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Estimation in semiparametric time series
regression∗
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†
and Degui Li

In this paper, we consider a semiparametric time series
regression model and establish a set of identification con-
ditions such that the model under discussion is both iden-
tifiable and estimable. We estimate the parameters in the
model by using the method of moment and the nonlinear
function by using the local linear method, and establish the
asymptotic distributions for the proposed estimators. We
then discuss how to estimate a sequence of local departure
functions nonparametrically when the null hypothesis is re-
jected and establish some related asymptotic theory. Both
the simulation study and the empirical application are also
provided to illustrate the finite sample behavior of the pro-
posed models and methods.
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1. INTRODUCTION

Various estimation and specification testing problems in
time series analysis have been proposed and discussed exten-
sively in recent years. Interest focuses on general nonpara-
metric and semiparametric time series models under station-
arity assumption. Recent studies include [1, 3, 4, 8, 11, 12]
as well as the references therein. In the semiparametric case,
interest is on the estimation and specification testing in a
semiparametric time series model when there are at least
two different time series involved. In both theory and prac-
tice, there is some need to establish the mathematical re-
lationship between one time series and another, and then
discuss both the estimation and specification testing in such
a model. When the same time series variable is fully involved
in both the parametric and nonparametric components of a
semiparametric time series regression model, to the best of
our knowledge, the issue of how to identify and estimate the
model has not been addressed.

∗This work was supported by an Australian Research Council Discov-
ery Grants Program Grant Number: DP1096374.
†Corresponding author.

This paper starts with a semiparametric time series
model of the form

(1.1) Yt = V τ
t β +Δ(Vt) + et, t = 1, 2, . . . , n,

where {Vt} is a stationary sequence of d-dimensional ran-
dom vectors, β is a vector of unknown parameters, Δ(·) is
an unknown function defined on Rd, {et} is a sequence of
independent and identically distributed (i.i.d.) errors, and
n is the number of observations. This paper focuses on the
case of 1 ≤ d ≤ 3. In the case of d ≥ 4, to avoid “the curse
of dimensionality”, one may need to approximate Δ(·) by
a partial sum of univariate functions in a similar fashion to
Section 2.3 of [4].

Model (1.1) has different types of motivations and ap-
plications to the conventional semiparametric time series
model of the form Yt = Uτ

t β + Δ(Vt) + et, in which Ut

and Vt are two different stationary time series such that
Σ = E[(Ut − E[Ut|Vt])(Ut − E[Ut|Vt])

τ ] is a positive defi-
nite matrix. In model (1.1), the linear component in many
cases plays the leading role while the nonparametric com-
ponent behaves like a type of unknown departure from
the classic linear model. Since such departure is usually
unknown, it is not unreasonable to treat Δ(·) as a non-
parametrically unknown function. In the process of esti-
mating both β and Δ(·) in model (1.1) consistently, ex-
isting methods, as discussed in the literature for the par-
tially linear case in [4, 8] for example, are not valid because
Σ = E[(Vt −E[Vt|Vt])(Vt −E[Vt|Vt])

τ ] = 0. In Section 2 be-
low, we consider a more general semiparametric time series
model than model (1.1) and propose using a nonlinear least
squares (LS) estimation method to deal with the estima-
tion of the unknown parameter and function involved. Re-
cently, a closely-related paper [2] proposes a unified family
of parametrically-guided nonparametric estimation schemes,
which combines the merits of both the parametric and non-
parametric methods and incorporates the prior information.

In Section 2, we also consider an extension of model (1.1)
to cover the case where an extended form of (1.1) becomes
a semiparametric model as an alternative involved in the
hypotheses:

H0 : E[Yt|Vt = v] = vτβ0(1.2)

versus H1 : E[Yt|Vt = v] = vτβ1 +Δn(v),
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where β0 (or β1) is the true value of the parameter β under
H0 (or H1), and {Δn(v)} is a sequence of nonparametri-
cally unknown departure functions. Interest in the litera-
ture mainly focuses on constructing a test for H0. To the
best of our knowledge, existing literature does not provide
us with any guidance about how to specify an alternative
form and then consistently estimate Δn(·) when H0 is re-
jected. The paper [5] suggests using a semiparametric esti-
mation method in the practical implementation of an opti-
mal bandwidth selection method when a kernel-based test
is used. Section 2.3 below systematically discusses how to
identify and then estimate both β1 and Δn(·) consistently.

In both model (1.1) and the semiparametric model in-
volved in the alternative hypothesis (1.2), we allow {Vt}
to have a deterministic trend component. As a consequence,
both models are more applicable to deal with the case where
the nonstationarity of {Vt} is caused by a deterministic
trend function. Such cases include consumer price indices
and global temperature data. The rest of the paper is orga-
nized as follows. Section 2 discusses both the identification
and estimation issues. Section 3 mentions some extensions.
A simulation study and real data analysis are given in Sec-
tion 4. Some concluding remarks are given in Section 5. All
mathematical proofs are given in Appendix A.

2. IDENTIFICATION AND ESTIMATION

In this section, we first give some sufficient conditions
to ensure that the models under discussion are identifiable,
and then construct parametric and nonparametric estima-
tion methods for the parameter and the nonlinear function,
respectively. In addition, we also establish asymptotic dis-
tributions for the proposed estimators.

2.1 Nonlinear LS estimation method

Consider a semiparametric nonlinear time series model of
the form

Yt = g(Vt, θ1) + Δ(Vt) + et, t = 1, 2, . . . , n,(2.1)

where g(·, θ1) is a known link function indexed by an un-
known parameter vector θ1 ∈ Θ ⊂ Rp (p ≥ 1), {et} is a
sequence of i.i.d. random errors, Δ(·) is an unknown func-
tion defined on Rd, and {Vt} is generated by

(2.2) Vt = H

(
t

n

)
+ ut,

in which H(·) is a d-dimensional vector of unknown func-
tions defined on R and {ut} is a sequence of i.i.d. random
errors.

It is easy to see that model (2.1) includes model (1.1) as
a particular case. {Vt} defined as above allows for the ex-
istence of deterministic trends in the regressors. To present
the main ideas and make this paper more concise, we con-
sider the case of d = 1 in Section 2 and Appendix A. Sec-
tion 3 discusses how to deal with the case of d ≥ 2.

As discussed in Section 1, there are various motivations
for us to consider a semiparametric time series model of the
form (2.1). In the analysis of economic and financial data,
one may motivate the proposal of model (2.1) by considering
a general parametric nonlinear model of the form

(2.3) Yt = g(Vt, θ1) + εt,

where the error process {εt} is endogenously correlated with
{Vt} through an additive model of the form εt = Δ(Vt)+et.
In such a case, {Vt} and {εt} are likely to be dependent on
each other.

Before we discuss the identifiability and estimability of
θ1 and Δ(·) in model (2.1), we introduce the following con-
ditions.

A1 (i) {ut} is an i.i.d. sequence, and its density function
pu(·) is continuous.
(ii) {et} is an i.i.d. sequence with 0 < σ2

e := E(e21) < ∞.
In addition, P{E(et|ut) = 0} = 1 and the joint density
function pe,u(·, ·) of et and ut is continuous.

A2 (i) The nonlinear regression function g(v, θ) is twice dif-
ferentiable with respect to θ, and both Δ(·) and H(·)
are continuous.
(ii) Denoting the partial derivative of g(v, θ) with re-

spect to θ by ġ(v, θ) = ∂g(v,θ)
∂θ , then

Γ(θ) :=

∫ 1

0

[ ∫
Δ(v) ġ(v, θ)pu(v −H(r))dv

]
dr = 0

(2.4)

for all θ ∈ Θ, and

∫ 1

0

{∫
[g(v, θ1)− g(v, θ)] ġ(v, θ)pu(v −H(r))dv

}
dr �= 0

(2.5)

uniformly in θ ∈ Θ(δ) = {θ : ‖θ − θ1‖ ≥ δ} for any
δ > 0.

A3 (i) The matrix

Σ(θ1) :=

∫ 1

0

[ ∫
ġ(v, θ1)ġ

τ (v, θ1)pu(v −H(r))dv

]
dr

is positive definite. In addition, ġ(v, θ) is continuous in
v, and the matrix

Σe :=

∫ 1

0

[ ∫
σ2(v, r)ġ(v, θ1)ġ

τ (v, θ1)pu(v−H(r))dv

]
dr

is positive definite, where σ2(v, r) =
∫ ∞
−∞ x2pe,u(x, v −

H(r))dx.
(ii) Δ(·) is twice continuously differentiable, and the
matrix

ΣΔ :=

∫ 1

0

[ ∫
Δ2(v)ġ(v, θ1)ġ

τ (v, θ1)pu(v−H(r))dv

]
dr

is positive definite.
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A4 (i) K(·) is a symmetric and continuous probability den-
sity function with

∫
K2(u)du < ∞ and

∫
u2K(u)du <

∞.
(ii) The bandwidth b satisfies limn→∞ b = 0,
limn→∞ nb = ∞ and limn→∞ nb5 < ∞.

A1 imposes some conditions on the error terms et and
ut. The i.i.d. conditions are assumed to simplify the proofs
of the main results. In fact, they can be relaxed at the cost
of involving more tedious proofs. For example, we can show
that the main results still hold under some mixing depen-
dence conditions. A2 is imposed to ensure that θ1 in (2.1)
is identifiable and estimable. In particular, (2.5) in A2(ii) is
similar to

(2.6)

∫ 1

0

{ ∫
[g(v, θ1)− g(v, θ)]2pu(v −H(r))dv

}
dr > 0

uniformly in θ ∈ Θ(δ) = {θ : ‖θ − θ1‖ ≥ δ} for any δ > 0.
A special case of (2.6) with H(·) ≡ 0 is commonly used in
the literature (see, for example, [13]). A3 is mainly used for
the establishment of the asymptotic theory such as Theo-
rem 2.2 and Theorem 2.3 below. A4 is commonly used in
nonparametric kernel estimation (see, for example, [3]).

To estimate both θ1 and Δ(·) involved in (2.1), we start
with a nonlinear LS estimation method by choosing the true
version, θ1, of θ such that

1

n

n∑
t=1

E[Yt − g(Vt, θ1)]
2(2.7)

= argmin
θ

1

n

n∑
t=1

E[Yt − g(Vt, θ)]
2.

To ensure that θ1 is identifiable and estimable, we pro-
vide the following proposition; its proof will be given in Ap-
pendix A.

Proposition 2.1. Let A1 and A2 hold. Then, θ1 is the
unique solution of (2.7).

Based on Proposition 2.1, the sample version of (2.7) sug-
gests using the Method of Moments to estimate θ1 by

(2.8) θ̂1 = argmin
θ

1

n

n∑
t=1

[Yt − g(Vt, θ)]
2.

We then estimate Δ(·) by a local linear estimator of the
form

(2.9) Δ̂(v) =

n∑
t=1

Wnt(v)[Yt − g(Vt, θ̂1)],

where {Wnt(v)} is a sequence of weight functions defined by

Wnt(v) =
Kv,b(Vt)

n∑
k=1

Kv,b(Vk)
and Kv,b(Vt) =

1

b
Kn

(
Vt − v

b

)
,

with Kn(
Vt−v

b
) = K(Vt−v

b
)[Sn,2(v) − (Vt−v

b
) Sn,1(v)] and

Sn,j(v) = 1
nb

∑n
s=1 K(Vs−v

b )(Vs−v
b )j for j = 1, 2, and K(·)

and b are the kernel function and bandwidth, respectively.
We then establish an asymptotic theory for θ̂1 and Δ̂(·)

in Theorem 2.2 below.

Theorem 2.2. Let (2.1) and A1–A3 hold.
(i) Then as n → ∞,

√
n(θ̂1 − θ1)

d−→ N(0,Σ−1(θ1)(Σe +ΣΔ)Σ
−1(θ1)),(2.10)

where Σ(θ1), Σe and ΣΔ were defined in A3.
(ii) If, in addition, A4 is satisfied, then as n → ∞

(2.11)
√
nb(Δ̂(v0)−Δ(v0)− b2 c1n(v0))

d−→ N(0,Σ1(v0)),

where c1n(v0) =
1
2 Δ′′(v0)

∫
u2K(u)du+oP (1) and Σ1(v0) =

σ2(v0)
f(v0)

∫
K2(u)du, in which σ2(v0) =

∫ 1

0
σ2(v0, r)dr,

σ2(v0, r) =
∫ ∞
−∞ x2pe,u(x, v0 − H(r))dx and f(v0) =∫ 1

0
pu(v0 −H(r))dr > 0.

Theorem 2.2(i) shows that the parametric estimator θ̂1
has the same root-n rate of convergence as in the parametric
linear model. The influence of Δ(·) and the error process
{et} on the asymptotic distribution is reflected by ΣΔ and
Σe in the asymptotic variance matrix. Theorem 2.2(ii) shows
that it is achievable to obtain a standard result for the local
linear estimator. The detailed proof of Theorem 2.2 will be
given in Appendix A.

As discussed in Section 2.2 and then Section 4 below, the
proposed estimator θ̂1 is more efficient than the conventional
weighted least squares estimator.

2.2 Semiparametric weighted LS estimation
method

If we follow the literature ([7, 8] for example) by treating
model (2.1) as a partially nonlinear model of the form

(2.12) Yt − g(Vt, θ1) = Δ(Vt) + et

and estimating Δ(·) by

(2.13) Δ(v) = Δ(v, θ1) =

n∑
t=1

Wnt(v)[Yt − g(Vt, θ1)],

we will then obtain a semiparametric weighted least squares
estimator, θ̃1, defined by

θ̃1 = argmin
θ

n∑
t=1

[Yt − g(Vt, θ)−Δ(Vt, θ)]
2(2.14)

= argmin
θ

n∑
t=1

[Ỹt − g̃(Vt, θ)]
2,

where Ỹt = Yt −
∑n

s=1 Wns(Vt)Ys and g̃(Vt, θ) = g(Vt, θ) −∑n
s=1 Wns(Vt)g(Vs, θ), in whichWns(v) was defined in (2.9).
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Due to the local linear method, one may show, similarly
to the proof of Theorem 2.2(ii), that as n → ∞

g̃(Vt, θ1) = (1 + oP (1))c
τ
1g20(Vt, θ1)b

2(2.15)

and Δ̃(Vt) = (1 + oP (1))Δ
′′(Vt)b

2,

where g20(v, θ1) = ∂2g(v,θ1)
∂v2 , Δ̃(Vt) = Δ(Vt) −∑n

s=1 Wns(Vt)Δ(Vs), and c1 is a constant vector.
Analogously to the proof of Theorem 2.2(i), we then have

as n → ∞

b2(θ̃1 − θ1)

(2.16)

= c2(1 + oP (1))

[
n∑

t=1

ġ20(Vt, θ1)ġ
τ
20(Vt, θ1)

]−1

×
n∑

t=1

ġ20(Vt, θ1) et

+ c2b
2(1 + oP (1))

[
n∑

t=1

ġ20(Vt, θ1)ġ
τ
20(Vt, θ1)

]−1

×
n∑

t=1

ġ20(Vt, θ1)Δ
′′(Vt),

where c2 is a constant, ġ20(v, θ1) = ∂g20(v,θ)
∂θ |θ=θ1

and we have used
∑n

t=1 ġ20(Vt, θ1)ẽt = (1 +
oP (1))

∑n
t=1 ġ20(Vt, θ1) et, in which ẽt = et −∑n

s=1 Wns(Vt)es.
While the first term on the right-hand side of (2.16)

is of order OP (n
−1/2), the second term may only be of

order OP (b
2), which implies that θ̃1 may be inconsistent

as θ̃1 − θ1 = OP (1). Even in some special cases where
Var[

∑n
t=1 ġ20(Vt, θ1)Δ

′′(Vt)] = O(n), we can only show that

the rate of convergence of θ̃1 to θ1 is only proportional to
n−1/2b−2, which is much slower than the rate of n−1/2 for
θ̂1, because of b → 0. Furthermore, letting b = cn−1/5,
the rate of convergence of θ̃1 to θ1 is only proportional to
n−1/10 for such a special case. This is the main reason we
propose using θ̂1 rather than θ̃1 in this paper. In general,
this is the reasoning why the semiparametric estimation
method proposed for the conventional partially nonlinear
model Yt = g(Ut, θ1) + Δ(Vt) + et, in which Ut and Vt are
different sets of regressors, is not directly applicable to the
partially nonlinear model (2.1).

2.3 Estimation of local departure functions

We next consider a nonlinear model of the form

Yt = m(Vt) + et, t = 1, . . . , n,(2.17)

where m(·) is a smooth function, {et} is a sequence of i.i.d.
errors and {Vt} was defined in (2.2). We are then interested

in estimating a class of local nonparametric departure func-
tions involved in the following alternative hypothesis:

H0 : m(v) = g(v, θ0)(2.18)

versus H1 : m(v) = g(v, θ1) + Δn(v),

where θ0 ∈ Θ is the true value of the parameter θ under H0,
θ1 ∈ Θ and {Δn(·)} is a sequence of unknown functions,
which are referred to as the local departure functions in this
paper.

As discussed in the literature (see, for example, [4, 5, 10,
11]), the choice of this type of semiparametric alternatives is
mainly because interest in some cases is to detect whether
there is a kind of slight departure from a commonly used
parametric form when there is no sufficient evidence to sug-
gest accepting the null hypothesis. Also in such cases, the
level of such departure may be unknown and will need to be
estimated. To the best of our knowledge, the issue of how
to consistently estimate Δn(·) has not been discussed in the
literature.

Similarly to condition (2.4) in Proposition 2.1, we assume
that for θ ∈ Θ,

Γn(θ) :=

∫ 1

0

[ ∫
Δn(v) ġ(v, θ)pu(v −H(r))dv

]
dr = O(δn)

(2.19)

with δn → 0 as n → ∞. Similarly to (2.8), the resulting es-

timator of θ1 is still denoted by θ̂1. We then estimate Δn(v)
by

(2.20) Δ̂n(v) =

n∑
t=1

Wnt(v)[Yt − g(Vt, θ̂1)],

where {Wnt(v)} was defined in (2.9).

To establish an asymptotic theory for θ̂1 and Δ̂n(v), we
need to introduce the following condition:

A5 The local departure function Δn(v) is twice continu-
ously differentiable. In addition, as n → ∞,

δ1n :=

∫ 1

0

[ ∫
‖ġ(v, θ1)Δn(v)‖2pu(v−H(r))dv

]
dr → 0.

We now establish the asymptotic distributions for the
proposed estimators of θ1 and Δn(·) involved in the alter-
native hypothesis in (2.18).

Theorem 2.3. Let (2.19), A1, A2(i), A3(i) and A5 hold.
Suppose that Γn(θ) is continuous in θ.

(i) Then, as n → ∞,

(2.21)
√
n(θ̂1 − θ1 − c2n)

d−→ N(0,Σ−1(θ1)ΣeΣ
−1(θ1)),

where
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c2n =

∫ 1

0

[ ∫
Δn(v) ġ(v, θ1)pu(v −H(r))dv

]
dr

+OP (n
−1/2δ1n)

= OP (δn + n−1/2δ1n).

(ii) If, in addition, A4 is satisfied, then as n → ∞,

√
nb(Δ̂n(v0)−Δn(v0)− b2 c3n(v0) + τn)(2.22)

d−→ N(0,Σ1(v0)),

where c3n(v0) = 1
2 Δ′′

n(v0)
∫
u2K(u)du and τn =

OP (n
−1/2 + δn).

Theorem 2.3(i) shows that the parametric estimator of
θ1 still has the root-n rate of convergence. When the de-
pendence of Δn(·) on n is explicitly specified as Δn(v) =
δn Δ(v), in which Δ(v) satisfies A2 and A3 and δn → 0,
we have the following corollary; its proof will be given in
Appendix A.

Corollary 2.4. Let Δn(v) = δn Δ(v) with δn → 0. Suppose
that A1–A3 are satisfied.

(i) Then as n → ∞,

(2.23)
√
n(θ̂1 − θ1)

d−→ N(0,Σ−1(θ1)ΣeΣ
−1(θ1)).

(ii) If, in addition, A4 is satisfied and
√
nb5 δn → 0, then

as n → ∞,

(2.24)
√
nbΔ2

n(v0)

(
Δ̂n(v0)

Δn(v0)
− 1

)
d−→ N(0,Σ1(v0)),

where Σ1(v0) is defined in Theorem 2.2(ii).

3. DISCUSSION ON POSSIBLE
EXTENSIONS

Section 2 discusses two classes of semiparametric time
series models and then establishes asymptotic properties for
the proposed estimators for the case of d = 1. As discussed
in the literature ([1, 4, 11] for example), when d is large,
one will need to employ a dimensional-reduction technique
to address the issue of the “curse of dimensionality”.

One possible approach is to use the following additive
model

Yt = g(Vt, θ1) +
d∑

j=1

Δj(Vt,j) + et,(3.1)

where each Δj(·) is an unknown univariate function defined
on R, Vt = (Vt,1, . . . , Vt,d)

τ , and {et} is the same as in (2.1).
If we assume that A1 and A2 are satisfied with (2.4) replaced
by

Γ∗(θ)

=

∫ 1

0

{∫
ġ(v, θ)

[
d∑

j=1

Δj(vj)

]
pu(v −H(r))dv1 . . . dvd

}
dr

= 0

for all θ ∈ Θ, then the unknown parameter vector θ1 can still

be consistently estimated by θ̂1. Function Δ(v) =
d∑

j=1

Δj(vj)

can then be estimated as in (2.9) and each of the functions
Δj(·) can be estimated by the marginal integration method
(see, for example, Section 2.3 of [4]).

Another possible approach is to adopt a semiparametric
single-index model of the form

Yt = g(Vt, θ1) + Δ(V τ
t γ) + et,(3.2)

where γ is a vector of unknown parameters. Model (3.2) is
an extension of the partially single-index model discussed in
[14]. Estimation of θ1, γ and Δ(·) is then mainly based on the
identifiability and estimability of model (3.2). Establishing
the corresponding conditions and results to those given in
[14] requires further study and therefore is left for future
research.

4. SIMULATION AND EMPIRICAL
APPLICATION

In this section, we provide a Monte Carlo simulation
study and a real data analysis to illustrate the finite sample
performance of the proposed estimation method. We em-
ploy the “leave-one-out” cross-validation method to select
the bandwidth involved in the estimation of the nonpara-
metric function Δ(·). A quadratic kernel function of the form
K(u) = 3

4 (1− u2)I(|u| < 1) is used throughout this section.

Example 4.1. Consider a pair of regression models

Yt = θ1V
2
t +Δ(Vt) + et(4.1)

and Vt = H

(
t

n

)
+ ut, t = 1, . . . , n,

where θ1 = 0.8, Δ(v) = 2v, H(r) = r − 0.5, et
i.i.d.∼

N(0, 0.52), ut
i.i.d.∼ U(−0.1, 0.1), and {et} and {ut} are in-

dependently generated. It is easy to verify that the identi-
fication conditions (i.e. A1 and A2) in Proposition 2.1 are
satisfied in this example. We generated 1,000 realizations,
each consisting of n = 200, 500 and 1,000 observations.

Let θ̂1 denote the LS estimator of θ1 introduced in Sec-
tion 2.1, and θ̃1 denote the semiparametric weighted LS esti-
mator of θ1 introduced in Section 2.2. The means and stan-
dard errors (SEs) of the two estimators of the parameter θ1
based on 1,000 replications are reported in Table 4.1 with
the SEs parenthesized.
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Table 4.1. The results for θ1 in Example 4.1

Sample size ̂θ1 ˜θ1
200 0.9071 (0.3610) 87.2730 (3.8249e+ 003)
500 0.8359 (0.2183) −22.7360 (454.3795)
1,000 0.8196 (0.1611) 3.1732 (363.5797)

Figure 4.1. The true curve Δ(v) (solid lines) and the mean of

Δ̂(v) over 1,000 realizations (dashed lines) in Example 4.1
with sample size 1,000.

Table 4.1 shows that the semiparametric weighted LS
method, which is commonly used in estimating ordinary par-
tially linear models, fails to provide a good estimate for θ1.
Its estimates deviate far from the true value. This indicates
that the semiparametric weighted LS method is not appli-
cable to model (4.1). By contrast, our proposed LS method
provides an accurate estimate of θ1, and its corresponding
SE decreases as sample size increases.

The mean estimated curve of Δ(·) by the LS method at
the points −0.5, −0.4, . . . , 0.4, 0.5 is plotted in Figure 4.1,
where the solid line represents the true curve and the dashed
line represents the estimated curve. As the semiparametric
weighted LS method cannot estimate model (4.1) well (as
can be seen from Table 4.1), we do not plot the estimated
curve resulting from this method. Figure 4.1 shows that the
solid line and the dashed line almost coincide, which implies
that the local linear estimation method performs very well.

Example 4.2. We next use our model and estima-
tion method to analyze the relationship between the
global temperature and Southern Oscillation Index (SOI).
The data we used were collected over the period
1866 to 2009 and can be downloaded from the url:
http://www.cru.uea.ac.uk/cru/data/. The SOI is de-
fined as the mean sea level pressure difference between Dar-
win and Tahiti and is known to have a strong association

Figure 4.2. (a) The annual mean of the global temperature
series (1866–2009), (b) the annual SOI series (1866–2009),
and (c) the annual mean of the global temperatures against

the annual SOI.

with both global and regional temperature series ([9]). For
recent development on the modelling of the relationship be-
tween the temperature and SOI, see [6, 15] for references.

Let Vt and Yt, 1 ≤ t ≤ 144, denote the annual SOI and
global temperature of t-th year. Figure 4.2 gives the plots
of these two series, as well as the plot of Yt against Vt. We
then fit the data with the following semiparametric model:

(4.2) Yt = Vtθ +Δ(Vt) + et,

where θ is the parameter and {et} is the random error. As
we allow for the existence of a trend component in Vt, we do
not need to make transformations to the raw SOI data, such
as filtering or differencing in [15], before fitting the model.

Applying the parametric LS estimation method, we get
the estimated value of the parameter as θ̂ = −0.0649 with
standard deviation 0.0011. And the nonparametric local lin-
ear estimate of the curve Δ(·), along with its 95% confidence
band is given in Figure 4.3, which shows that the values of
this estimated curve ranges between −0.1 and −0.4. This
indicates that there is a departure from linearity in the rela-
tionship between the global temperature and the SOI, and
thus a purely linear model might not be able to perfectly
capture this relationship. Our semiparametric model (4.2),
on the other hand, may provide a better way of analyzing
the relationship.

5. CONCLUSIONS

In this paper, we have proposed two classes of semipara-
metric time series models and then discussed how to identify
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Figure 4.3. The estimated curve of Δ(·), as well as its 95%
confidence band.

and estimate the proposed models. Because of the particular
features of the proposed models, existing estimation meth-
ods for conventional partially linear models are not appli-
cable. In particular, Section 2.3 has discussed the issue of
how to consistently estimate a sequence of nonparametric
departure functions in a class of local alternatives involved
in a model specification testing problem. Such an estimation
procedure may be useful in several aspects, such as studying
the power function of a nonparametric test and the choice of
a smoothing parameter involved in the nonparametric test.
Section 3 has briefly discussed possible extensions. Both sim-
ulated and real data examples have been given in Section 4
to show the implementability of the proposed models and
methods.

APPENDIX A. PROOFS OF MAIN RESULTS

Proof of Proposition 2.1. Letting

Λ(θ) =
1

n

n∑
t=1

E[Yt − g(Vt, θ)]
2,

we then show that θ1 is the unique minimizer of Λ(θ). Taking
the derivative of Λ(θ) and letting it equal zero, we have

1

n

n∑
t=1

E{[g(Vt, θ1)− g(Vt, θ) + Δ(Vt) + et]ġ(Vt, θ)} = 0.

(A.1)

It suffices to show that θ1 is the unique solution of (A.1).
By P{E(et|ut) = 0} = 1 and (2.4), it is easy to verify that

1

n

n∑
t=1

E[etġ(Vt, θ)] = 0 and
1

n

n∑
t=1

E[Δ(Vt) ġ(Vt, θ)] = 0.

Hence, θ1 is a solution of (A.1). Furthermore, by (2.5), we
have

1

n

n∑
t=1

E{[g(Vt, θ1)− g(Vt, θ)]ġ(Vt, θ)} �= 0

uniformly in θ ∈ Θ(δ) = {θ : ‖θ − θ1‖ ≥ δ} for any δ > 0.
Thus, θ1 is the unique solution of (A.1).

Proof of Theorem 2.2. Observe that

θ̂1 − θ1 =

[
n∑

t=1

ġ(Vt, θ1)ġ
τ (Vt, θ1)

]−1

(A.2)

×
{

n∑
t=1

ġ(Vt, θ1)[Δ(Vt) + et]

}
(1 + oP (1)).

By the law of large numbers for i.i.d. sequences, we have

(A.3)
1

n

n∑
t=1

ġ(Vt, θ1)ġ
τ (Vt, θ1) = Σ(θ1) + oP (1).

Hence, to prove Theorem 2.2(i), we need only to show that

(A.4)
1√
n

n∑
t=1

ġ(Vt, θ1)[Δ(Vt) + et]
d−→ N(0,Σe +ΣΔ).

Note that

Var

{
1√
n

n∑
t=1

ġ(Vt, θ1)[Δ(Vt) + et]

}

=
1

n
E

{
n∑

t=1

ġ(Vt, θ1)[Δ(Vt) + et]

}2

= Σe +ΣΔ.

Then, by the central limit theorem for i.i.d. sequences, (A.4)
follows and thus the proof of Theorem 2.2(i) is completed.
Theorem 2.2(ii) follows by (2.9) and the standard arguments
for local linear estimators.

Proof of Theorem 2.3. By a standard argument, we have

θ̂1 − θ1(A.5)

=

[
n∑

t=1

ġ(Vt, θ1)ġ
τ (Vt, θ1)

]−1

×
n∑

t=1

ġ(Vt, θ1)Δn(Vt) (1 + oP (1))

+

[
n∑

t=1

ġ(Vt, θ1)ġ
τ (Vt, θ1)

]−1 n∑
t=1

ġ(Vt, θ1)et.

By (A.3) and the central limit theorem for i.i.d. sequences,
we have
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√
n

[
n∑

t=1

ġ(Vt, θ1)ġ
τ (Vt, θ1)

]−1 n∑
t=1

ġ(Vt, θ1)et(A.6)

d−→ N(0,Σ−1(θ1)ΣeΣ
−1(θ1)).

Meanwhile, as {Vt} is a sequence of independent variables,
we have

E

∥∥∥∥∥
n∑

t=1

{ġ(Vt, θ1)Δn(Vt)− E[ġ(Vt, θ1)Δn(Vt)]}
∥∥∥∥∥
2

(A.7)

= O

(
n∑

t=1

E‖ġ(Vt, θ1)Δn(Vt)‖2
)
.

By A5, we have as n → ∞
n∑

t=1

E‖ġ(Vt, θ1)Δn(Vt)‖2(A.8)

= n

∫ 1

0

[ ∫
‖ġ(v, θ1)Δn(v)‖2pu(v −H(r))dv

]
dr

= O(nδ21n).

By (A.7) and (A.8), we also have as n → ∞

1

n

n∑
t=1

ġ(Vt, θ1)Δn(Vt)(A.9)

=
1

n

n∑
t=1

E[ġ(Vt, θ1)Δn(Vt)] +OP (n
−1/2δ1n)

=

∫ 1

0

[ ∫
ġ(v, θ1)Δn(v)pu(v −H(r))dv

]
dr

+OP (n
−1/2δ1n)

= OP (δn + n−1/2δ1n).

By (A.5), (A.6) and (A.9), we prove that Theorem 2.3(i)
holds.

We now prove Theorem 2.3(ii). Observe that

Δ̂n(v0)−Δn(v0)

(A.10)

=

n∑
t=1

Wnt(v0)et +

n∑
t=1

Wnt(v0)[Δn(Vt)−Δn(v0)]

+

n∑
t=1

Wnt(v0)[g(Vt, θ1)− g(Vt, θ̂1)]

=: Jn1(v0) + Jn2(v0) + Jn3(v0).

By the central limit theorem for i.i.d. sequences, we have,
as n → ∞,

(A.11)
√
nbJn1(v0)

d−→ N

(
0,

σ2(v0)
∫
K2(u)du

f(v0)

)
,

where σ2(v0) =
∫ 1

0
σ2(v0, r)dr and f(v0) =∫ 1

0
pu(v0 − H(r))dr.
By Taylor expansion, we have

(A.12) Jn2(v0) =
1 + oP (1)

2
b2Δ′′

n(v0)

∫
u2K(u)du.

Meanwhile, a straightforward derivation implies that as n →
∞

(A.13)

n∑
t=1

Wnt(v0)ġ(Vt, θ1) = ġ(v0, θ1) + oP (1),

which, along with the conclusion of Theorem 2.3(i), gives

(A.14) Jn3(v0) = OP (n
−1/2 + δn).

The proof of Theorem 2.3(ii) therefore follows from
(A.10)–(A.14).

Proof of Corollary 2.4. Note that

θ̂1 − θ1 =

[
n∑

t=1

ġ(Vt, θ1)ġ
τ (Vt, θ1)

]−1

(A.15)

×
{

n∑
t=1

ġ(Vt, θ1)[δnΔ(Vt) + et]

}
(1 + oP (1)).

The proof then is similar to that of Theorem 2.2. The main
difference lies in the term {

∑n
t=1 ġ(Vt, θ1)[δn Δ(Vt) + et]}.

In view of (A.3), to prove Corollary 2.4(i), we need only to
show that

(A.16)
1√
n

n∑
t=1

ġ(Vt, θ1)[δn Δ(Vt) + et]
d−→ N(0,Σe).

(A.16) then follows by noting that

Var

{
1√
n

n∑
t=1

ġ(Vt, θ1)[δn Δ(Vt) + et]

}

=
1

n
E

{
n∑

t=1

ġ(Vt, θ1)[δn ·Δ(Vt) + et]

}2

→ Σe.

This completes the proof of Corollary 2.4(i).

The proof of Corollary 2.4(ii) is similar to that of Theo-
rem 2.3(ii).
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