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Testing for measurement errors with discrete-time
data sampled from a CARMA model

HENGHSIU TSAT™, KUNG-SIK CHAN' AND PATRICK FAYARD'

We consider the problem of testing for measurement er-
rors with discrete-time data sampled from a continuous-
time autoregressive moving-average process. We develop an
efficient algorithm for computing the likelihood ratio test
(LRT) statistic, and derive the non-standard asymptotic
null distribution of the LRT. The efficacy of the proposed
test is illustrated by simulations and a real application from
an environmental study.

KEYWORDS AND PHRASES: Forecasting, Gaussian distri-
bution, Kalman filter, Likelihood ratio test, Non-standard
asymptotics.

1. INTRODUCTION

Time-series data are often subject to two problems,
namely, irregular spacing and corruption by measurement
errors. The first problem may be circumvented by treating
the data as sampled from some continuous-time process, of-
ten modeled by a continuous-time autoregressive moving-
average (CARMA) model, see Section 2, and Tsai and
Chan (2005a) and the references therein. However, to our
knowledge, the problem of testing for (and incorporating)
measurement errors in the continuous-time modeling with
discrete-time data remains an open problem. On the other
hand, ignoring measurement errors may result in incorrect
inference, further lessening the capacity to detect significant
effects. More importantly, forecasting may be less accurate
when measurement errors are not incorporated in the model,
as shown by the simulation results reported in Section 5.3.

Here, we consider the case of time-series data, possibly
irregularly spaced, sampled from a CARMA process in the
presence of additional measurement errors. The model is for-
mulated in Section 2. Maximum likelihood estimation of the
CARMA model with measurement errors can be efficiently
carried out via Kalman filters, as detailed in Section 3. A
fundamental problem concerns testing for measurement er-
rors, which is equivalent to investigating whether the vari-
ance of the measurement error is zero. As the variance must
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be non-negative, its true parameter value under the null hy-
pothesis of no measurement error lies on the boundary of
the parameter space. Consequently, the likelihood ratio test
(LRT) has a non-standard null distribution. We derive in
Section 4 the asymptotic null distribution of the LRT which
is either 0 with 0.5 probability or is distributed as x? with
one degree of freedom. The empirical performance of the
LRT is studied by simulations in Section 5, where we also
study the impact of ignoring measurement errors on the fore-
casting performance. We illustrate the new approach with a
real application in Section 6. Section 7 concludes. All proofs
are collected in the Appendix.

2. CARMA MODEL WITH MEASUREMENT
ERRORS

Let Y = {Y; }j=0,1,2,..n be data sampled from a
CARMA ((p, q) process, where 0 < ¢ < p, and ¢ty = 0. More-
over, suppose Y may be subject to serially independent ad-
ditive measurement errors. Specifically, let

(1) f/t(l?) - apf/t(l?—l) L ali}t(o) —
= oW + B 4 BT,
(2) Ei:ﬁi+€ti? iZO,...,N,

where the superscript /) denotes j-fold differentiation with
respect to t; {W;} is the standard Brownian motion; «p, ...,
op, B1, ..., Bq and o are unknown parameters. We assume
that o > 0, ay # 0 and 3, # 0. The solution to equation (1)
is assumed to be asymptotically stationary; {e;}¥, is a
sequence of i.i.d. normal random variables with mean zero
and variance vo?, and is independent of {W;,t > 0}. Our
objective here is to test Hy : v = 0 against H; : v > 0, via
the likelihood ratio test.

Similar to Brockwell (1993), Eqns. (1) and (2) can equiv-
alently be cast in terms of the observation and state equa-
tions,

(3) Y;, =8 Xy, +e,, i=0,...,N,
(4) dXt = (AXt + Oéoép)dt + Uédet,
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where we define 3; := 0 for j > ¢, and the superscript
prime denotes transpose. For (p,q) = (1,0) and (p,q) =
(2,1) without measurement error, the equivalence of (1)/(2)
and (3)/(4) was discussed in Tsai and Chan (2005b, pp.
585-586). Equation (4) is an Ito differential equation for
the state vector X;. We assume that X, is independent
of both {W;,t > 0} and {e,}Y,, and that X, is de-
termined by initial conditions that could be random or
deterministic. Let a(z) = 2P — apzP™! — -+ — ay, and
B(z) = 1+ Bz + P22? + -+ + By29. For model identifi-
cation, it is assumed that these two polynomials share no
common roots. Furthermore, we assume all roots of a(z) =0
and those of 8(z) = 0 have negative real parts. The condi-
tion on the roots of a(z) = 0 is necessary for the asymp-
totic stationarity of the process whereas that on 8(z) = 0
is akin to the invertibility condition for discrete-time pro-
cesses. The preceding conditions ensures that the underlying
continuous-time process is identifiable. However, these con-
ditions may not be sufficient for identifying the model with
discrete-time data obtained from regularly sampling the la-
tent continuous-time process, plus measurement errors. In-
deed, even without measurement error, a CARMA model
may not be identifiable with regularly spaced discrete-time
observations (i.e. t; — t;—; = h > 0,Vi), see Pandit and
Wu (1975, 1983), Hansen and Sargent (1983) and McCrorie
(2003). However, Pandit and Wu (1975, 1983) showed that
any stationary CAR(2) with non-zero « is identifiable with
regular discrete-time observations, for any sampling interval
h. Moreover, they showed that a stationary CAR(p) model
is identifiable with regular discrete-time data, if h is suffi-
ciently small. While the results of Pandit and Wu (1975)
assume no measurement errors, these results are valid for
the case of sampling a stationary CAR model over regular
epochs, plus ITD measurement errors, because, based on the
discrete-time observations, the variance of the measurement
errors and the discrete-time auto-regressive moving aver-
age model, implied by the continuous-time model under the
case of no measurement errors, are identifiable. The gen-
eral problem of the identifiability of a CARMA model with
discrete-time observations is, however, still open. Hence-
forth, we shall assume that the underlying continuous-time
model is identifiable with regular discrete-time observations,
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plus measurement errors. These regularity conditions on the
stationarity and invertibililty of the CARMA model, as well
as model identifiability with discrete-time observations, will
be called Condition (C) below.

Lemma 2.1. If all roots of a(z) =0 and those of 3(z) =0
have negative real parts, then o;j <0, for j =1,...,p, and

B; >0, forj=1,...,q.

The states and the observations, X;, and Y;,, at the sam-
pling times tq, t1, ..., ty, satisfy the discrete-time state and
observation equations:

(5) Xti+1 =M + €A11+1 (Xt, - /’(‘) + Ztm i = Oa ) aNa
(6) )/ti:B/Xt,yd‘_ﬁtm i:O,l,. aNa
where Ai+1 = A(ti+1 - ti), om = (7040/0&1,0, ce ,0),, Zti, is

independent of X;, and {Z;,,i =0,1,..., N} is an indepen-
dent sequence of Gaussian random vectors with zero mean
and covariance matrices

(7)
Y, = E(Z,.7,) = o> o Altii—u)g 5 oA (tig1— )d
i (Z1,2,) =0 /t eAltis udpdpe 1T dy

i

’
A(tii1—t; A (tig1—t;
=V — Altivi—t) /oA (tiga )7

where V = o2 fooo eAuép(S;eA “du is the asymptotic station-
ary variance of {X;}. Refer to Tsai and Chan (2000) for an
efficient method to compute V.

Define X, as the conditional expectation of X; based
on the observations up to time s and P, the corresponding
covariance matrix, i.e.,

X(P*l))'

Xyjs = B(Xly;,5 <) = (X0 X, X

tls ) Rl
Pys = Var(X|y;,j < s).

3. MAXIMUM LIKELIHOOD ESTIMATION

Let the parameter space, for which Condition (C)
holds, be denoted by 2 and an arbitrary element of 2 be
denoted by 0 = (v,), where v > 0 is the parameter of in-
terest and ¢ = (o, ..., ap, 01, .., ) are nuisance param-
eters. Using equations (5) and (6), the log-likelihood func-
tion of the observed data, ly (v, 1, 02), can be computed via
Kalman filters (see, e.g. Jones, 1980, 1985 and Tong, 1990),
which we briefly outline below. First, start with a diffuse
initial condition as we do not assume stationarity, i.e., let

’

Xt,1|t,1 = [ga 07 ey 0] 5

Pt—llt—l = (5 Sf[,

where ¢_; can be taken as a time point such that (¢y —
t_1) equals the average of {t; —t;_1,7 = 1,...,N}, 0 is
some positive number, I is the identity matrix, § and sf are
the sample mean and sample variance of the observed data,
respectively. A reasonable choice of ¢ is, e.g., 5.



The log likelihood function can now be computed recur-
sively as follows. For i =0 toi= N:

(i) Calculate the one-step ahead predictor
Xti\ti,l = p+et (Xti,ﬂti,l — ).

Calculate the covariance matrix of the preceding pre-
dictor

Pti|t7‘,—1 = eAiPtj_lm_leA:' +V - eA'iVeA;.
The prediction of the next observation is
Utiltiy = ﬁ,f(ti\ti,y
The innovation, ¥:,, is the predictive residual, i.e.,
gti =Yt; — :&ti\ti,y
The innovation covariance matrix is
Ay, =B Py, B+ vo.
The Kalman gain matrix is
Ay, = Pti‘ti_lﬁAtjl.
Update the estimate of the state vector to
Xt,-lti = th,-hti,1 + At G, s
with the corresponding covariance matrix being
Pyt = Prji s — 808 Prji,_,-

These steps are cycled through to yield minus twice the
log-likelihood which is equal to

N /2
(8) 2y (v,¢,0%) = Z ([y; + log An) + constant.
i=0 Nl

By the same token, we can also obtain a closed form expres-
sion for the maximum likelihood estimator of the parameter
o2. This can be done by calculus, and the recursion defined
by (i) — (vii) takes a slightly different form (see, e.g., Jones,
1980). We only need to replace Py, by Qys = Pﬂs/U2 and
A¢, by A} = Ay, /o? in (i) to (vii), and equation (8) becomes

(9)
N 1172

_QZY(V7w7O'2) = Z {0,2;{*

ti

=0

+log (02A;)) } + constant.

Differentiating (9) with respect to o and equating to zero
gives

N -
(10) 02:;2 Yi,
N+14~Ar’

and substituting into (9), the objective function becomes

N
+ Z log A},

=0

N -2
(11) 2y () = (N +1)log ( y—)

*
parfi
+ constant.

Under the alternative hypothesis H; : v > 0, the func-
tion (11) is minimized with respect to v and ¥ to get the
maximum likelihood estimates 7 and 1/; The parameter es-
timate 62 is then calculated from (10). Under the null hy-
pothesis Hy : v = 0, the parameter v is restricted to be zero,
and the objective function (11) is minimized with respect to
1) to get the maximum likelihood estimate z/A)o.

4. THE LIKELIHOOD RATIO TEST
STATISTIC

We are interested in testing the following hypothesis:

Hy:v=0,
Hi:v>0.

Recall that @[AJO is the maximum likelihood estimate of ¢
under Hgy, and v and 1& are the maximum likelihood esti-
mates of v and ¢ under H;. (Note for real applications, o
might be zero.) Thereafter, depending on the —2 times the
log-likelihood ratio statistic given by £ = 2max{ly (7, 1)) —
Iy (0, ), 0}, where —2ly is defined by equation (11), we re-
ject Hy if ¢ is too large. The following main result derives
the asymptotic null distribution of the likelihood ratio test.

Theorem 4.1. Assume Condition (C) holds and that the
data are regularly spaced. Let W be the matriz such that its
(i,7)-th element equals ;- f:r 3%0%93%9%9@1, with 0; being
the i-th component of 8 and the integrand evaluated at the
true value 0. Assume that W is positive definite, under Hy.
Then, the asymptotic null distribution of £ is that of a chance
variable which is zero half the time and which behaves like

X2 with one degree of freedom the other half of the time.

For CAR(p) models, if the roots of a(z) = 0 are all dis-
tinct, positive definiteness of W can be seen as follows. First,
regular sampling from a CARMA (p, q) process with ¢ < p
generally yields an ARMA (p, p — 1) process; see Pandit and
Wu (1983, Chapter 6). Second, if the roots of the charac-
teristic equation for the CAR(p) model are all distinct and
assuming the CAR(p) model is identifiable based on the reg-
ularly sampled discrete-time data, then the CAR parameter
vector is a differentiable, invertible function of the param-
eter vector of the ARMA model for the discrete-time data
sampled regularly from the CAR model. Invertibility follows
from the assumption that the CAR(p) model is identifiable
with regularly sampled data. The preceding claim on differ-
entiability follows from two facts: (i) the roots, denoted by
i, of the AR characteristic equation of the ARMA model

Testing for measurement errors with discrete-time data sampled from a CARMA model 237



relate to the roots, denoted by u;, of the AR characteris-
tic root of the CAR model by the simple transformation
A;i = exp(p;h), where h is the sampling interval, (ii) the
AR (CAR) coefficients of the ARMA (CAR) model are ele-
mentary symmetric functions of the roots of the AR (CAR)
characteristic equation. Moreover, specific formulas for the
MA coefficients of the ARMA model given by Pandit and
Wu (1975 and 1983) shows that the transformation from the
CAR coefficients to the MA coeflicients of the ARMA model
is a differentiable function. Hence, the Jacobian matrix, de-
noted by J, for the transformation linking the CAR(p) pa-
rameters to the parameters of the ARMA model is of full-
rank. Denote by W, the matrix that is similar to W except
that the CAR spectrum ¢ is replaced by that of the cor-
responding ARMA process and 6 replaced by the vector of
ARMA parameters. It then follows that W = JWyJT', which
is positive definite because of the positive-definiteness of Wy;
see Hannan (1970, Theorem 8 on p. 392). For the CARMA
case, the relationship between the CARMA parameters with
the parameters of the corresponding ARMA model for the
regularly sampled data is quite complex, and it is an inter-
esting future problem to extend the preceding result con-
cerning the positive-definiteness of W to the CARMA case.
Even though Theorem 4.1 holds for equally spaced data,
we conjecture that it also holds for irregularly spaced data
under some regularity conditions, e.g. when the spacing
is uniformly bounded away from 0 and infinity. Also, the
asymptotic distribution of the maximum likelihood estima-
tor under the alternative is known to be asymptotically nor-
mal, under mild regularity conditions; see Hannan (1973).

5. SIMULATION

In this section we use simulation examples to study the
performance of the Likelihood Ratio test statistic in finite
samples.

5.1 Empirical sizes of the likelihood ratio
test statistic

In this subsection we use Monte Carlo methods to com-
pute the empirical rejection frequencies of the Likelihood
Ratio test statistic with nominal values equal to 0.10, 0.05
and 0.01, respectively. Three stationary CARMA (p, q) pro-
cesses are considered:

Model I, Y 40257 = w®,
Model II,  ¥,? +0.20Y," + 0.3V, = w,
Model I, ¥,® +0.20Y," + 0.3Y,” = w + 0.5w,2.

The observations {Y;, }i—o.... .~ are generated via equations
(5) and (6) without measurement errors. We consider both
regularly spaced and irregularly spaced data. For regularly
spaced data, we set t; = i, for all integer ¢, whereas for
irregularly spaced time series data, we follow the following
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Table 1. Empirical frequencies of rejecting the null hypothesis

of a CARMA(p, q) model without measurement errors when

0.01, 0.05, and 0.10 asymptotic critical values are used. The
results are based on 1,000 replications

N regularly spaced irregularly spaced
Nominal Level Nominal  Level
I 0.100 0.050 0.010 0.100 0.050  0.010
100 0.078 0.041  0.005 0.061 0.029  0.001
200 0.076 0.036  0.006 0.077 0.039  0.006
400 0.080 0.041  0.005 0.084 0.038  0.005
I 0.100 0.050 0.010 0.100 0.050  0.010
100 0.131 0.074 0.012 0.115 0.053 0.016
200 0.121 0.057  0.007 0.110 0.056  0.009
400 0.111 0.053  0.010 0.128 0.069 0.017
11 0.100 0.050 0.010 0.100 0.050  0.010
100 0.113 0.080 0.043 0.173 0.134  0.090
200 0.114 0.085 0.072 0.148 0.114  0.092
400 0.125 0.085 0.058 0.168 0.119  0.084
simulation scheme. First, simulate s;,7 = 1,..., N, indepen-

dently from the exponential distribution with mean equals
0.5. Then, set tg =0, and t; =t;—1 +s;+05,i=1,...,N.
Second, irregularly spaced time series data are simulated at
these particular time values. The sample sizes considered
are N = 100, 200, and 400.

From Table 1, we can observe that, in general, the em-
pirical sizes are close to their corresponding nominal sizes,
except for Model III, especially for the case of irregularly
spaced data.

5.2 Empirical power of the test

In this subsection, we consider the empirical power of
the test when the true models are subject to measurement
errors. The true model under investigation is Model II in
subsection 5.1 with additional measurement errors. Specifi-
cally, the values of v are chosen to be v = 0.00, 0.01, 0.05,
0.09 and 9.00. We define the signal-to-noise ratio (SNR) to
be the ratio of the asymptotic stationary variance of {Z,}
to the variance of {¢;, } if the measurement noise’s variance
is non-zero, or infinity otherwise. Note that for this model
with non-zero v, the SNR is (8'V3)(vo?)~! = (2a100v) 71,
by Theorem 2.1 (b) of Tsai and Chan (2000). Therefore, the
corresponding SNR’s are oo, 833.3, 166.7, 92.6, and 0.93,
respectively. Only regularly spaced data with ¢; = ¢ are con-
sidered.

From Table 2, it is clear that, for a fixed SNR, the empir-
ical power increases as the sample size increases. For fixed
sample size N, the empirical power is largest when v = 0.09,
corresponding to SNR = 92.6.

5.3 The impact of the measurement errors
in forecasting

In this subsection, we study empirically the impact of
ignoring measurement errors on forecasting. Consider the



Table 2. The empirical frequencies of rejecting the null
hypothesis for different specifications of the value of v. The
data are generated from Model Il in subsection 5.1 with
measurement errors corresponding to v = 0.00, 0.01, 0.05,
0.09, and 9.00. The results are based on 1,000 replications
and critical values of the nominal size 0.05

v 0.00 0.01 0.05 0.09 9.00
(SNR)  (c0)  (833.3)  (166.7)  (92.6)  (0.93)

N 100 0.074  0.276 0857  0.963  0.847
200 0.057  0.359 0.981  0.998  0.990

400 0.053  0.586 1.000  1.000  1.000

true model to be again Model II of Section 5.1 with mea-
surement errors corresponding to the v values considered
in Subsection 5.2. Again, only regularly spaced data with
t; = i and sample size N = 100, 200, and 400 are consid-
ered. We are interested to see how the root mean squares of
forecast errors differ if we do not consider the measurement
errors in modelling. Specifically, we simulate {Y; }i=o,... N+m
from the true model. Then we estimate the continuous-time
AR(2) models with and without measurement errors based
on {Y;}i=o.... n, assuming the order p = 2 is known whereas
the parameters v, and the o’s are unknown, and have to be
estimated from the data. Next, we compute the innovations,
Ji, for t = N+ 1,..., N +m, which is defined in step (iv)
of Section 3. Finally, we compute the root mean squared
forecast error:

N+m

1/2
1

MSFE = | — 02 )

RMS (m Zyl>

N+1

(12)

In this subsection, the value of m is always 10. For each
model and each sample size, we replicate the experiment
1,000 times, with the averages of the RMSFE’s reported
in Table 3. From the table, we see that for v = 0.00 and
0.01, there are essentially no differences between using the
continuous-time ARMA model with and without measur-
ment errors, whereas for v = 0.05, 0.09, and 9.00, fitting the
model with measurement errors results in smaller RMSFE
values.

6. APPLICATION

Example: Field values of pH of wet deposition at the
McNay Research Station in the Lucas County of Iowa,
U.S., have been collected on a more or less weekly ba-
sis since 1984. The McNay Research Station is one of the
two monitoring sites of the Iowa Precipitation Monitor-
ing Program for the National Trends Network. The mon-
itoring program aims at providing an overview of chemi-
cal composition of atmospheric deposition in the U.S., see
http://ia.water.usgs.gov/projects/ia005.html. Be-
sides field values of pH, specific conductance and chemical
analysis of the precipitation were recorded. Here, we focus

Table 3. Comparison of Forecasting performances of the
continuous-time ARMA models with measurement errors. The
data are generated from Model Il in subsection 5.1. The
results are based on averages of 1,000 replications, the value
of m is always 10, and the sample sizes used are 100, 200

and, 400

v 0.00 0.01 0.05 0.09 9.00
(SNR) (c0) (833.3) (166.7) (92.6) (0.93)

N Ho HU HO HO HO
100 0.680 0.721 0.857 0.963 3.735
200 0.683 0.723 0.862 0.972 3.726
400 0.672 0.713 0.850 0.958 3.681

N Hi Hi Hi Hi H;
100 0.681 0.721 0.833 0.913 3.560
200 0.684 0.723 0.837 0.919 3.613
400 0.672 0.711 0.821 0.900 3.531

on the pH measurements which measured the acidity of the
wet deposition; there are 562 observations, collected from
October 1, 1985 to September 18, 2001. For simplicity, we
round the sampling times to days. The data are irregularly
spaced with the sampling intervals between consecutive ob-
servations ranging from 1 to 98 days; the average and median
sampling intervals are 10 and 7 days, respectively. The unit
of time is taken as one day. The same data was analyzed in
Tsai and Chan (2005a). Here, we are interested in analyz-
ing the log-transformed data, the time series plot of which
is displayed in Fig. 1.

Specifically, we consider testing a continuous-time AR(p)
model without measurement errors versus a continuous-
time AR(p) model with measurement errors with p = 1,2,
and 3. Here, the diffuse initial condition for the Kalman
filer is P,_,;_, = 5531. For each model, the Akaike in-
formation criterion (AIC) is reported, which is defined as
AIC = —2(ly (f)—r), where —2ly is defined in Equation (11)
without the constant term, r is the number of parameters
in the model, and @ is the maximum likelihood estimate of
0. See Table 4 for the values of ¥, the p-values of the LRT
and the AIC’s.

From Table 4, we see that, the CAR(1) plus measurement
error model has the smallest AIC value, for p = 1, and 2, the
p-values both are equal to 0.00, resulting in rejection of the
null hypothesis of no measurement error, at 5% significance
level. Furthermore, because ¢ = 0.00 for p = 3, the CAR(3)
models are the same under Hy and H;.

Because the AIC’s are close for p = 1,2, and 3 under
Hy, and close for p = 1 and 2 under H;, we compare these
five models by examining their corresponding model fits by
comparing the sample autocorrelation function (ACF) of the
standardized residuals of these models in Figure 2. It is clear
that the CAR models without measurement errors show sim-
ilar ACF’s for p = 1,2, and 3. Similarly, the CAR models
with measurement errors show similar ACF’s for p = 1, and
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Figure 1. Time series plot of the log-transformed field values
of pH of wet deposition at the McNay Research Station.

Table 4. The p-values of likelihood ratio test, the values of U,
and the AIC's for various CAR(p) models fitted to the McNay

Data
p 1 - reject SNR AlIC AIC
value Hy under H; under Hy under H;
1 385 0.000 yes 0.70 1042.2 1016.9
2 1.29 0.000 yes 0.66 1045.4 1018.9
3  0.00 0.500 no o0 1043.9 1045.9

2. Moreover, the ACF’s of the standardized residuals show
that the models with measurement errors fit the data better.

Finally, we reserved the last 10 data cases for validat-
ing the model predictive performance as follows. To the re-
duced data without the last 10 data we refitted the three
CAR models with/without measurement errors, and then
computed their RMSEF’s defined in Equation (12). The re-
sults are summarized in Table 5. From the table, we see
that for p = 1 and 2, the model with measurement error
has smaller RMSFE. Overall, the continuous-time AR(1)
with measurement error model has the smallest RMSFE.
The parameter estimates for this model are (7, &g, &1, 62) =
(38.5,3.01 x 1072, —1.85 x 1072,1.97 x 10~%). We then as-
sess the uncertainty of the estimators by computing the ob-
served Fisher information based on equation (11), based
on which the asymptotic standard errors turn out to be
(15.1,8.87x1073,5.45x 1073) for the estimates of (v, ag, 1),
so the estimates are all significant at a 5% level.

7. CONCLUSION

We have shown that the LRT provides a powerful ap-
proach for checking the presence of measurement error with
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Table 5. Comparison of the RMSFE Values for the
log-transformed Field values Data, forp = 1,2, and 3

p 1 2 3
without measurement errors 0.0712 0.0715 0.0708
with measurement errors 0.0657 0.0685

data sampled from a CARMA process. However, nonlin-
ear time series data abound, and it is an interesting future
research problem to study nonlinear continuous-time pro-
cesses with measurement errors, e.g. threshold type nonlin-
ear processes (Tong, 1990) with measurement errors.

APPENDIX A. APPENDIX SECTION

Proof of Lemma 2.1. The cases of p =1 and p = 2 for «(2)
can be checked by algebra. The proof is completed on noting
that the characteristic polynomial z, —a,zP~ —-- - —a; can
be factorized into products of real polynomials of a degree
not greater than two, all of which have positive coefficients
based on the arguments presented for orders one and two.
The proof for B(z) is similar and is hence omitted. O

Proof of Theorem 4.1. Let i = y/—1. Without loss of gen-
erality, we shall restrict the proof to the case of zero mean
so that ag will be dropped from the parameter. For regu-
larly spaced {Y;,t = 0,1,2,...,} driven by (5) and (6), it
essentially follows from Eqns. (3.2) and (8.1) on p. 45 and
p. 405 of Hannan (1970), respectively, that its spectral den-
sity function is given by o2?g(w;0), —m < w < 7, where

1 2 |B(iw + 2mij)|?
9w 6) = 27r{”+j_zoo |ou(ie + 27ij )2 }

(Recall az) = 2P —apzP ™t — - —aq,and B(z) = 1+ Bz +
B222+- -+ B,2%.) For simplicity, we first profile out o from
the likelihood function. It is well-known (Whittle, 1951, and
Theorems 1-3 of Hannan, 1973) that for Gaussian time se-
ries, the normalized profile likelihood is asymptotically equal
to the following profile Whittle likelihood:

v (6) = f% log(Un(Y;0)/N) + const,

(13) N

where const is an expression that does not depend on the
parameter, and

us

Iy (w)g™ ! (w; ) dw,

Un(vi0) = [

—Tr

where Iy (w) is the periodogram. Theorem 2 of Hannan
(1973) implies that the profile Whittle likelihood (and the
profile Gaussian likelihood) has the following second-order
Taylor expansion:
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ACF of the standardized residuals for the various CAR(p) models fitted to the McNay data.



br(®) _  tv(0o)  Un(Y300)/N
1 2 = - wagw
T u (Y;60)/N
O o g )
+o(10 — 6ol*),

where Uy and Uy are the first and second partial derivatives
of Ux w.r.t. 6. (Note the conditions A, B and (12) required
by Theorems 1-3 of Hannan (1973) are satisfied for our
model.) By the Law of Large Numbers, Uy (Y;00)/N — 1
almost surely as N — oo. Also, it is shown in the proof
of Theorem 2 of Hannan (1973) that N~Y2Ux(Y;6p) is
asymptotically normally distributed with zero mean and
variance-covariance matrix equal to 202 W where its (i, j)-th
element equals - Zr %ﬁ%‘fgdw, with 6; being the i-th
component of 6 and the integrand is evaluated at the true
value 6. By ergodicity, Uy (Y;6p)/N — W, almost surely.
The result stated in Theorem 4.1 follows from Eqn. (4)
of Chernoff (1954), where the term |6]3|O,(1) can be re-
placed by 0,(]0]?), Lemma 1 and Theorem 1. (The consis-
tency of the constrained estimator can be verified by using
similar arguments as in the proof of Theorem 1 of Hannan
(1973).) |
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