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A note on asymptotic inference
for FIGARCH(p, d, q) models
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Parameters estimation for a FIGARCH(p, d, q) model is
studied in this paper. By constructing a compact parameter
space Θ satisfying the non-negativity constraints for the FI-
GARCH model, it is shown that the results of Robinson and
Zaffaroni (2006) can be applied to establish the strong con-
sistency and asymptotic normality of the quasi-maximum
likelihood (QML) estimator of the FIGARCH model.
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1. INTRODUCTION

The fractionally-integrated (FI) GARCH model dis-
cussed in Baillie et al. (1996) and Bollerslev and Mikkelson
(1996) has attracted a considerable amount of attention
among economists and practitioners. In the empirical
literature, the parameters of the FIGARCH model are
commonly estimated using the quasi-maximum likelihood
estimator (QMLE). Baillie et al. (1996) claimed that strong
consistency and asymptotic normality of the QMLE can
be established following similar arguments in Lee and
Hansen (1994) for the GARCH (1, 1) model. However,
their claim was queried by Mikosch and Stǎricǎ (2002). On
the other hand, Robinson and Zaffaroni (2006) develop a
general theory of the QMLE of an ARCH(∞) model under
a general framework. As an illustration, they construct a
fractional (F) GARCH model that resembles the FIGARCH
model in the sense that both models incorporate the Taylor
coefficients of the function π(z) = (1 − z)d. They show
that their results are applicable to the FIGARCH model.
However, their proof entails the following assumption.

NN. The searching region for the maximization of the
quasi-log likelihood function contains only parameters that
give no negative coefficient in the ARCH(∞) representation.

The validity of NN is non-trivial for the FIGARCH mod-
els with orders (p, q) �= (0, 0), see Conrad and Haag (2006).
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To apply the results of Robinson and Zaffaroni (2006), a
compact searching region Θ satisfying the assumption NN
has to be constructed. In this note, we show under certain
conditions that the assumptions A-H of Robinson and Zaf-
faroni (2006) are fulfilled for θ ∈ Θ. In this way, the asymp-
totic behavior of the QMLE of the FIGARCH models within
Θ can then be directly established. It should be noted that
due to the difficulties of explicitly expressing Θ, in practice,
we have to search for the stationary points of the quasi-log
likelihood function globally. The link between these station-
ary points and the QMLE in Θ is furnished in Proposition 2.

Throughout this paper, the assumptions A to H of Robin-
son and Zaffaroni (2006) are denoted by RZ-A to RZ-H.
Consider the FIGARCH model,

X2
t = σ2

t ε
2
t ,

σ2
t = ω +

∞∑
j=1

ψjX
2
t−j ,

where
∞∑
j=1

ψjz
j = 1− φ(z)

1− β(z)
(1− z)d,

φ(z) is a polynomial of order q with constant term 1, β(z) is
a polynomial of order p with a zero constant term, d ∈ (0, 1)
and ω > 0 are non-negative real numbers.

Suppose that the data generating process is obtained
from the FIGARCH model with θ = θ0. We need assump-
tions A1–A3 for the data generating process.

A1. Douc et al. (2008): The coefficients ψj of the true model
satisfy

∞∑
j=1

ψj logψj + E(ε20 log(ε
2
0)) ∈ (0,+∞];

A2. For all j = 1, 2, . . . , ψj > 0;
A3. All roots of φ(z) and 1 − β(z) lie outside the unit disc

and φ(z) and 1− β(z) are co-prime.

Remark 1. According to Theorem 1 and Corollary 2 in
Douc et al. (2008), under A1, the true model admits a
strictly stationary solution {Xt} and its moments E|Xt|2ρ
are finite for all ρ ∈ (0, 1). Therefore, RZ-E holds. The spe-
cial case FIGARCH(0, d, 0) model has been studied in Corol-
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lary 3 of Douc et al. (2008), where it was shown that there
exists 0 < d∗ < 1 such that for all d ∈ (d∗, 1), A1 holds.

Remark 2. A2 guarantees that σ2
t generated by the FI-

GARCH equation in the ARCH(∞) expression are all pos-
itive, see Conrad and Haag (2006). However, it should be
noted these conditions do not necessarily require the non-
negativity of the coefficients of β(z) and 1−β(z)−φ(z)(1−
z)d, see Conrad and Haag (2006). For the special case
FIGARCH(1, d, 0), the necessary and sufficient condition for
A2 is that any one of the following is satisfied.

1. 0 < β1 < 1, d− β1 ≥ 0; or
2. −1 < β1 < 0, 2d−

√
4− 2d ≤ 2β1 ≥ 0.

Suppose that the parameters to be estimated are θ =
(ω, d, φ, β) and {X2

t : 1 < t ≤ n} are the observed values. We
are interested in the asymptotic properties of the estimator
obtained by maximizing the quasi log-likelihood function
locally over a searching region Θ as defined in Section 2.
The quasi log-likelihood function is constructed as follows.
Define

q̂t(θ) =
X2

t

ht(θ)
+ log ht(θ)

qt(θ) =
X2

t

σ2
t (θ)

+ log σ2
t (θ).

Here, σ2
t (θ) is the stationary stochastic process

σ2
t (θ) = ω +

∞∑
j=1

ψj(θ)X
2
t−j ,

while ht(θ; {X2
t }−∞<t≤n) is a predictable stochastic process

chosen to approximate the unobservable random variables
σ2
t . The process ht(θ) is constructed as follows,

ht(θ) = ω +
t−1∑
j=1

ψj(θ)X
2
t−j .

The quasi log-likelihood function has the form

Qn(θ) =
1

n

n∑
t=1

q̂t(θ).

We show that under certain conditions, the consistency
and asymptotic normality of the QMLE estimator con-
structed above can be established by applying Theorems
1 and 2 of Robinson and Zaffaroni (2006). To achieve that,
it remains to prove the validity of the assumptions RZ-F(3)
and RZ-G. One should note that RZ-A to RZ-D follow im-
mediately from the FIGARCH(p, d, q) model and RZ-H is
satisfied when d > 1/2.

This note is organized as follows. In Section 2, a compact
searching space Θ that contains the true parameter θ0 as
an interior point is constructed. Two main theorems for the

asymptotic behavior of the QMLE over Θ are presented. In
Section 3, we show that the assumptions RZ-F(3) and RZ-G
are satisfied for θ ∈ Θ and thereby proofs of the theorems
in Section 2 are complete. Some preliminary results used in
the proofs are given in the Appendix.

2. MAIN RESULTS

Two theorems on consistency and asymptotic normality
of the QMLE are presented in this section. Suppose that
the data generating process is obtained from the FIGARCH
model with θ = θ0, satisfying assumptions A1–A3. The pa-
rameter space Θ is constructed in Proposition 1.

Introduce the following notations. Define

B(β) =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1 β2 . . . . . . βp

1 0 · · · 0

0
. . .

...
...

. . .
...

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let Bn
ij be the (i, j)-th entry of the matrix Bn. Let λ(β)

be the eigenvalue of B(β) with the largest modulus and let
pβ(Θ) be the coordinate-mapping on the parameter space Θ.

Proposition 1. There exists a parameter space Θ ⊂
Rp+q+2 satisfying conditions B1 to B6 as follows.

B1. Θ is compact and contains θ0 as an interior point ;
B2. 0 < ωL < ω < ωU and 1/2 < dL < d < dU ;
B3. There exist constants 0 < λL

1 < λU
1 < 1 such that for

all β ∈ pβ(Θ), λL
1 ≤ |λ(β)| ≤ λU

1 ;
B4. There exist constants 0 < λL

2 < λU
2 < 1 such that for

all φ ∈ pφ(Θ), λL
2 ≤ |λ(φ)| ≤ λU

2 ;
B5. For all θ ∈ Θ,

KLj
−d−1 ≤ ψj(θ) ≤ KU j

−d−1

for some constants 0 < KL < KU ;
B6. Within Θ, the polynomials φ(z) and 1 − β(z) do not

have common zeros.

The results of Robinson and Zaffaroni (2006) can be ap-
plied to establish the asymptotic behavior of

θn = argmin
θ∈Θ

Qn(θ).

In practice, it would not be possible to verify if a given
set Θ satisfies B1–B6 because these conditions involve the
unknown parameter θ0. Instead, we have to search for the
stationary points of the quasi-log likelihood function Qn(θ)
globally (in a space Γ that is large enough to include Θ).
Denote the set of such stationary points by Tn. What re-
mains is to furnish the link between Tn and θn. Consider
the event E = {∃N such that ∀n > N, θn ∈ Tn}. It can be
shown that P (E) = 1 (see Proposition 2), which allows us
to establish the asymptotic properties of Tn from the results
of θn.
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Proposition 2. P (E) = P{∃N such that ∀n > N, θn ∈
Tn} = 1.

Proof. Let δ0 be a positive constant such that the ball
Sδ0(θ0) lies inside Θ (existence of δ0 is guaranteed by Propo-
sition 1). Recall the following two facts.

1. By Theorem 1, θn is strongly consistent, i.e., P{θn →
θ0} = 1.

2. {θn ∈ Sδ0(θ0)} is a subset of {θn ∈ Tn}. To see this,
note that when θn ∈ Sδ0(θ0), since Sδ0(θ0) is an open
subset of the compact parameter space Θ, θn is not
maximized on the boundary of Θ. Therefore, θn ∈ Tn.

Combining these two facts, the required result can be de-
duced as follows.

P (E) = P{∃N such that ∀n > N, θn ∈ Tn}
≥ P{∃N such that ∀n > N, we have θn ∈ Sδ0(θ

0)}
≥ P{∀δ > 0, ∃N such that ∀n > N,

we have θn ∈ Sδ(θ
0)}

= P{θn → θ0}
= 1.

With RZ-F(3) and RZ-G being satisfied, the follow-
ing results follow immediately from Robinson and Zaffa-
roni (2006).

Corollary 1. If A1–A3 and RZ-A(α) are satisfied by some
α > 2, then for Θ prescribed in Proposition 1, then the
QMLE θn = argminΘ Qn(θ) is strongly consistent, i.e., with
probability one, θn → θ0.

Let ∇ and ∇2 be the gradient operator and the Hessian
matrix respectively. Define

Gn(θ) =
1

n

n∑
t=1

[∇q̂t(θ)][∇q̂t(θ)]
T

and

Hn(θ) =
1

n

n∑
t=1

∇2q̂t(θ).

Corollary 2. Suppose that d > 1/2. If A1–A3 and RZ-
A(4) hold, then for Θ prescribed in Proposition 1, there exist
positive definite matrices Ω1 and Ω2, such that

Ω1 = E[∇qt(θ)][∇qt(θ)]
T , Ω2 = E∇2qt(θ),

and
√
n(θn − θ0) →d N(0,Ω−1

2 Ω1Ω
−1
2 ).

Here, the matrix Ω−1
2 Ω1Ω

−1
2 can be approximated as

H−1
n (θn)Gn(θn)H

−1
n (θn) →a.s. Ω−1

2 Ω1Ω
−1
2 .

3. PROOFS

In this section, Proposition 1, RZ-F(3) and RZ-G are es-
tablished. For convenience, RZ-F(3) and RZ-G are restated
here.

RZ-F(3): Let k ≤ 3, and 1 ≤ i1, . . . , ik ≤ p+ q+1. Suppose
that θ ∈ Θ. Consider the derivatives of ψj(θ) with respect to
the parameters θi1 , . . . , θik , with the parameter d appearing
m-times, where m ≥ 0. For each η > 0, a constant K > 0
can be found such that the derivatives satisfy

∣∣∣∣ ∂kψj(θ)

∂θi1 · · · ∂θik

∣∣∣∣ ≤ Kψ1−η
j (θ).

RZ-G: Let r = p+q+1. For each θ ∈ Θ, there exist integers

1 ≤ j1(θ) < · · · < jr(θ) < ∞,

such that

rank{∇ψj1(θ), . . . ,∇ψjr (θ)} = r,

where ∇ is the gradient operator.

Proof of Proposition 1. Let Dβ = {β|λL
1 ≤ λ(β) ≤ λU

1 }.
Define

Θ0 = Dβ ×Dφ × [dL, dU ]× [ωL, ωU ].

By Theorem 2.1 of Hosking (1981),

lim
j→∞

jd+1ψj(θ) =
−φ(1)

Γ(d)
· 1

1− β(1)
= K(θ).

Moreover, from Lemma 1 in Appendix A, the convergence
is uniform over Θ0. When 0 < δ < infθ∈Θ0 K(θ), an integer
N can always be found so that for j > N and θ ∈ Θ0,

[K(θ) + δ]j−d−1 > ψj(θ) > [K(θ)− δ]j−d−1 > 0.

For j ≤ N, since ψj(θ0) > 0 (by assumption A2), we can
find δj such that 0 < δj < ψj(θ0). Let

Θj = {θ|ψj(θ0)− δj < ψj(θ) < ψj(θ0) + δj}.

By the continuity of the functions ψj(θ), the sets Θj are

open. From Lemma 1 in Appendix A, the set Θ1 = ∩N
j=0Θj

is compact and contains an open set in which θ0 is an inte-
rior point. In addition, Θ1 satisfies B1–B5. With assumption
A3, it can be checked from continuity arguments that there
exists a neighbourhood of θ0 such that B6 holds. Let N(θ0)
be such a neighbourhood. Then the conditions B1–B6 are
fulfilled for Θ = Θ1 ∩N(θ0). The constants KL and KU

prescribed in B5 are defined as follows.

KL = min
θ∈Θ

{
−φ(1)

Γ(−d)[1− β(1)]
− δ,

ψ1(θ)

1−d−1
, . . . ,

ψN (θ)

N−d−1

}
,
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KU = max
θ∈Θ

{
−φ(1)

Γ(−d)[1− β(1)]
+ δ,

ψ1(θ)

1−d−1
, . . . ,

ψN (θ)

N−d−1

}
.

Proof of RZ-F(3). From condition B5, it is sufficient to
show that a constant K > 0 can be found such that for
j > 1, ∣∣∣∣ ∂kψj(θ)

∂θi1 · · · ∂θik

∣∣∣∣ ≤ Kj−d−1(log j)m.

By Lemma 2 in Appendix A, there exists a continuous func-
tion K(θ) such that for any given δ < infθ∈Θ K(θ), an inte-
ger N can be found so that for all j > N and θ ∈ Θ,

∣∣∣∣ ∂kψ(θ)

∂θi1 · · · ∂θik

∣∣∣∣ ≤
{
max
θ∈Θ

|K(θ) + δ|
}
j−d−1 logm j.

The constant K chosen below fulfills the goal.

K = max

{
δ + sup

θ∈Θ
K(θ),

ψ2(θ)

2−d−1 logm 2
, . . . ,

ψN (θ)

N−d−1 logm N

}
.

Proof of RZ-G. First, we show that a sufficient condition
for RZ-G is that λT∇θψ(z; θ) = 0 implies λ = 0, where λ is
an r-dimensional vector.

To check this, assume by contradiction that RZ-G does not
hold. To simplify notation, ψ(θ) is written as ψ for the rest
of the proof. Then, for all θ ∈ Θ and 1 ≤ j1 < · · · < jr < ∞,
we have

rank{∇ψj1 , . . . ,∇ψjr} < r.

Choose 1 ≤ j1 < · · · < jr < ∞ such that

rank{∇ψj1 , . . . ,∇ψjr}

is maximum. Denote the maximum rank by r∗. Select a max-
imal linear independent subset from {j1, . . . , jr} and denote
it by {j∗1 , . . . , j∗r∗}. Then, for any j not belonging to such
a subset, ∇ψj can be expressed as a linear combination of
∇ψj∗1

, . . . ,∇ψj∗
r∗
. On the other hand, there exist non-trivial

solutions to the system of linear equations

λT∇ψj∗1
= · · · = λT∇ψj∗

r∗
= 0,

since r∗ < r. Therefore, λT∇ψj = 0 for all j = 1, 2, . . . , and
consequently, λT∇θψ(z; θ) = 0. Let λ = (λφ, λβ , λd), λφ(z),
and λβ(z) be two polynomials with zero constant term. Sup-
pose that λT∇θψ(z; θ) = 0. Simple algebraic manipulations
yield

ψ(z) = 1− [φ(z) + λφ(z) + λdφ(z) log(1− z)](1− z)d

1− β(z)− λβ(z)
.

Since the Taylor coefficients ψj = O(j−d−1), λd must be
zero, ψj = O(j−d−1 log j). What remains is to show that

φ(z)

1− β(z)
=

φ(z) + λφ(z)

1− β(z)− λβ(z)

implies λφ(z) = λβ(z) = 0. By condition B6, there exists
a polynomial p(z) such that φ(z)λφ(z) = φ(z)p(z) and 1 −
β(z)−λβ(z) = [1−β(z)]p(z). Since the orders and constant
terms of φ and β are the same as those of φ and β, we must
have p(z) = 1. Therefore, λφ(z) = λβ(z) = 0 and we have
the desired results.

APPENDIX A. TECHNICAL LEMMAS

The purpose of this appendix is to establish the uniform
convergence of ψj(θ) and its derivatives over Θ0 defined in
the proof of Proposition 1. Let

ψ(z;β, φ, d) = 1− φ(z)(1− z)d

1− β(z)
,

π(d) = 1− (1− z)d.

Notations like ψj(θ) are used to represent the Taylor coef-
ficients of the functions, e.g. ψ(z; θ) =

∑∞
j=0 ψj(θ)z

j . Let
f : Rr → R be a real-valued function of (θ1, . . . , θr). For
any integers k > 0 and 1 ≤ i1, i2, . . . , ik ≤ r, define

∂i1···ikf =
∂kf

∂θi1 · · · ∂θik
.

Lemma 1. (1) The set {β|λL
1 < λ(β) < λU

1 } is open.
(2) The set Dβ = {β|λL

1 ≤ λ(β) ≤ λU
1 } is compact.

(3) Within Dβ , 1−β(1) is bounded above and below by some
positive constants.

(4) Within Dβ , for all δ > 0, there exists a constant K > 0
which does not depend on the choice of β, such that for
j = 1, 2, . . . , we have

|Bj
11(β)| ≤ K(|λU |+ δ)j .

Proof. (1) This can be seen from the continuity of spectral
norm λ(β).

(2) By the relationship between roots and coefficients, |βi|
is bounded by Cp

i |λU
1 |i.

(3) To see this, consider the characteristic equation of
B(β), which is

f(λ) = λp − β1λ
p−1 − · · · − βp = 0.

Let λ1, . . . , λp be the roots of the above equation, then

1− β(z) = f(1) = (1− λ1z) · · · (1− λpz).

Simple calculations yield that

0 < (1− |λU
1 | · |z|)p < 1− β(1) < (1 + |λU

1 | · |z|)p.
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(4) Let R(β) = (|λ1|+ δ)−1. Applying Cauchy’s estimation
(see Theorem 10.26 in Rudin, 1987), we have an upper
bound,

Bj
11(β) ≤

1

Rj(β)
· 1

(1−R(β)|λ1(β)|)p
=

(|λ1(β)|+ δ)p+j

δp
.

Choosing K = (λ
U+δ
δ )p fulfills the need.

Lemma 2. Consider the derivatives of ψj(θ) with respect to
the parameters θi1 , . . . , θik , with d appearing m-times, where
m ≥ 0. Then the derivatives satisfy

lim
j→∞

jd+1 log−m j∂i1···ikψj(θ) = Ki1···ik(θ)

and these convergences are uniform in Θ.

Proof for the special case k = 0, φ = 0, β = 0. From Theo-
rem 2.1 of Hosking (1981), we have

lim
j→∞

jd+1πj(d) =
−1

Γ(−d)
.

To establish the uniform convergence in [dL, dU ], we give
bounds for the following expression,

log πj + (d+ 1) log j

= log d+

j∑
k=2

{
log

k − 1− d

k
+ (d+ 1) log

k

k − 1

}
.

Below, we show that for all j = 1, 2, . . . , the term in the
brace bracket is monotonic decreasing. The derivative of
these terms with respect to d are

−1

j − 1− d
+ log

j

j − 1
<

−1

j − 1− d
+

1

j − 1
< 0.

Here, the inequality log x < x− 1 is used. Then,

log πj + (d+ 1) log j

≤ log dU +

j∑
k=2

{
log

k − 1− dL

k
+ (dL + 1) log

k

k − 1

}

→ log

[
dU

dL
1

Γ(−dL)

]
,

and

log πj + (d+ 1) log j

≥ log dL +

j∑
k=2

{
log

k − 1− dU

k
+ (dU + 1) log

k

k − 1

}

→ log

[
dL

dU
1

Γ(−dU )

]
.

These yield the required results.

Proof for the special case k ≥ 1, φ = 0, β = 0. Here, only
the case that k = 1 is considered as the result for k > 1
can be shown inductively in a similar manner. Consider the
recursive relationship

π1 = d and πj =
j − 1− d

j
πj−1 for j = 2, 3, . . . .

It can be shown by induction that

∂πj(d)

∂d
=

(
1

d
− 1

1− d
− · · · − 1

j − 1− d

)
πj .

It suffices to establish the uniform convergence of

1

log j

(
1

d
− 1

1− d
− · · · − 1

j − 1− d

)

for d ∈ [dL, dU ] as j → ∞. Below, an upper bound and a
lower bound for the quantity

1

log j

(
1

1− d
+ · · ·+ 1

j − 1− d

)

are given. By the inequality

1

j
< log

j

j − 1
<

1

j − 1
,

we have,

1 =
1

log j

{
log

j

j − 1
+ · · ·+ log

2

1

}

<
1

log j

{
1

j − 1
+ · · ·+ 1

}

<
1

log j

{
1

j − 1− d
+ · · ·+ 1

1− d

}

<
1

log j

{
1

j − 2
+ · · ·+ 1

1
+

1

1− dU

}

<
1

log j

{
log

j − 2

j − 3
+ · · ·+ log

2

1
+ 1 +

1

1− dU

}

=
1

log j

{
log(j − 2) + 1 +

1

1− dU

}
.

Consequently,

1

dU log j
− 1

log j

{
log(j − 2) + 1 +

1

1− dU

}

<
1

log j

{
1

d
− 1

1− d
− · · · − 1

j − 1− d

}

< −1 +
1

dL log j
.

Here, both the upper and lower bounds converge to −1.
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Proof for the general cases. Below, we show that if the con-

vergence of

lim
j→∞

jd+1(log j)m · ςj(θ) = K(θ) > 0

is uniform over a region Θ and K(θ) is bounded in Θ, then

lim
j→∞

jd+1(log j)m
j∑

i=1

Bi−1(θ)ςj−i(θ) =
K(θ)

1− β(1)

uniformly over Θ.

For any integers M, N and j > M +N, consider

ςj(θ) +B11ςj−1(θ) + · · ·+Bj−1
11 ς1(θ)

=

M∑
i=0

+

j−N−1∑
i=M+1

+

j−1∑
i=j−N

Bj−i
11 ςi(θ)

= S1(θ) + S2(θ) + S3(θ).

By Lemma 1, the first sum

jd+1(log j)mS1(θ)

= jd+1(log j)m
M∑
i=1

Bj−i
11 (θ)ςi(θ)

≤ Kjd
U+1(log j)m

M∑
i=1

(|λU |+ δ)j max
θ∈Θ

ςi(θ)

→ 0.

Let M be chosen so that for j > M,

(K(θ)− δ)j−d−1 < ςi(θ) < (K(θ) + δ)j−d−1.

By Lemma 1 and the fact that j
j−i < i+1 and (log(j−i))m

(log j)m < 1

when j > i + 1, we have for sufficiently large N and j >

M +N,

|jd+1(log j)mS2(θ)|

≤ (K(θ) + δ)

j−M−1∑
i=N+1

∣∣Bi
11(θ)

∣∣ ( j

j − i

)d+1

· (log(j − i))m

(log j)m

≤ (K(θ) + δ)

j−M−1∑
i=N+1

∣∣Bi
11(θ)

∣∣ (i+ 1)d+1

≤ (K(θ) + δ)

∞∑
i=N+1

∣∣Bi
11(θ)

∣∣ (i+ 1)d+1

≤ K(K(θ) + δ)

∞∑
i=N+1

(λU + δ)i(i+ 1)d
U+1,

which is arbitrarily small. For the third term,

∣∣∣∣∣jd+1(log j)mS3(θ)−K(θ)

∞∑
i=1

Bi
11(θ)

∣∣∣∣∣
≤ |jd+1(log j)mS3(θ)−K(θ)(1 +B11(θ) + · · ·+BN

11(θ))|

+K(θ)

∞∑
i=1

∣∣Bi
11(θ)

∣∣ .

The last term can be bounded by

K(θ)

∞∑
i=1

∣∣Bi
11(θ)

∣∣ ≤ K

∞∑
i=1

∣∣λU + δ
∣∣i ,

which is arbitrarily small. An upper bound for the first
term is

N∑
i=0

|Bi
11(θ)| ·

∣∣∣∣ j
d+1(log(j − i))m

(j − i)d+1(log j)m
(j − i)d+1

×(log(j − i))mςj−i −K(θ)

∣∣∣∣
≤ K

N∑
i=0

|λU + δ|i ·
∣∣∣∣ j

d+1(log(j − i))m

(j − i)d+1(log j)m
(j − i)d+1

×(log(j − i))mςj−i −K(θ)

∣∣∣∣,
which converges to zero uniformly in Θ as j → ∞. As a
result,

lim
j→∞

jd+1

j∑
i=1

Bi−1(θ)ςj−i(θ) = K(θ)

∞∑
j=0

Bj(θ) =
K(θ)

1− β(1)
,

and the convergence is uniform.
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