dry years to 7,000 cfs during spring runoff (Wikipedia
http://en.wikipedia.org/wiki/Eagle River (Colorado)).”

The Eagle River flow rates show very strong seasonal ef-
fects (Figure 3), most notably, snowmelt in the early sum-
mer. This phenomenon is typical within rivers in Colorado
geographic area, for example the Crystal River with which
[1] analyzed the maximum weekly flow rates using approx-
imated conditional density approach for the deseasonalized
data. For comparison purpose, we also include the Crystal
River data (the same as used in [1] in this analysis), and
we analyze the deseasonalized weekly maxima of flow rates
and adopt the same procedure of deseasonalization as done
in [1]. Next, we describe the deseasonalization procedure for
the Eagle River flow rates.

We first obtain from the USGS Instantaneous Data
Archive (IDA) a time series data set (ranging from 1990-
10-01 to 2008-09-30 with one reading every 15 minutes).
There are about 166 days in which the IDA has not recorded
flow rates. Second, from the USGS National Water Infor-
mation System (NWIS), we obtain daily mean flow rates
(ranging from 1946-10-01 to 2008-09-30) with no missing
records. Third, for each data point in the IDA time series,

we transform the data using the following three steps: 1)
compute the mean value from the NWIS data across all
years within a thirteen-day local window which is centered
on the day the IDA data point value is recorded; 2) compute
the standard deviation from the NWIS data within all the
same local windows; 3) standardize the IDA data point value
using the mean and the standard deviation obtained in 1)
and 2). Fourth, we obtain a deseasonalized daily IDA time
series after taking the maximum of all standardized daily
point values for each day. Fifth, we use a simple regression
model to “recover” the missing daily maxima by regress-
ing the maxima on the means over the period of 1990-10-01
to 2008-09-30. The squared regression coefficient R2 = .998
which shows a very good fit. Finally, we obtain the weekly
maxima and plot them in Figures 4 (left panel) and 5 (left
panel).

We note that Figure 4 is comparable to Figure 1. The
same comparison holds for the Crystal River deseasonalized
weekly maxima of river flow rates directly. Fitting model
(4) to the deseasonalized weekly maxima, we obtain the fol-
lowing fitted values in Table 3. We note that the estimated
values of the parameter a are 1 in both cases. This can be
understood by thinking that the parameter a is combined
into c, and we still have ac < 1, i.e. two processes are sta-
tionary.

Using the estimated values in the table, we simulate
weekly maximum deseasonalized time series and compare
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Figure 4. Deseasonalized weekly maxima of river flow rates (ft3/sec) in the Eagle River (left panel) and in the Crystal River
(right panel).

Figure 5. Deseasonalized weekly maxima of river flow rates (ft3/sec) in the Eagle River (left panel) and in the Crystal River
(right panel).

the simulated values with the observed values using quantile-
quantile plots. In Figure 6, we can see that our proposed
models reasonably well approximate the weekly maxima, es-
pecially in the tails.

6. CONCLUSIONS

Modeling extremes in time series is challenging. In this
paper, we have generalized the max-autoregressive processes
considered in [3] to the max autoregressive processes with
positive alpha stable coefficients and unit Fréchet shocks, i.e.
MAPα(p) models which eliminate the abnormally signature

patterns. We have proved that MAP1/2(1) models asymp-
totically independent time series, and empirically demon-
strated that MAPα(p) models asymptotically independent
time series, which enriches models for extremes in time se-
ries. Our data examples suggest that MAP1/2(1) models can
directly be applied to some deseasonalized river flow rate
data, which is certainly useful in hydrological study and
river engineering management.

There are several future emerging research directions re-
lated to our present work. As mentioned in the introduction
section, there are variants of our proposed models. The ma-
jor challenges in our proposed models and other potential

260 P. Naveau, Z. Zhang and B. Zhu



Figure 6. Quantile-quantile plots for deseasonalized weekly maxima of river flow rates (ft3/sec) in the Eagle River (left panel)
and in the Crystal River (right panel).

extensions are to study model reducibility, causality and pre-
dictability as they have been extensively studied in ARMA
models. Constructing efficient parameter estimation meth-
ods is still a challenging task, e.g. when α is also unknown.
We expect that there will be more and more theoretical
developments in this field. We also expect more and more
applications of these new models to different research fields
in the near future.

APPENDIX

Proof of Proposition 1. Note that logZ0,α is Gumbel with
log(b0) as the location parameter and one as the scale pa-
rameter. Then, α logS1,α +α logZ0,α follows a Gumbel dis-
tribution with α log(b0) as the location parameter and one
as the scale parameter. We have

P (Z1,α ≤ z) = P (S1,αZ0,α ≤ (z/ac)1/α)P (ε1 ≤ z/c),

= P

{
α logS1,α + α logZ0,α ≤ log

(
z

ac

)}
× exp

(
− c

z

)
,

= exp

{
− exp

[
− log

(
z

ac

)
− α log(b0)

]}
× exp

(
− c

z

)

= exp

(
−acbα0 + c

z

)
,

and similarly we have

P (Zt,α ≤ z) = exp

(
−acbαt−1 + c

z

)
,

for t = 1, 2, . . . . The proof of {bt} having a limit d is divided
into three steps.

First, it is easy to see that the function g(x) = x−acxα−c
is decreasing when 0 < x < (acα)1/(1−α), and is increasing
when x > (acα)1/(1−α). In addition, g(x) has a unique zero
in R

+, denoted by d, g(x) > 0 when x > d, and g(x) < 0
when 0 < x < d.

Second, let’s assume that for the initial condition b0 we
have b0 ≥ d. Then by g(b0) ≥ 0,

b0 ≥ b1 = acbα0 + c ≥ acdα + c = d,

b1 ≥ b2 = acbα1 + c ≥ acdα + c = d.

Continuing this procedure, we have that {bt} is a decreasing
sequence with lower bound d, and hence it has a limit. Sim-
ilarly, let’s assume that for the initial condition b0 we have
b0 < d. Then by g(b0) < 0,

b0 < b1 = acbα0 + c < acdα + c = d,

b1 < b2 = acbα1 + c < acdα + c = d.

Continuing this procedure, we have that {bt} is an increasing
sequence with upper bound d, and hence it has a limit.

Third, let t tend to infinity on the both sides of bt =
acbαt−1 + c. Then,

lim
t→∞

bt = lim
t→∞

{acbαt−1 + c}

⇒ b = acbα + c

By the uniqueness of zero of g(x), the limit b must be equal
to d, which satisfies acdα + c = d.

For the second part of the proposition, we assume b0 = d.
First, when t = 0, P (Z0,α ≤ z0) = P (Zk,α ≤ z0) for any k ≥
0, because the marginal distribution is identical to Fréchet
distribution with scale parameter d.

Next, assume that for t = n ≥ 0, we have for any constant
values z0, z1, . . .

P (Z0,α ≤ z0, . . . , Zn,α ≤ zn)(15)

= P (Zk,α ≤ z0, . . . , Zk+n,α ≤ zn)

for any k ≥ 0. Then for t = n+ 1,

P (Z0,α ≤ z0, . . . , Zn,α ≤ zn, Zn+1,α ≤ zn+1)

= P

(
Z0,α ≤ z0, . . . , Zn,α ≤ zn, Zn,α ≤

z
1/α
n+1

(ac)1/αSn+1,α
,

εn+1 ≤ zn+1

a

)
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= E

[
P

({
Z0,α ≤ z0, . . . , Zn,α ≤ min

(
zn,

z
1/α
n+1

(ac)1/αSn+1,α

)}
∣∣∣∣Sn+1,α

)]
P

(
εn+1 ≤ zn+1

a

)

= E

[
P

({
Zk,α ≤ z0, . . . ,

Zk+n,α ≤ min

(
zn,

z
1/α
n+1

(ac)1/αSk+n+1,α

)}∣∣∣∣Sk+n+1,α

)]

P

(
εk+n+1 ≤ zn+1

a

)

= P

(
Zk,α ≤ z0, . . . , Zk+n,α ≤ zn,

Zk+n,α ≤
z
1/α
n+1

(ac)1/αSk+n+1,α
, εk+n+1 ≤ zn+1

a

)
= P (Zk,α ≤ z0, . . . , Zk+n,α ≤ zn, Zk+n+1,α ≤ zn+1)

for any k ≥ 0, where the third equality comes from (15).

Therefore, if b0 = d, MAPα(1) process is stationary by
the proof of induction.

Summarizing the above arguments, we conclude that an
MAPα(1) process reaches stationary regardless what the
value of b0 is.

Proof of Proposition 2. Define St = σ(St, St−1, St−2, . . .).

P (Zt,α ≤ z)

= P

{
β0εt ∨

[ ∨
j≥1

βj

(
j−1∏
i=0

Sαi+1

t−i

)
εα

j

t−j

]
≤ z

}

= P (εt ≤
z

β0
)P

[ ∨
j≥1

βj

(
j−1∏
i=0

Sαi+1

t−i

)
εα

j

t−j ≤ z

]

= exp

(
−β0

z

)
E

[
P

(
εt−1 ≤ z

1
α

β
1
α
1 St

, εt−2 ≤ z
1

α2

β
1

α2

2 S
1
α
t St−1

,

εt−3 ≤ z
1

α3

β
1

α3

3 S
1

α2

t S
1
α
t−1St−2

, . . .

∣∣∣∣St

)]

= exp

(
−β0

z

)
E

[
P

(
εt−1 ≤ z

1
α

β
1
α
1 St

∣∣∣∣St

)

P

(
εt−2 ≤ z

1
α2

β
1

α2

2 S
1
α
t St−1

∣∣∣∣St

)

P

(
εt−3 ≤ z

1
α3

β
1

α3

3 S
1

α2

t S
1
α
t−1St−2

∣∣∣∣St

)
· · ·

]

= exp

(
−β0

z

)
E

[
exp

(
−β

1
α
1 St

z
1
α

)

exp

(
−β

1
α2

2 S
1
α
t St−1

z
1

α2

)
exp

(
−
β

1
α3

3 S
1

α2

t S
1
α
t−1St−2

z
1

α3

)
· · ·

]

= exp

(
−β0

z

)
E

[
lim

n→∞

n∏
j=1

exp

(
−
β

1

αj

j

∏j−1
i=0 S

1

αj−i−1

t−i

z
1

αj

)]

(16) ≡ exp

(
−β0

z

)
E

[
lim

n→∞

n∏
j=1

Fj

]
.

Since 0 ≤ Fj ≤ 1, ∀j ≥ 1, {
∏n

j=1 Fj} is a non-increasing
random variable sequence which is bounded by 1. By dom-
inated convergence theorem, we have

(16) = exp

(
−β0

z

)
lim

n→∞
E

[
n∏

j=1

Fj

]

= lim
n→∞

exp

(
−β0

z

)

E

{
E

[(
n−1∏
j=1

Fj

)
exp

(
−
β

1
αn
n

∏n−1
i=0 S

1

αn−i−1

t−i

z
1

αn

)
∣∣∣∣St, St−1, . . . , St−n+2

]}

= lim
n→∞

exp

(
−β0

z

)

E

{(
n−1∏
j=1

Fj

)
E

[
exp

(
−
β

1
αn
n

∏n−1
i=0 S

1

αn−i−1

t−i

z
1

αn

)
∣∣∣∣St, St−1, . . . , St−n+2

]}

= lim
n→∞

exp

(
−β0

z

)

E

{(
n−2∏
j=1

Fj

)
exp

(
−
β

1

αn−1

n−1

∏n−2
i=0 S

1

αn−i−2

t−i

z
1

αn−1

)

exp

(
−
β

1

αn−1
n

∏n−2
i=0 S

1

αn−i−2

t−i

z
1

αn−1

)}

= lim
n→∞

exp

(
−β0

z

)
E

{(
n−2∏
j=1

Fj

)

exp

(
−
(β

1

αn−1

n−1 + β
1

αn−1
n )

∏n−2
i=0 S

1

αn−i−2

t−i

z
1

αn−1

)}
.(17)

Using this conditional expectation argument repeatedly, we
have

(17) = lim
n→∞

exp

(
−β0

z

)
E

{(
n−3∏
j=1

Fj

)
exp

(
−z−

1

αn−2

[β
1

αn−2

n−2 + (β
1

αn−1

n−1 + β
1

αn−1
n )α]

n−3∏
i=0

S
1

αn−i−3

t−i

)}

= · · ·
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= lim
n→∞

exp

(
−β0

z

)
E
[
exp(−z−

1
α {β

1
α
1 + {β

1
α2

2 + {β
1

α3

3

+ · · · {β
1
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]
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−1
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1
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1
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1
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≡ lim
n→∞

exp

(
−dn

z

)
= exp

(
− limn→∞ dn

z

)
.

Using the recursions (9) that {βj} satisfies, we can show that
{dn} is a non-decreasing sequence with finite limit d. Hence,
Zt,α follows Fréchet distribution with scale parameter d =

β0 + {β
1
α
1 + {β

1
α2

2 + {β
1

α3

3 + · · · }α}α}α, which satisfies

acdα + c
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1
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α
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3 + · · · }α}α}α

= d.

Actually, we have shown that the distribution of Zt,α

coincides with the limiting marginal distribution of the
MAPα(1) process (2) in Proposition 1, which implies that
the relation (8) is true.

Proof of Result #1.

P (Zt,α ≤ zt, St,αZt−1,α ≤ zt−1)

= P (εt ≤ zt/c)P (St,αZt−1,α ≤ mt),

with mt = min((zt/ac)
1/α, zt−1),

= exp(−c/zt)

∫
P (Zt−1 ≤ mt/s)fS(s)ds,

with fS the density of St,

= exp(−c/zt)

∫
exp(−sd/mt)fS(s)ds,

because Zt−1 is Fréchet,

= exp(−c/zt)E[exp(−Std/mt)],

= exp(−c/zt) exp[−(d/mt)
α], because of (3),

= exp(−c/zt) exp[−dα max{ac/zt, 1/zαt−1}],
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.

Proof of Proposition 3. Taking the Laplace transform of S,
we have

(18) E(exp(−uS)) =

√
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2π

∫ ∞
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e−us− c
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for all u ≥ 0. In order to calculate the integral in the right-
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Plugging (19) into the right-hand side of (18), we have
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E(exp(−uS)) =

√
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2π

∫ ∞

0

e−us− c
2s

1

s3/2
ds

=

√
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2π

√
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√
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Hence, S is positive α-stable if and only if c = 1
2 , which

implies α = 1
2 .

Proof of Result #2. Recall that St is Lévy(0,
1
2 ) distributed

and it is possible to show that

(20) P (St ≤ v) = 2

[
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,

where Φ(·) is the standard normal cdf of N(0, 1). Then

P (Zt ≤ u, Zt−1 ≤ u)

= P

(
max {a(StZt−1)

0.5, εt} ≤ u

c
, Zt−1 ≤ u

)

= P

(
StZt−1 ≤

(
u

ac

)2

, εt ≤
u

c
, Zt−1 ≤ u

)

= P

(
εt ≤

u

c

)
P

(
StZt−1 ≤

(
u

ac

)2

, Zt−1 ≤ u

)

= exp

(
− c

u

)
E

[
P

(
StZt−1 ≤

(
u

ac

)2

, Zt−1 ≤ u|Zt−1

)]

= exp

(
− c

u

)∫ u

0

P

(
St ≤

(u/ac)2

y

)
gZt−1(y)dy,

with gZt−1(y) =
d

y2
exp

(
−d

y

)

= 2 exp

(
− c

u

)∫ u

0

[
1− Φ

(
ac
√
y

u
√
2

)]
gZt−1(y)dy,

by (20),

= 2 exp

(
− c

u

)
exp

(
−d

u

)

− 2 exp

(
− c

u

)∫ u

0

Φ

(
ac
√
y

u
√
2

)
d

y2
exp

(
−d

y

)
dy.(21)

The integral in equation (21) can be expressed as∫ u
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u

)

− ac

4u
√
π

∫ u

0

1
√
y
exp

(
−d

y
− a2c2y

4u2

)
dy.(22)

Using integration method similar to that applied in the proof
of Proposition 3, we can show

ac

4u
√
π

∫ u

0

1
√
y
exp

(
−d

y
− a2c2y

4u2

)
dy

= −1

2
exp

(
ac
√
d

u

)[
1− Φ

(
ac+ 2

√
d√

2u

)]

+
1

2
exp

(
−ac

√
d

u

)
Φ

(
ac− 2

√
d√

2u

)
.(23)

Hence,

(22) = Φ

(
ac√
2u

)
exp

(
−d

u

)
+

1

2
exp

(
ac
√
d

u

)
[
1− Φ

(
ac+ 2

√
d√

2u

)]

− 1

2
exp

(
−ac

√
d

u

)
Φ

(
ac− 2

√
d√

2u

)
.(24)

Substituting (24) for integral in (21), we get the desired
result.

Proof of Result #3.

P (Zt > u,Zt−1 > u)

= 1− P (Zt ≤ u)− P (Zt−1 ≤ u) + P (Zt ≤ u, Zt−1 ≤ u)

= 1− exp

(
−d

u

)
− exp

(
−d

u

)
+ exp

(
− c

u

){
2 exp

(
−d

u

)

− 2 exp

(
−d

u

)
Φ

(
ac√
2u

)

− exp

(
ac
√
d

u

)[
1− Φ

(
ac+ 2

√
d√

2u

)]

+ exp

(
−ac

√
d

u

)
Φ

(
ac− 2

√
d√

2u

)}
by (13),

= exp

(
− c

u

){
exp

(
c

u

)
− 2 exp

(
−d− c

u

)
+ 2 exp

(
−d

u

)

− 2 exp

(
−d

u

)
Φ

(
ac√
2u

)

− exp

(
ac
√
d

u

)[
1− Φ

(
ac+ 2

√
d√

2u

)]

+ exp

(
−ac

√
d

u

)
Φ

(
ac− 2

√
d√

2u

)}
.(25)

Expanding (25) to the order o( 1
u2 ), we get

(25) =

[
1− c

u
+

c2

2u2
+ o

(
1

u2

)]{
1 +

c

u
+

c2

2u2
+ o

(
1

u2

)

− 2

[
1− d− c

u
+

(d− c)2

2u2
+ o

(
1

u2

)]

+ 2

[
1− d

u
+

d2

2u2
+ o

(
1

u2

)]
− 2

[
1− d

u
+

d2

2u2

+ o

(
1

u2

)][
1

2
+

ac

2
√
uπ

− a3c3

24u3/2
√
π
+ o

(
1

u2

)]
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−
[
1 +

ac
√
d

u
+

a2c2d

2u2
+ o

(
1

u2

)][
1

2

− ac+ 2
√
d

2
√
uπ

+
(ac+ 2

√
d)3

24u3/2
√
π

+ o

(
1

u2

)]

+

[
1− ac

√
d

u
+

a2c2d

2u2
+ o

(
1

u2

)]
[
1

2
+

ac− 2
√
d

2
√
uπ

− (ac− 2
√
d)3

24u3/2
√
π

+ o

(
1

u2

)]}

=

[
1− c

u
+

c2

2u2
+ o

(
1

u2

)]
[

2acd

u3/2
√
π
− c2 − 4cd+ d2

2u2
+ o

(
1

u2

)]

∼ 2acd√
π
u− 3

2 ,

∼ cstP (Zt > u)1/η, because P (Zt > u) ∼ d u−1.

Proof of Result #4.

E

(
exp

{
− 1

Zt, 12

})
=

∫ ∞

0

exp

(
−1

z

)
exp

(
−d

z

)
d

z2
dz

=
d

d+ 1

∫ ∞

0

exp

(
−d+ 1

z

)
d+ 1

z2
dz

=
d

d+ 1
.

Before calculating E(exp{− 1
Z

t, 1
2

− 1
Z

t−1, 1
2

}), we find the joint

density f(x, y) of (Zt, Zt−1). Similar to (21),

P (Zt, 12
≤ x, Zt−1, 12

≤ y)

= 2 exp

(
− c

x

)
exp

(
−d

y

)

− 2 exp

(
− c

x

)∫ y

0

Φ

(
ac
√
w

x
√
2

)
d

w2
exp

(
− d

w

)
dw.

Then

f(x, y) = 2

[
c

x2
exp

(
− c

x

)
d

y2
exp

(
−d

y

)

− c

x2
exp

(
− c

x

)
d

y2
exp

(
−d

y

)
Φ

(
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√
y

x
√
2

)

+ exp

(
− c

x

)
d

y2
exp

(
−d

y

)
Φ′

(
ac
√
y

x
√
2

)
ac
√
y

x2
√
2

]
≡ 2[I1 − I2 + I3].(26)

Then

E

(
exp

{
− 1

Zt, 12

− 1

Zt−1, 12

})

= 2

∫ ∞

0

∫ ∞

0

exp

(
− 1

x
− 1

y

)
[I1 − I2 + I3]dxdy(27)

and

∫ ∞

0

∫ ∞

0

exp

(
− 1

x
− 1

y

)
I1dxdy

=

∫ ∞

0

exp

(
−c+ 1

x

)
c

x2
dx

∫ ∞

0
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(
−d+ 1

y

)
d

y2
dy

=

(
c

c+ 1

)(
d

d+ 1

)
,(28) ∫ ∞

0

∫ ∞

0
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(
− 1

x
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y

)
I2dxdy

=

∫ ∞

0

{
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(
−c+ 1

x

)
c

x2

∫ ∞

0
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(
−d+ 1

d

)
d

y2

Φ

(
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√
y

x
√
2

)
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}
dx

=

∫ ∞

0

{
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(
−c+ 1

x

)
c
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d

d+ 1

∫ ∞

0

Φ

(
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√
y

x
√
2

)

d exp

(
−d+ 1

y
)

}
dx

=

∫ ∞

0

{
exp

(
−c+ 1

x

)
c

x2

d

d+ 1

[
1−

∫ ∞

0
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(
−d+ 1

y

)

Φ′
(
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√
y

x
√
2

)
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2x
√
2y
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dx

=

(
c

c+ 1

)(
d

d+ 1

)
− d

d+ 1

∫ ∞

0

∫ ∞

0
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(
−c+ 1

x

)
c
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exp

(
−d+ 1

y

)
Φ′

(
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√
y

x
√
2

)
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2x
√
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=

(
c
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)(
d
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)
− d

d+ 1

∫ ∞

0
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(
−c+ 1

x

)
c

x2
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4x
√
π∫ ∞

0

1
√
y
exp

(
−d+ 1

y
− a2c2y

4x2

)
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=

(
c
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)(
d

d+ 1

)
− d

d+ 1

∫ ∞

0

exp

(
−c+ 1

x

)
c

x2

1

2

exp

(
−ac

√
d+ 1

x

)
dx

=

(
c

c+ 1

)(
d

d+ 1

)
− 1

2

(
d

d+ 1

)
∫ ∞

0

exp

(
−c+ 1 + ac

√
d+ 1

x

)
c

x2
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=

(
c

c+ 1

)(
d

d+ 1

)
− 1

2

(
d

d+ 1

)(
c

c+ 1 + ac
√
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)
,(29)

where the sixth equality is obtained by a calculation similar

to that applied in obtaining equation (23).

∫ ∞

0

∫ ∞

0

exp

(
− 1

x
− 1

y

)
I3dxdy

=

∫ ∞

0

∫ ∞

0

exp

(
−c+ 1

x

)
exp

(
−d+ 1

y

)
d

y3/2
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2x2
√
π
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exp

(
−a2c2y

4x2

)
dxdy

=

∫ ∞

0

exp

(
−c+ 1

x

)
acd

2x2
√
π

∫ ∞

0

1

y3/2
exp

(
−d+ 1
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− a2c2y

4x2

)
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=

∫ ∞

0

exp

(
−c+ 1

x

)
acd

2x2

1√
d+ 1

exp

(
−ac

√
d+ 1

x

)
dx

=
1

2

(
acd√
d+ 1

)∫ ∞

0

1

x2
exp

(
−c+ 1 + ac

√
d+ 1

x

)
dx

=
1

2

acd√
d+ 1(c+ 1 + ac

√
d+ 1)

,(30)

where the third equality is obtained by a calculation similar
to that applied in the proof of Proposition 3.

Combining the results of (27), (28), (29), (30), we get

E

(
exp

{
− 1

Zt, 12

− 1

Zt−1, 12

})

= 2

[(
c

c+ 1

)(
d

d+ 1

)
−
(

c
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)(
d

d+ 1
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+
1

2

(
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)(
c

c+ 1 + ac
√
d+ 1

)

+
1

2

acd√
d+ 1(c+ 1 + ac

√
d+ 1)

]

=
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√
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√
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.
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