STATISTICS AND ITS INTERFACE Volume 4 (2011) 197-205

Subset ARMA selection via the adaptive Lasso

KuN CHEN* AND KUNG-SIK CHAN*f

Model selection is a critical aspect of subset autoregres-
sive moving-average (ARMA) modelling. This is commonly
done by subset selection methods, which may be compu-
tationally intensive and even impractical when the true
ARMA orders of the underlying model are high. On the
other hand, automatic variable selection methods based on
regularization do not directly apply to this problem because
the innovation process is latent. To solve this problem, we
propose to identify the optimal subset ARMA model by fit-
ting an adaptive Lasso regression of the time series on its
lags and the lags of the residuals from a long autoregression
fitted to the time series data, where the residuals serve as
proxies for the innovations. We show that, under some mild
regularity conditions, the proposed method enjoys the oracle
properties so that the method identifies the correct subset
model with probability approaching 1 with increasing sam-
ple size, and that the estimators of the nonzero coefficients
are asymptotically normal with the limiting distribution the
same as the case when the true zero coefficients are known a
priori. We illustrate the new method with simulations and
a real application.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62M10;
secondary 62J12.

KEYWORDS AND PHRASES: Least squares regression, Ora-
cle properties, Ridge regression, Seasonal ARIMA models,
Sparsity.

1. INTRODUCTION

Consider a discrete-time, stationary and ergodic process,
{y:}, driven by an autoregressive moving-average (ARMA)
model:

p” q
(1) Za;yt—j = Zﬁ;et—ja
=0 =0

where (p*,¢*) are the AR and MA orders, as and (}s are
the ARMA parameters with of = 85 = 1, and the ¢s are
the innovations of zero mean, uncorrelated over time and of
constant variance o2 > 0. Here for simplicity the data are
mean corrected.
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In fitting an ARMA model, besides estimating the struc-
tural parameters o} (j = 1,...,p*), 87 (j = 1,...,¢") and
the variance 02, the AR order p and MA order ¢ must also
be determined from the observations y; (t = 1,...,7T). A
commonly used approach to determining the ARMA orders
is to select a model that minimizes some information cri-
terion, e.g. AIC [1] and BIC [15]. Such methods generally
require carrying out maximum likelihood estimation for a
large number of ARMA models of different orders. How-
ever, maximum likelihood estimation of an ARMA model
is prone to numerical problems due to multimodality of the
likelihood function and the problem of overfitting when the
ARMA orders exceed their true values.

[7] proposed an interesting and practical solution to the
order determination problem. Firstly, a long AR(n) model is
fitted to the data, with the residuals then serving as proxies
for the unobserved innovations ¢, [3]:

2) &= dyj, =1, t=n+1,..T,
§=0

where the a;s (j = 1,...,n) are the autoregressive coeffi-
cients estimated by solving the Yule-Walker equations (or
by least squares). The AR order n can be determined by
minimizing the AIC criterion log62 + 2n/T, where 62 is
the corresponding estimator of the innovation variance. In
the second step, the ARMA parameters for various (p, g) or-
ders are estimated by regressing y; on y¢—;, for j=1,...,p
and &_j, for j = 1,...,q, where t = m,...,T with m =
n+max(p, ¢) + 1; the innovation variance of the model with
ARMA orders (p, q) is then estimated by the residual mean
square error, which is denoted by 527%. The corresponding
BIC values are approximated by loga, , + (p + ¢q) log T/T.
[7] showed that minimizing the approximate BIC leads to
consistent estimation of the ARMA orders, under suitable
regularity conditions.

Order determination is related to the more general prob-
lem of identifying the nonzero components in a subset
ARMA model. A subset ARMA model is an ARMA model
with a subset of its coeflicients being nonzero, which is a use-
ful and parsimonious way for modeling high-order ARMA
processes, e.g. seasonal time series. For ARMA process of
high orders, finding a subset ARMA model that adequately
approximates the underlying process is more important from
a practical standpoint than simply determining the ARMA
orders. [2] demonstrated that the method of [7] for estimat-
ing the ARMA orders can be extended to solving the prob-
lem of finding an optimal subset ARMA model, in which
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maximum likelihood estimations are avoided by adopting
the aforementioned long AR(n) approximation. Specifically,
their method consists of (i) fitting all subset regression mod-
els of y; on its own lags 1 to p and lags 1 to g of the residuals
from a long autoregression, where p and ¢ are some known
upper bounds of the true ARMA orders; and (ii) selecting
an optimal subset model from the pool of all subset regres-
sion models, according to some information criterion, e.g.
BIC. However, this method still relies on exhaustive sub-
set model selection which requires fitting a large number
of subset ARMA(p, q) models (2°*9 of them!), which may
be computational intensive and even impractical when (p, ¢)
are large.

In recent years, there has been extensive research on au-
tomatic variable selection methods via regularization, e.g.
Lasso [12, 16] and SCAD [5]. Some main advantages of
these methods include computational efficiency and the
capability of conducting simultaneous parameter estima-
tion and variable selection. The Lasso method is one of
the well-developed automatic model selection approaches
for linear regression problems. However, the consistency
of Lasso may only hold under some conditions, see [20].
In contrast, as shown by [21] and [10], with appropriate
data-driven parameter-specific weighted regularization, the
adaptive Lasso approach achieves the oracle properties, i.e.
asymptotic normality and model selection consistency. More
recently, the regularization approaches have been applied to
time series analysis, mainly for the autoregressive models.
For example, [17] considered shrinkage estimation of regres-
sive and autoregressive coefficients, and [8] and [14] con-
sidered penalized order selection for vector autoregressive
models. However, to our knowledge, model selection meth-
ods based on regularization have not been applied to the
more general ARMA model selection problems, mainly due
to the difficulty that the innovations €;s in the ARMA rep-
resentation are unobservable.

Motivated by [3, 7] and [2], we propose to find an opti-
mal subset ARMA model by fitting an adaptive Lasso re-
gression of the time series g, on its own lags and those of
the residuals that are obtained from fitting a long autore-
gression to the y;s. Besides avoiding troublesome maximum
likelihood estimation of ARMA models, the proposed ap-
proach also dramatically reduces the computational cost of
subset selection to the same order of cost of an ordinary
least squares fit. We show that under mild regularity condi-
tions, the proposed method achieves the oracle properties,
namely, it identifies the correct subset ARMA model with
probability tending to one as the sample size increases to
infinity, and that the estimators of the nonzero coefficients
are asymptotically normal with the limiting distribution the
same as that when the zero coefficients are known a pri-
ori.

198 K. Chen and K.-S. Chan

2. ADAPTIVE LASSO PROCEDURE FOR
SUBSET ARMA MODEL SELECTION
Throughout this section we assume that {y;} is generated

according to model (1), and the underlying true ARMA or-
ders p* < p and ¢* < g, where p, ¢ are known upper bounds

of the true orders. Let y = (Yo, ..., y7)’, € = (€m, ..., er)T,
T = (—aj,...,—ay, 07, .. ,ﬂ;‘)T and
X = (X17 s 7X[)+q)
Ym—1 Ym—p €Em—1 €m—q
Yr—1 Yr—p €7-1 €T—q

Then model (1) can be written in matrix form as
y=X1"+e

It is assumed that only a subset of the (structural) param-
eters 77 (j = 1,...,p + q) are nonzero.

Our main goal here is to identify the correct subset of
nonzero components in the above subset ARMA model.
It has been shown that in linear regression models, the
adaptive Lasso method can achieve model selection con-
sistency and produce asymptotically unbiased estimators
for the nonzero coefficients. However, the adaptive Lasso
method does not directly apply here, due to the difficulty
that the design matrix X involves the latent innovation
terms €; (t = m —1,...,T — 1). Motivated by [3, 7] and
[2], a long AR(n) process is first fitted to the data to ob-
tain the residuals &, whose expression is given in (2). Let
X denote the approximate design matrix obtained with the
entries ¢; replaced by é (t = m —1,...,T —1). We then
propose to select the optimal subset ARMA model by the
adaptive Lasso regression model of y on X. The adaptive
Lasso estimator of 7% is given by

p+q
@3 #7= argrngn{nyxTnz +ATZwm|},

j=1

where Ar is the tuning parameter controlling the degree of
penalization, and W = (1, ...,Wy+4)7 consists of p + ¢
data-driven weights. (Lasso corresponds to the case of using
equal weights, i.e. w; = 1.) Following [21], the weights can
be chosen as

w =77,

- AT - T

where 7 = (X X)~!X' y is the least squares estimator of
7* based on X, and 7 is a prespecified nonnegative parame-
ter; here, the absolute value and the power operators apply
component-wise. Based on simulations and as suggested by
[21], we use n = 2 in all numerical studies reported below.
Note that the weights can also be constructed based on a
ridge regression estimator if sample size is small and multi-
collinearity is a problem. Yet another alternative approach



for deriving the weights is to use the Lasso estimator, which
is consistent under some conditions.

The adaptive Lasso is essentially a weighted L; regular-
ization method. Its loss function is convex and the entire
solution path of various Ar values can be computed effi-
ciently by a modified LARS algorithm [4], with the same
order of computational cost of an ordinary least squares fit.
Hence we omit the details of the computational algorithm.
An unbiased estimator of the degrees of freedom of a Lasso
model is shown to be the number of nonzero coefficients
[22], which can be used to construct information criteria for
selecting Ap. After the solution path has been found, we
consider both the AIC and BIC criteria for determining the
optimal Ap.

The complete model selection strategy proposed is as fol-
lows:

I. Fit an AR(n) autoregressive model to obtain residuals
that serve as proxies for the innovations as given in (2).
The AR order n can be determined by minimizing the
AIC criterion as previously described.

II. Fit an adaptive Lasso regression of the time series y on
X as described in (3).

(i) Construct adaptive weights w by least squares (al-
ternatively, ridge or Lasso) regression of y on X.

(ii) Find the solution path of the adaptive Lasso re-
gression.

(iii) The optimal Az is the minimizer of some criterion
such as AIC and BIC.

ITI. (Optional) Do maximum likelihood estimation and

model diagnostics for the selected subset ARMA
model(s) chosen by some information criterion, e.g.
BIC.

3. ASYMPTOTIC PROPERTIES OF THE
ADAPTIVE LASSO ESTIMATOR

3.1 Assumptions and preliminary results

In this section, we introduce the main assumptions and
some useful results from [7].

A1l. For the true system (1), the polynomials

Za 2, B*(z

Zﬁ*zj with afy = 65 =1

7=0

are coprime, i.e. have no common factors, and that

a*(z) #£0, 8*(2) #0, for |2] < 1.
A2. Let A; be the o-algebra of events determined by €, (s <
t). We assume

E(eAi—1) = 07E(6;l) < 00, and E(ef|At,1) =0

A3. Assume n increases monotonically to infinity at a rate
clogT <n < (logT)®, where ¢ > (2log po)~* and py is
the modulus of a zero of 8*(z) nearest to |z| = 1, for
some 1 < b < oo.

Assumption Al ensures that the true model is stationary
and ergodic, and that p* and ¢* are the true model orders.
Assumption A2 implies that the innovations are martingale-
difference sequence, and hence uncorrelated over time; they
also have identical variance. Furthermore, the best linear
predictor of y; is the best in the least squares sense, and
it also ensures that % EZ;I €2 — o2 converges to zero at a
sufficiently rapid rate [7]. Assumption A3 imposes that the
order of the long autoregression increases at a certain rate
not slower than clog(T).

Let ¢ = Z;io a;y—; be the AR(oco) representation of
model (1). Note that a; decreases at a geometric rate and
hence

(@) 3 lajl = o).

The following lemmas are given either explicitly or im-
plicitly by [7] and [6].

Lemma 3.1. Under Assumptions A1-AS8, almost surely,

T
(5) Jmax. % Z &yi—j| = 0(Q(T)),
(6) Jmax. Iaj —a;| = O(Q(T)),
where Q( ) = (loglog T/T)%. Moreover, letting c¢; =
T ZS 1 YsYs+e, then
(7) Orgta<x let — el = O(Q(T)),
where v = E(YsYstt)-

Lemma 3.2. Under Assumptions A1-A3, almost surely,

T

Fu

t=m

(8) E(yi—jer—k) + O(Q(T)),

Et k=

uniformly forj=1,....pand k=1,...,q

3.2 Oracle properties

We first prove some results related to the adopted AR(n)
approximation. Then we prove our main results, which show
that the adaptive Lasso estimator enjoys the oracle proper-
ties, i.e. asymptotic normality and model selection consis-
tency. In our proofs, we restrict to the case that the weights
are derived from the least squares regression. The proofs can
be readily extended to the case for ridge regression based
weights, with appropriate conditions on the tuning parame-
ter for the ridge regression. However, the case of Lasso-based
weights requires further study.

Lemma 3.3. Under Assumptions A1-AS8, almost surely,
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T
1 . nloglogT
Vo D oelE—ey) = O(T)’

t=m
T
1 . n?loglogT
(].0) —T g;n(et — Gt)(ﬁtfj — thj) = O(T) .
Proof.

t=m u=0
T ( oS
LS w
T t=m u=n+1

oo 1 T
—VT ;1 {au<ft_zetytju>}
T-n-0Q(T))-O(Q(T)) + VT - o(T~
_ nloglogT
-o(*2i2E)

Here we have used (4) and the uniform convergence results
in (5) and (6) of Lemma 3.1. Now consider (10),

1) - 0(Q(T))

n T
—VTY" {( ~a) <% N >y> }
u=0 t=m
AE (o)
u=n+1 t=m
= ﬁZ{(du Z ( Zyt vYt—j— u)}
u=0 v=0

—VTY {(du a) Y ay (% > yt—vyt—j—u> }
u=0 v=n+1 t=m

T Z {au (% (& — et)ytju> }
u=n+1 t=m

By (4) and (6), it then suffices to show

\/Tzn:{(au au)zn: v = Gy ( Zyt oYt—j— u>}

_fz{ —_

200 K. Chen and K.-S. Chan

) D (an = @) (Yo—j—u + O(Q(T)))}

v=0

T-n-0(Q(T))-n-0(Q(T))

B O(n2 loglogT)
=o\—F )

Here we have used the uniform convergence results in Lem-
mas 3.1 and 3.2. This completes the proof. O

~T ~
Lemma 3.4. Under Assumptions A1-AS3, %X X — Cal-
most surely, where C is a nonsingular constant matrix.

Proof. Write X = (Y, E), where
Ym—1 Ym—p 6mfl €m7q
Y= : | E=| :
Yr—1 YT—p €r—1 €T—q
Then
Xk (1Y R (B X
T TE Y TE E X21 X22

Consider X;5 and Xi2, with a typical entry given by
% Z?:m Yi—j€t—t = E(ye—jer—1) + O(Q(T)) by Lemma 3.2.
Now consider X2, a typical entry of which being, for some
7, k=1,...,q, equal to

1 T
ft;ét,jét,k
n 1 E
= Z&"{T Z ét—jyt—k—u}
t=m
= Z (ay +0(Q

u=0

- E{ <2y> } +O(nQ(T))

= E(er—rer—j) + O<(1Og10g1j/);(logT)b>'

Here we have used (4) and the uniform convergence results in

Lemmas 3.1 and 3.2. Therefore, we have shown that %XTX
has the same limit as %XTX, which converges to a nonsin-
gular constant matrix, almost surely, by ergodicity and the
fact that the innovation variance is positive. This completes
the proof. O

TONHEWi—k—uer—;) + O(Q(T))}

Under Assumptions A1-A3,

T..
has the same limiting distribution as )\(/1_"6’ i.e. \/_ —d

—a W, where W ~ N(0,5°C).

Lemma 3.5. Lete = y— Xr*.

x"e
T

xT
W, X

Proof. We decompose T into four parts:



Xe X'e (X-X)Te
W F=F T
N XT(X -X)m*  (X-X)T(X-X)r*

It suffices to show that the second, third and the fourth
terms on the right side of (11) are o(1), which follows easily
from Lemma 3.3. This completes the proof. O

Lemma 3.6. Recall T = (XTX)fljny is the least squares
estimator of % based on X. Under Assumptions A1-AS3,
VT(#—1*) =4 N(0,0C™).

Proof. We decompose VT'(7 —7*) as follows:

VT(F —7%) = (%XTX> _l{ixTe + L(X ~X)Te

vT VT
1 T (~ *
~ X (X Xr
1

- ﬁ(x -X)T(X - X)T*}.

By Lemma 3.3 and following the same argument used in
. - % AT A _

proving Lemma 3.5, VT(7 — %) = (+X X) 1%XTE +

o(1). The claimed limiting distribution then follows from

Lemmas 3.4 and 3.5. O

We first define some notations. Let A = {j : 7/ # 0}
and A° = {j : 77 = 0}. Similarly, let Ay = {j : 7" # 0}
and fl% ={j: %](T) = 0}. Suppose Z is an m X n matrix,
and A and B are subsets of the collection of row and column
indices of Z, respectively. We let Z 45 denote a sub-matrix of
Z whose rows and columns are chosen from Z according to
the index sets A and B, respectively. For simplicity, we may
write Z 4 = Z 4 when Z is a square matrix, Zaz = Z.3
(Z 4.) when A (B) consists of all the row (column) indies,
and Z 4. = Z 4 when Z is a vector.

Theorem 3.7 (Oracle Properties). Suppose A1-A3 hold,
and assume A—\/TTT% — 00 and )\T/\/T — 0. Then
(i) Asymptotic normality:
VTEY) —7%) =4 N(0,62CY) as T — .
(ii) Selection consistency:
limy 0 P(Ar = A) = 1.

Proof. The proof is similar in structure to the proof of the

main result in [21]. Let 7 = 7* + T Ur(u) = [ly = X(7" +

%)H2 + Ar Z?Zf ;T - “—\/T|, and 4" = argmin U7 (u).

Then a7 = VT (#7) — 7%). Let Vip(u) = Ur(u) — U7 (0).
Then we have

My

VT

Ar ’i’ T
+—= ) W T<T;‘+ ||T;‘).
VT
By Lemmas 3.4-3.6 and following [21], we have Vp(u) —4
V(u) for every u, where

V(u) ulCauy —204Wy ifu;=0Vj¢ A
00 otherwise.
V(u) is convex and has a unique minimum. Following [12],
we have

(12) 0 =, C'W4 and 4 —, 0.

Finally, upon recalling W 4 ~ N(0,02C_4), the asymptotic
normality result follows.

Next, we show the consistency part. Vj € A, the asymp-
totic normality result indicates that f;T) —p 77 it follows
that P(j € Ag) — 1. It suffices to show that Vj ¢ A,
P(j € Ar) — 0. Consider the event j ¢ A and j € Ap. By
the Karush-Kuhn-Tucker (KKT) optimality conditions, we
have

2)A(jT(y - Xf(T)) _ )\T’lf}j

VT VT

= A—\/%T”/Q\\/T%jr" — 00. Consider the left

(13)

)\ij

Note that N
side of (13),

2% (y - X#"))

— J J * ~(T)
+ VT(r* -7
VT vt T v )
T
By Lemma 3.5, 2\’7; = Op(1). By Lemma 3.4 and (12),

2T ~7
Qx%X\/T(T* _%(T)) = O,(1). Thus

R 2% (y = X# D) N\,
PjeAr)< P J = 9) 0.
Gedn) < ( 7T Vi)

This completes the proof. O

4. EMPIRICAL PERFORMANCE

We study the empirical performance of the proposed sub-
set model selection method by simulations. Four Gaussian
ARMA models are considered:

Model I: (1 —0.8B)(1 — 0.7B%)y; = €;

Model II: (1 — 0.8B)(1 — 0.7B%)y, =
0.7B%¢;;

(14 0.8B)(1 +
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Table 1. Summary statistics of a Monte Carlo study of the empirical performance of the adaptive Lasso subset model selection
method for Models I-I1l. Numbers in the columns with the heading “A” report the relative frequencies of picking all significant

variables; those under the heading “T" are the relative frequencies of picking the correct model; those under the heading

«

report the false negative rates; those under the heading “+" report the false positive rates. Numbers under the the heading

“N" are the sample sizes. All experiments were replicated 1,000 times

Model 1
AlIC BIC
Lasso Lasso | Ridge LS
N A T — + A T — + A T — + A T — +
120 | 0.76 0.19 0.09 0.07| 0.75 044 0.09 004 ]| 024 000 026 0.15| 075 0.19 0.13 0.22
240 0.98 0.30 0.01 0.06 0.98 0.80 0.01 0.01 0.44 0.01 0.19 0.20 0.85 0.40 0.07 0.18
360 | 1.00 0.32 0.00 0.06 | 1.00 0.87 000 0.01| 054 0.01 015 0.20| 087 0.49 0.07 0.17
Model 1T
AIC BIC
Lasso Lasso | Ridge LS
N A T — + A T — + A T — + A T — +
120 0.40 0.01 0.12 0.20 0.32 0.04 0.15 0.14 | 0.26 0.00 0.18 0.22 0.02 0.00 0.38 0.45
240 | 081 0.03 004 021 | 076 0.15 005 0.13| 036 0.01 018 0.30| 005 0.00 035 047
360 0.92 0.04 0.02 0.21 0.92 0.24 0.02 0.10 | 0.36 0.01 0.20 0.36 0.04 0.00 0.36 0.48
Model IIT
AIC BIC
Lasso Lasso | Ridge LS
N A T - + A T - + A T - + A T — +
120 0.03 0.00 0.54 0.18 0.03 0.00 0.58 0.13 0.04 0.00 0.47  0.16 0.05 0.00 0.75 0.29
240 | 0.17 0.00 036 0.21 | 0.14 0.01 043 0.14 | 0.10 0.00 037 0.20| 0.07 0.00 0.61 0.36
360 | 0.38 0.00 025 023 034 002 031 0.15]| 016 000 033 023]| 0.06 0.00 0.62 0.36

Model IIT: y; = (14 0.8B)(1 + 0.7B%)e;;

Model IV: y; = (1 — 0.6B — 0.8B?)¢,,

where B is the backshift operator so that B¥y; = y,_, and
{e:} are independent standard normal random variables.
The first three models are multiplicative seasonal models
with seasonal period 6, whereas the last model is a non-
multiplicative seasonal model with seasonal period 12. For
the long autoregressive fits, the AR order was chosen by
AIC, with the maximum order set to be 10log,(T"). (We
have also experimented by fixing the long AR order to the
preceding maximum order, but obtained similar results.) As
mentioned earlier, for the proposed adaptive Lasso method,
there are several ways for determining the weights. (Follow-
ing [21], the power 7 in the weights was set to be 2 in all
experiments.) The simplest method is ordinary least squares
regression (LS), but LS suffers from large variability in the
case of low signal to noise ratio. In many applications in-
volving, say monthly data, sample size may range from 120
(10 years) to 360 (30 years). In our simulation experiments
for models I to III, we set the sample size to be either 120,
240 or 360, with the maximum AR and MA lags both equal
to 14. Consequently, the number of data per parameter is
at most slightly higher than 10, for these sample sizes. For
such cases, LS is very variable, and the simulation results
reported below show that the adaptive Lasso, with weights
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determined by LS, performed poorly, except for Model I; see
Table 1.

The poor performance of the LS-weighted adaptive Lasso
may be partly attributed to multicollinearity, which may be
somewhat alleviated by using ridge regression, i.e. by mini-
mizing the penalized sum of squares with the penalty equal
to the product of a (non-negative) tuning parameter times
the Lo-norm of the regression coefficients. The tuning pa-
rameter may be determined by minimizing the generalized
cross validation (GCV), see [18]. In our simulations, we im-
plemented the ridge regression via the magic function of the
mgcv library [18] in the R platform [13]. Yet another method
is to use the Lasso to derive the initial weights. The Lasso
is known to be consistent under some regularity conditions,
see [20]. We have experimented with both AIC and BIC
in determining the Lasso tuning parameter. For determin-
ing the initial weights, AIC and BIC yielded similar results
(unreported); hence, we only report results with the initial
weights determined by (i) Lasso with the tuning parameter
obtained by minimizing BIC, (ii) ridge regression with the
tuning parameter obtained by minimizing GCV and (iii) LS.

Table 1 shows the model selection results of the adaptive
Lasso method under the three weighting schemes and dif-
ferent sample sizes. Each experiment was replicated 1,000
times. For each experiment, Table 1 provides 4 statistics:
(i) the relative frequency of including all significant vari-
ables, (ii) the relative frequency of picking the true model,



(iii) the false negative rate and (iv) the false positive rate.
For Models I to III, the maximum AR lag is 14 and so is
the maximum MA lag. Recall that the tuning parameter
of the adaptive Lasso may be determined by either AIC
or BIC. Columns 2-5 of Table 1 report the simulation re-
sults for the adaptive Lasso with the weights determined by
Lasso, and the tuning parameter of the adaptive Lasso de-
termined by AIC, whereas columns 6-9 report those when
the tuning parameter of the adaptive Lasso was determined
by BIC. Comparison between the two schemes show that
BIC and AIC performed similarly, with BIC having a higher
chance of picking the true model, lower false positive rates
and slightly higher false negative rates; AIC tends to have a
higher chance of including all significant variables at the ex-
pense of selecting more complex models than BIC. The pro-
posed method performed very well for the pure AR model,
less so for the mixed ARMA model, but performed some-
what poorly for the pure MA model as specified by Model
III. Columns 10-13 and columns 14-17 of Table 1 display
the results for the proposed adaptive Lasso method with
the weighting scheme given by ridge regression and LS, re-
spectively. These results show that the adaptive Lasso with
an LS-based weighting scheme generally performed quite
poorly except for the AR example, and using weights based
on ridge regression alleviated the problem somewhat, but it
is still outperformed by the method of adaptive Lasso with
Lasso-based weights.

Given that it is difficult to identify an MA model, we
also experimented with searching among the subset MA
models. In Table 2, we reported results for another three
sets of experiments, with models selected by adaptive Lasso
with Lasso-based weights. In the first set of experiments,
we repeated the experiments with Model III, but with the
model selection confined among (subset) MA models, with
the maximum MA lag equal to 14. We show the results with
the tuning parameter of the adaptive Lasso determined by
either AIC or BIC. Again, AIC and BIC performed simi-
larly, and now the proposed method works extremely well if
the search is restricted to MA models. This result suggests
that, for data analysis, it may be prudent to apply the pro-
posed method with the search among pure AR models, then
among mixed ARMA models and finally among the pure
MA models. One can then explore further with the optimal
models from these three model selection exercises, in order
to arrive at an “optimal” model for the data on hand.

Table 2 also reports the results for Model III with larger
sample sizes, namely, 480, 600 and 720. The results show
that the rates of false negatives and false positives decline
steadily with increasing sample size, and the rate of includ-
ing all significant variables increases steadily with sample
size, as well.

Finally, Table 2 reports the results for Model IV, with
the maximum AR and MA lags equal to 26, and sample size
equal to 240 or 360. While this is also a pure MA model,
the performance of the proposed Lasso-weighted adaptive

Table 2. Summary statistics of a Monte Carlo study of the
empirical performance of the adaptive Lasso subset model
selection method for Models I1l-IV. Numbers in the columns
with the heading “A” report the relative frequencies of
picking all significant variables; those under the heading “T"
are the relative frequencies of picking the correct model;
those under the heading “—" report the false negative rates;
those under the heading “+" report the false positive rates.
Numbers under the the heading “N” are the sample sizes. All
experiments were replicated 1,000 times

Model IIT (selection confined among MA models)

| AIC | BIC
NI A T - +] A T - 4+
120 [ 0.90 0.25 0.03 0.17 [ 087 0.38 0.05 0.10
240 | .00 0.28 0.00 0.18 | 1.00 0.51 0.00 0.09
360 | 1.00 030 0.00 0.17 | 1.00 0.51 0.00 0.08
Model II1
| AIC | BIC
NI A T - +] A T - 4+
480 | 0.54 0.00 0.18 024 [ 048 0.04 024 0.15
600 | 0.64 0.00 0.14 025|059 006 0.18 0.1
720 | 069 0.0l 012 0.26 | 0.66 0.10 0.15 0.14
Model IV
| AIC | BIC
N[ A T - +] A T -+
240 [ 055 0.04 026 0.06 | 0.49 0.08 029 0.04
360 | 0.79 0.03 0.0 0.07 ] 0.74 0.2 0.13 0.05

Lasso method is comparable to the case for Model III with
sample sizes 600-720; the better performance may be due
to the larger gap between the two MA coefficients in Model
IV, which induces weaker autocorrelations in the data. The
limited Monte Carlo experiments reported here suggest that
the proposed method is a promising new tool for identifying
sparse stationary ARMA models, especially if the sparsity
contains wide gaps in the ARMA coefficients. In practice,
real data may be non-stationary, and they must be trans-
formed to stationarity before applying the proposed adap-
tive Lasso subset model selection method.

5. A REAL APPLICATION

As an example, we consider a time series of the monthly
COg level from a monitoring site at Alert, Northwest Terri-
tories, Canada. (The dataset is contained in the TSA library
in R.) The dataset was earlier analyzed by [2, Chapter 12],
who fitted a period-12 seasonal ARIMA(0,1,1) x (0,1,1)12
model. In particular the series is nonstationary. Here, we ap-
ply regular differencing and period-12 seasonal differencing
to the data before carrying out the Lasso-weighted adaptive
Lasso model selection. In practice, it is better to report a few
optimal models selected by adaptive Lasso. Figure 1 shows
the best 5 models selected by adaptive Lasso with its tuning
parameter determined by BIC; each row corresponds to one
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Figure 1. Best five subset models selected for the regularly and seasonally differenced COs series.

selected model with the selected variables shaded in dark,
and the models are ordered from top to bottom, according
to their BICs. According to Figure 1, the optimal subset
model contains lags 1 and 12 of the response variable and
lags 9, 11 and 12 of the errors (residuals from the long au-
toregression, being proxies for the latent innovations). The
presence of the error lags 11 and 12 suggests a multiplica-
tive model. Indeed, the lag 1 of the error process appears in
some of the selected models shown in Figure 1. The pres-
ence of the error lag 9 is harder to interpret. Nevertheless,
we fitted a subset ARIMA(1,1,9)x(1,1,1);2 model with the
coefficients of error lags 2 to 8 fixed at zero. The model fit
(unreported) suggested that the regular AR (1) and seasonal
AR(1) coefficients are non-significant, so these are dropped
from a second fitted model:

(1-B)(1 - B%)y, = (1 —0.64 (0.09) B —0.26 (0.08) BY)
x (1—0.81 (0.1) B¢,
where the numbers in parentheses are the standard errors.

This fitted model appears to fit the data well as the residuals
were found to be approximately white.

6. CONCLUSION

The numerical studies reported in the preceding two sec-
tions illustrate the efficacy of the proposed subset ARMA
selection method. There are other time series modeling tasks
that require ARMA order section, e.g. VARMA models and
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transfer-function (dynamic regression) models. It is inter-
esting to extend the proposed method to these settings.
While we have derived the oracle properties of the proposed
method using LS-based weights, it is worthwhile to inves-
tigate the asymptotics for the case of Lasso-based weights,
especially in view of the much better empirical properties
of the adaptive Lasso selection method using Lasso-based
weights. Given the fact that the coefficients in an ARMA
model naturally form an AR group and an MA group, it
would be interesting to explore bi-level selection penalty
forms such as the group bridge penalty [11].

While we focus on subset ARMA models, a similar prob-
lem occurs in nonparametric stochastic regression models
[19]. A challenging problem consists of lifting some of the
automatic model selection methods to the nonparametric
setting; see [9] for some recent works in the additive frame-
work.

Received 9 October 2010
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