
Statistics and Its Interface Volume 4 (2011) 183–196

On the least squares estimation of threshold
autoregressive and moving-average models∗

Dong Li
†
, Wai Keung Li and Shiqing Ling

This paper considers the least squares estimation and es-
tablishes its asymptotic theory for threshold autoregressive
and moving-average models. Under some mild conditions, it
is shown that the estimator of the threshold is n-consistent
and after normalization it converges weakly to the smallest
minimizer of a compound Poisson process, while the estima-
tors of other coefficients are strongly consistent and asymp-
totically multivariate normal. This paper also provides a nu-
merical method to tabulate the limiting distribution of the
estimated threshold in practice. Simulation studies are car-
ried out to assess the performance of the least squares esti-
mation in finite samples.
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1. INTRODUCTION

Since the seminal work of Tong (1978), the threshold
model has received considerable attention and is extensively
investigated by many researchers. Now it becomes a more
or less standard model in nonlinear time series and has
been widely used in diverse areas, including biological sci-
ences, econometrics, environmental sciences, finance, hydrol-
ogy, physics, population dynamics. In comparison with other
nonlinear time series models existing in literature, one of the
leading reasons behind the success of threshold models is
that piecewise linear functions can offer a relatively simple
and easy-to-handle approximation to the complex nonlin-
ear dynamics, perhaps more importantly, it can offer a rea-
sonable model-interpretation. Threshold models can capture
and be capable of producing many nonlinear phenomena,
such as amplitude dependent frequencies, asymmetric limit
cycle, chaos, jump resonance, harmonic distortion and so on.
A fairly comprehensive survey is available in Tong (1990)
and a selective review of the history of threshold models is
given by Tong (2011).

∗Dedicated to Professor Howell Tong on the occasion of his 65th birth-
day.
†Corresponding author.

Although threshold models have many important ap-
plications in practice, there is not a complete theory and
methodology as compared with the linear ARMA models.
Our knowledge on threshold models is still developing, in
particular, for the threshold autoregressive and moving av-
erage (TARMA) model.

In the past 30 years or so, the study on the threshold
model mainly focuses on threshold autoregressive (TAR)
models and there is numerous existing literature related to
this topic. For example, on the probabilistic structure of the
TAR model, some basic results were given by Chan et al.
(1985), Chan and Tong (1985) and Tong (1990). More re-
lated results can be found in An and Huang (1996), Brock-
well et al. (1992), Chen and Tsay (1991), Ling (1999), Liu
and Suskov (1992) and so on. On the other hand, the asymp-
totic theory of the least squares estimation of the two-regime
TAR model was established by Chan (1993) and Chan and
Tsay (1998), see also Petruccelli (1986) and Qian (1998).
The multi-regime TAR model was considered by Li and Ling
(2010). It is worth pointing out that Chan (1993) established
the limiting distribution of the estimated threshold, which
is the smallest minimizer of a two-sided compound Poisson
process, when the autoregressive function is not continuous.

In the development of threshold models, the threshold
moving-average (TMA) model, which can be viewed as the
superposition of the random impulses through the notion
of thresholds, i.e. on-off feedback controllers, has been over-
shadowed by TAR ones. Earlier works on the TMA model
mainly focus on the probabilistic structure, see Brockwell
et al. (1992), Liu and Susko (1992) and Ling (1999). Re-
cently, more works enrich the literature on TMA models.
Ling et al. (2007) and Li, Ling and Tong (2011) considered
the existence, strict stationarity, ergodicity and invertibil-
ity of TMA models. Gooijer (1998) proposed the maximum
likelihood estimation when the driven impulse is normal.
Li, Ling and Li (2010) developed the least squares estima-
tion and established the asymptotic theory for general TMA
models. Ling and Tong (2005) studied a quasi-likelihood ra-
tio test with linear MA model as the null hypothesis against
the TMA model as the alternative. This test was extended
to the heteroscedastic case by Li and Li (2008).

Up to date, however, it seems that TARMA models have
not attracted too much attention. There are only a few re-
sults available in the literature, all of which mainly study
probabilistic properties and give some sufficient conditions
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for the (geometric) ergodicity, strict stationarity and exis-
tence of the solution to TARMA models, although they are
not easy to verify in practice, see Brockwell et al. (1992),
Giovanni (2005), Liu and Susko (1992) and Ling (1999).
Recently, Chan and Tong (2010) gave a sufficient condi-
tion for the invertibility of nonlinear ARMA models. Li and
Li (2011) proposed a quasi-likelihood ratio test for ARMA
models against their threshold extensions. To the best of
our knowledge, the estimation of TARMA models has not
been considered yet, which is one of our motivations in this
paper.

In the application, Ghaddar and Tong (1981) applied
a TAR(11) model to fit the annual sunspot data of the pe-
riod 1700–1979, see also Tong (1990, page 420), and Gooijer
(1998) used a TMA(17) to fit the quarterly US real GNP
data covering the period 1947.I–1982.IV. More real exam-
ples can be found in Tong (1990), Tsay (1989) and so on.
These examples have a common feature that the order of the
model is too high. From a practical point of view, TARMA
models should have more advantages over pure TAR or
TMA models because these models can provide a parsimo-
nious form just like linear ARMA models. This motivates
us to study further TARMA models. As a natural general-
ization of pure TAR and TMA models, it is necessary to
establish a unified theory for estimation, which is our other
motivation.

In this paper, we shall study the least squares estima-
tion (LSE) of TARMA models and establish its asymptotic
theory. Under some mild conditions, it is shown that the
estimator of the threshold is n-consistent and after nor-
malization it converges weakly to the smallest minimizer
of a two-sided compound Poisson process, while the estima-
tors of other coefficients are strongly consistent and asymp-
totically multivariate normal. This paper also proposes a
numerical method to tabulate the limiting distribution of
the estimated threshold in practice. Simulation studies are
carried out to assess the performance of the least squares
estimation in finite samples.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the TARMA model and presents its LSE.
Section 3 addresses some assumptions and states main re-
sults. Section 4 proposes a numerical approach on simulating
the limiting distribution of the estimated threshold. Simula-
tion studies are reported in Section 5 and some concluding
remarks are given in Section 6. All proofs of Theorems are
left in the Appendix.

Throughout the paper, some symbols are conventional.
C is a positive constant, which may be different in different
places. a ∨ b ≡ max{a, b} for some a and b. The summation∑0

i=1 ≡ 0 and the product
∏0

i=1 ≡ 1. I(·) is an indica-
tor function. Rk is the Euclidean space of dimension k and
‖ ·‖ denotes the Euclidian norm. op(1) (Op(1)) denotes a se-
quence of random numbers converging to zero (bounded)

in probability.
d−→ denotes convergence in distribution and

=⇒ denotes weak convergence.

2. MODEL AND LEAST SQUARES
ESTIMATION

A time series {yt, t = 0,±1, . . .} is said to be a TARMA
model with order (p1, p2, q1, q2), abbreviated to TARMA
(p1, p2, q1, q2), if it satisfies

(2.1)

yt =

⎧⎪⎪⎨⎪⎪⎩
φ10 +

p1∑
i=1

φ1iyt−i + εt +
q1∑
i=1

ψ1iεt−i, if yt−d ≤ r,

φ20 +
p2∑
i=1

φ2iyt−i + εt +
q2∑
i=1

ψ2iεt−i, if yt−d > r,

where {εt} is a sequence of independent and identically dis-
tributed (i.i.d) random variables, r ∈ R, pi and qi are known
nonnegative integers and d is a positive integer. Here, r is
called the threshold parameter and d is the delay variable.
When q1 = q2 = 0, model (2.1) reduces to a pure TAR
model. When p1 = p2 = 0, model (2.1) is a pure TMA
model. If all φ1i = φ2i and ψ1i = ψ2i, then model (2.1)
becomes a linear ARMA model.

Without loss of generality, we assume that there exist two
finite constants r and r̄ such that r ∈ [r, r̄] since model (2.1)
reduces to a linear ARMA model when r = ±∞, which
is not of our interest here. In addition, d is an unknown
parameter to be estimated and its true value is d0 with
1 ≤ d0 ≤ D0, where D0 is a known positive integer. Let
θ0 = (λ′

0, r0, d0)
′ be the true value of the parameter θ =

(λ′, r, d)′ ≡ (φ′
1,ψ

′
1,φ

′
2,ψ

′
2, r, d)

′ with φi = (φi0, . . . , φipi)
′

and ψi = (ψi1, . . . , ψiqi)
′ for i = 1, 2. The parameter space

Θ is denoted by Θ = Λ × [r, r̄] × {1, . . . , D0}, where Λ is
a subset of Rp1+p2+q1+q2+2.

Assume that {y1, . . . , yn} is a sample from model (2.1)
with sample size n. Given the initial value Y ∗

0 ≡ {ys : s ≤ 0},
the sum of square errors function Ln(θ) is defined as

Ln(θ) =
n∑

t=1

ε 2
t (θ),

where

εt(θ) = yt −
(
φ10 +

p1∑
i=1

φ1iyt−i

)
I(yt−d ≤ r)

−
(
φ20 +

p2∑
i=1

φ2iyt−i

)
I(yt−d > r)

−
(

q1∑
i=1

ψ1iεt−i(θ)

)
I(yt−d ≤ r)

−
(

q2∑
i=1

ψ2iεt−i(θ)

)
I(yt−d > r).

The minimizer θ̂n = (λ̂′
n, r̂n, d̂n)

′ of Ln(θ) is called the LSE
of θ0, that is,

θ̂n = argmin
θ∈Θ

Ln(θ).
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Note that Ln(θ) is discontinuous in r and d. The way to get

θ̂n is as follows.

Algorithm A

Step A.1. For each fixed r ∈ R and d ∈ {1, . . . , D0}, we
minimize Ln(θ) and get its minimizer λ̂n(r, d) and min-

imum L∗
n(r, d) ≡ Ln(θ)|λ=̂λn(r,d)

.

Step A.2. Since L∗
n(r, d) only takes on finite possible values,

we can get the minimizer (r̂n, d̂n)
′ of L∗

n(r, d) by a grid

search over the set of order statistics of {y1, . . . , yn} and
{1, . . . , D0}.

Step A.3. Using a plug-in method, one can finally get

λ̂n(r̂n, d̂n) and θ̂n.

Generally, there exist infinitely many r such that Ln(·) at-

tains its global minimum. One can choose the smallest of

these r’s as an estimator of the threshold. According to the

procedure for obtaining θ̂n, it is not hard to show that θ̂n
is the LSE of θ0.

In practice, the initial value Y ∗
0 is not available and hence

we have to replace it by some constants, e.g. Y ∗
0 = x ≡

{x1, . . .}. Since supθ∈Θ ‖Ht,j(θ)‖ = O(ρj) a.s. by Theo-

rem A.1 in Ling and Tong (2005) under Assumption 3.1,

where Ht,j(θ) is defined in (3.1) below, we can show that

sup
θ∈Θ

∣∣∣ε2t (θ)− ε2t (θ)|Y ∗
0 =x

∣∣∣ = O(ρt) a.s.

for any given x and some ρ ∈ (0, 1). Thus, the initial value

will not affect the asymptotic properties of θ̂n. For simplic-

ity, in what follows, we assume that Y ∗
0 is from model (2.1).

In this case, εt(θ0) = εt.

3. MAIN RESULTS

Let p = p1 ∨ p2 and q = q1 ∨ q2. In what follows, Θ is

assumed to be compact. We first give a sufficient condition

for the invertibility of model (2.1). This condition is easy

to verify in practice and similar to that of TMA models in

Ling and Tong (2005).

Assumption 3.1.
∑q

j=1 |ψij | < 1, where ψij = 0 for j >

qi, i = 1, 2.

If ψ1j = ψ2j , j = 1, . . . , q, then the invertible region of

model (2.1) is the same as that of the ARMA model when

q = 1, but is smaller than that of ARMA model when q > 1.

This assumption can be relaxed when q > 1. A weaker condi-

tion available can be found in Chan and Tong (2010). Under

Assumption 3.1 and the condition that {yt} is strictly sta-

tionary with E|yt| < ∞, by Theorem A.2 in Ling and Tong

(2005), the residual εt(θ) has the following representation:

εt(θ) =
∞∑
j=0

[e′Ht,j(θ)e]

×
{
yt−j −

(
φ10 +

p1∑
i=1

φ1iyt−i−j

)
I(yt−d−j ≤ r)

−
(
φ20 +

p2∑
i=1

φ2iyt−i−j

)
I(yt−d−j > r)

}
,

where e = (1, 0, . . . , 0)′q×1 and

(3.1) Ht,j(θ) =

j∏
i=1

[Ψ2 + (Ψ1 −Ψ2)I(yt−d−i+1 ≤ r)]

for j ≥ 0 with the convention
∏0

i=1 = Iq, the identity matrix
of size q, and

(3.2) Ψi =

(
−ψi1 · · · −ψiq

Iq−1 0

)
, i = 1, 2.

The following result states the strong consistency of the
estimator θ̂n. The proof is similar to that of Theorem 2.1 in
Li, Ling and Li (2010) and hence it is omitted.

Theorem 3.1. Suppose that (i) Assumption 3.1 holds,
(ii) {yt} satisfying (2.1) is strictly stationary and ergodic
with Ey2t < ∞, (iii) φ10 �= φ20 or ψ10 �= ψ20 and (iv) εt
has a bounded, continuous and strictly positive density on R
with Eεt = 0 and Eε2t < ∞. Then, θ̂n → θ0 a.s. as n → ∞.

The condition (iii) in Theorem 3.1 is required to ensure
the identification of the threshold. The strong consistency of
θ̂n holds, regardless if the autoregressive function is contin-
uous or not. This result is similar to that of TAR models in
Chan (1993) and Chan and Tsay (1998) and of TMA models
in Li, Ling and Li (2010). From Theorem 3.1, we know that

d̂n equals d0 eventually. Thus, without loss of generality,
we assume that d is known for the remainder. d is deleted
from θ, i.e. θ = (λ′, r)′ and Θ is modified, accordingly. De-

note λ̂n(r) = λ̂n(r, d0).
To obtain the convergence rate of r̂n and the uniformly

asymptotic normality of λ̂n ≡ λ̂n(r̂n), we need another four
assumptions as follows.

Assumption 3.2. {εt} is a sequence of i.i.d. random vari-
ables with zero mean and Eε4t < ∞. The random variable
ε1 has a bounded, continuous and positive density fε on R.

Assumption 3.3. {yt} is strictly stationary with Ey4t < ∞.

Let Zt = (yt, . . . , yt−(p∨d)+1, εt, . . . , εt−q+1)
′ with

{εt, . . . , εk} = ∅ if k > t. Then we can rewrite model (2.1)
as a Markovian vectorial representation, see equation (3) in
Giovanni (2005) or (2.1)–(2.2) in Liu and Susko (1992), that
is, {Zt} is a Markov chain. Denote its l-step transition prob-
ability by P l(z, A), where z ∈ R(p∨d)+q and A is a Borel set
of R(p∨d)+q.
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Assumption 3.4. {Zt} admits a unique invariant measure
Π(·) and is V -uniformly ergodic with V (z) = 1 + ‖z‖.

Actually, Assumption 3.4 is stronger than geometric er-
godicity. For the notion of the V -uniform ergodicity, see
Meyn and Tweedie (1993, Chapter 16). If the initial value
Z0 is from the distribution Π(·), then Assumption 3.4 im-
plies that {yt} is strictly stationary. For a pure TAR model,
it is relatively easy to find a sufficient condition on the co-
efficients to ensure that Assumption 3.4 holds. See Chan
(1989, 1993) and Chan and Tong (1985). While for a pure
TMA model, Assumption 3.4 is not necessary since the ex-
pression of the strictly stationary and ergodic solution to
model (2.1) is available and we can find other weaker condi-
tions to substitute it in studying the convergence rate of r̂n,
see Li, Ling and Tong (2011) and Li, Ling and Li (2010).
As is well known, it is very hard to verify the V -uniform er-
godicity for general nonlinear time series models in practice.
For TARMA model (2.1), if Assumption 3.2, the conditions∑p

j=1 |φij | < 1 and r �= 0 hold with φ10 = φ20 = 0, where
φij = 0 for j > pi, i = 1, 2, then there exists a function

V1(Zt) = max
0≤i≤(p∨d)−1

{ρi0|yt−i|}+
q−1∑
j=0

Lj |εt−j |+ 1

such that E[V1(Zt)|Zt−1 = z] ≤ ρ0V1(z)+[1+(L0+1)E|ε1|],
which implies that {Zt} is V1-uniformly ergodic, where con-
stants ρ0 and {Li} satisfy

ρ0 =

(
max
i=1,2

p∑
j=1

|φij |
)1/p

∈ (0, 1),

ρ0Lq−1 ≥ b ≡ max
i=1,2

max
1≤j≤q

|ψij |,

ρ0Li−1 ≥ Li + b, for i = 1, . . . , q − 1.

It is easy to show that there exist positive constants c1 and
c2 such that c1V (z) ≤ V1(z) ≤ c2V (z). Thus, {Zt} is also V -
uniformly ergodic by the definition of V -uniform ergodicity.
Unfortunately, for other cases, how to verify Assumption 3.4
for TARMA models is still an open problem since the irre-
ducibility and T-continuity of {Zt} has not been solved. For
more details, see Giovanni (2005).

Assumption 3.5. There exist nonrandom vectors w =
(1, w1, . . . , wp)

′ ∈ Rp with wd = r0 and a ∈ Rq such that
(φ10 − φ20)

′w + (ψ10 − ψ20)
′a �= 0, where φij0 = 0 for

j > pi and ψij0 = 0 for j > qi, i = 1, 2.

In Assumption 3.5, wd may not be a component of w if
d > p. In this case, Assumption 3.5 is equivalent to the con-
dition ‖φ10−φ20‖+‖ψ10−ψ20‖ > 0. The latter is necessary
and sufficient for the identification of the threshold.

When p = 0, that is, TARMA model (2.1) reduces to
a pure TMA model, Assumption 3.5 is identical to Assump-
tion 2.2 in Li, Ling and Li (2010) since (ψ10 − ψ20)

′a �= 0
for some a ∈ Rq implies that ‖ψ10 − ψ20‖ > 0 and in turn

r̂n has an n-convergence rate. When q = 0, e.g., model (2.1)
reduces to a pure TAR model, Assumption 3.5 is the same
as Condition 4 in Chan (1993), which implies that the au-
toregressive function is not continuous over the hyperplane
yd = r0 so that r̂n has an n-convergence rate. Assump-
tion 3.5 plays a similar role in the convergence rate of r̂n for
TARMA models.

For TAR models, from the results in Chan (1993) and
Chan and Tsay (1998), we know that the convergence rate
of r̂n heavily depends on the continuity of the autoregressive
function over the hyperplane yd = r0. For TARMA models,
however, the convergence rate of r̂n depends not only on the
continuity of the autoregressive function, but also on the co-
efficients in the moving-average part. That is, the continuity
of the autoregressive function is not a unique determinant
for n-convergence rate of r̂n. This point is extremely differ-
ent from TAR models.

If Assumption 3.5 is violated and the threshold can be
identified, then d ≤ p and model (2.1) becomes

yt = φ0 +

p∑
i=1
i �=d

φiyt−i + φ−
d (yt−d − r)−(3.3)

+ φ+
d (yt−d − r)+ + εt +

q∑
i=1

ψiεt−i,

where φi, ψj , φ
−
d and φ+

d are the parameters, (y)− = min{y,
0} and (y)+ = max{y, 0}. Model (3.3) can be regarded as
an extension of the TAR model of Chan and Tsay (1998)
when the autoregressive function is continuous, under which
r̂n has a

√
n-convergence rate like other coefficients and is

asymptotically normal. We conjecture that similar results
hold for model (3.3) under some suitable conditions. Here,
we will not pursue this problem.

Theorem 3.2 below shows the convergence rates of r̂n and
the uniformly asymptotic normality of λ̂n(r̂n).

Theorem 3.2. If Assumptions 3.1–3.5 hold, then

(i) n(r̂n − r0) = Op(1),

(ii)
√
n sup|r−r0|≤B/n

∥∥λ̂n(r)− λ̂n(r0)
∥∥ = op(1)

for any fixed constant B ∈ (0,∞). Furthermore,

√
n(λ̂n − λ0) =

√
n(λ̂n(r0)− λ0) + op(1)

d−→ N (0, σ2Σ−1) as n → ∞,

where σ2 = Eε21 and Σ = E[(∂εt(θ0)/∂λ)(∂εt(θ0)/∂λ
′)].

Generally, since they are unknown in practice, we can
estimate σ2 and Σ consistently by

σ̂2
n =

1

n

n∑
t=1

ε 2
t (θ̂n) and Σ̂n =

1

n

n∑
t=1

∂εt(θ̂n)

∂λ

∂εt(θ̂n)

∂λ′ .
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Using these estimators, one can easily construct approxi-
mate confidence regions for the coefficient parameters in
TARMA models in terms of the limiting distribution in The-
orem 3.2. For example, an approximate (1 − α) confidence
region for the coefficient vector λ is obtained as

{λ : (λ̂n − λ)′Σ̂n(λ̂n − λ) ≤ σ̂2
nχ

2
p1+p2+q1+q2+2(1− α)/n},

where χ2
k(1 − α) is the 100αth percentile of the χ2-dis-

tribution with k degrees of freedom.
To study the limiting distribution of r̂n, we need to con-

sider the following profile sum of square errors function:

L̃n(z) = Ln

(
λ̂n

(
r0 +

z

n

)
, r0 +

z

n

)
− Ln(λ̂n(r0), r0), z ∈ R.

It is not hard to show that L̃n(z) can be approximated in
D(R), the space of all cadlag functions on R being equipped
with the Skorokhod metric, by

℘n(z) = I(z < 0)

n∑
t=1

ζ1tI

(
r0 +

z

n
< yt−d ≤ r0

)

+ I(z ≥ 0)

n∑
t=1

ζ2tI

(
r0 < yt−d ≤ r0 +

z

n

)
,

where

ζ1t =

{ ∞∑
j=0

[e′Ht+j,j(θ0)e]
2

}
δ2t

+ 2

{ ∞∑
j=0

εt+j [e
′Ht+j,j(θ0)e]

}
δt,

ζ2t =

{ ∞∑
j=0

[e′Ht+j,j(θ0)e]
2

}
δ2t

− 2

{ ∞∑
j=0

εt+j [e
′Ht+j,j(θ0)e]

}
δt

(3.4)

and

δt = (φ100 − φ200) +

p∑
i=1

(φ1i0 − φ2i0)yt−i

+

q∑
i=1

(ψ1i0 − ψ2i0)εt−i.

Let Fk(·|r0) be the conditional distribution of ζk,d+1 given
y1 = r0 for k = 1, 2. We define a two-sided compound Pois-
son process ℘(z) as follows

(3.5) ℘(z) = ℘(1)(−z)I(z < 0) + ℘(2)(z)I(z ≥ 0),

where {℘(1)(z), z ≥ 0} and {℘(2)(z), z ≥ 0} are two in-
dependent Poisson processes with ℘(1)(0) = ℘(2)(0) = 0

a.s., with the same jump rate π(r0) > 0, where π(x) is the

density of y1, and with the jump distributions F1(·|r0) and
F2(·|r0), respectively. Clearly, ℘(z) goes to +∞ a.s. when |z|
tends to infinity since

∫
xFk(dx|r0) > 0. Thus, there exists

a unique random interval [M−,M+) on which the process

{℘(z), z ∈ R} attains its global minimum a.s. Here, we work

with the left continuous version for ℘(1) and the right con-

tinuous version for ℘(2). Now, we can state our other main

result as follows:

Theorem 3.3. Suppose Assumptions 3.1–3.5 hold. Then

n(r̂n − r0)
d−→ M− and n(r̂n − r0) is asymptotically in-

dependent of
√
n(λ̂n − λ0) which is always asymptotically

normally distributed.

Now, we give some remarks on (3.4) to end this section.

When q = 0, model (2.1) is a pure TAR model, that is, all

ψij = 0. Thus, (3.4) reduces to ζ1t = δ2t + 2εtδt and ζ2t =

δ2t − 2εtδt with δt = (φ100 − φ200) +
∑p

i=1(φ1i0 − φ2i0)yt−i.

If the condition yt−d = r0 is given, then this coincides with

the jump sizes of the compound Poisson process used in

Chan (1993). When p = 0, model (2.1) reduces to a pure

TMA model and (3.4) does not change except for δt with

δt = (φ100 −φ200)+
∑q

i=1(ψ1i0 −ψ2i0)εt−i. This is identical

to those in Li, Ling and Li (2010).

4. NUMERICAL IMPLEMENTATION OF M−

In this section, we describe how to simulate the dis-

tribution of M− when the order (p1, p2, q1, q2) is known.

From (3.5), we know that two factors determine the density

of M−, that is, the jump rate π(r0) and the jump distribu-

tions F1(·|r0) and F2(·|r0). We can simulate M− via simu-

lating the compound Poisson process (3.5) on the interval

[−T, T ] for any given T > 0 large enough since the expecta-

tions of the jumps are positive. Modifying Algorithm 6.2 in

Cont and Tankov (2004, pp. 174) for a one-sided compound

Poisson process, we have an algorithm for a two-sided com-

pound Poisson process as follows:

Algorithm B

Step B.1. Generate two i.i.d. Poisson random variables N1

and N2 with the parameter π(r0)T as the total number

of jumps on the intervals [−T, 0] and [0, T ], respectively.

Step B.2. Given N1 and N2, generate {U1, . . . , UN1} and

{V1, . . . , VN2} as two independent jump time sequences,

where {Ui} i.i.d.
∼ U [−T, 0] and {Vi} i.i.d.

∼ U [0, T ]. Here,

U [a, b] denotes the uniform distribution on the interval

[a, b].

Step B.3. Given N1 and N2, generate {Y1, . . . , YN1} and

{Z1, . . . , ZN2} as two independent jump-size sequences

from F1(·|r0) and F2(·|r0), respectively.
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For z ∈ [−T, T ], the trajectory of (3.5) is given by

℘(z) = I(z < 0)

N1∑
i=1

I(Ui > z)Yi(4.1)

+ I(z ≥ 0)

N2∑
j=1

I(Vj < z)Zj .

Then, we take the smallest minimizer of ℘(z) on [−T, T ] as

M−. By repeating the above algorithm many times and us-

ing the nonparametric kernel method, we can get the density

of M− numerically.

In the above algorithm, the key is how to draw the jump-

size sequences {Yi} and {Zi} from F1(·|r0) and F2(·|r0) in

Step B.3, respectively. Note that ζk,d+1’s in (3.4) are sums of

infinite series and ‖Hd+1+j,j(θ0)‖ = O(ρj) a.s. We truncate

these infinite series and use the finite-term sums to approx-

imate ζk,d+1’s as follows:

ζ
(m)
k,d+1

=

{
m∑
j=0

(
e′

j∏
i=1

[Ψ20 + (Ψ10 −Ψ20)I(yi+1 ≤ r0)]e

)2}
δ 2
d+1

+ 2(−1)k+1

{
m∑
j=0

εd+1+j

(
e′

j∏
i=1

[Ψ20 + (Ψ10 −Ψ20)

× I(yi+1 ≤ r0)]e

)}
δd+1,

where Ψi0 is defined in (3.2) with ψij ’s replaced by true val-

ues ψij0’s, since the remaining terms are negligible whenm is

large enough, where ρ ∈ (0, 1). Let F
(m)
k (x|r0) = P (ζ

(m)
k,d+1 ≤

x|y1 = r0). Then, F
(m)
k (x|r0) → Fk(x|r0) as m → ∞. In

practice, the choice of m is independent of the sample size n.

By the property of conditional expectation, the strong

law of large numbers and E[π(r0|Z0)] = π(r0), we have

F
(m)
k (x|r0)

=

∫
P
(
ζ
(m)
k,d+1 ≤ x|y1 = r0,Z0 = z

)π(r0|z)
π(r0)

G(dz)

=

K∑
i=1

P
(
ζ
(m)
k,d+1 ≤ x|y1 = r0,Z0 = zi

) π(r0|zi)∑K
l=1 π(r0|zl)

+o(1)

≡ F
(m)
k,K (x|r0, {zj}) + o(1) a.s.,

uniformly in x ∈ R by Theorem 2 in Pollard (1984, page 8),

where Z0 = (y0, . . . , y1−(p∨d), ε0, . . . , ε1−q)
′, zi ∈ R(p∨d)+q,

G(·) is the distribution of Z0, π(r0|z) is the conditional den-
sity of y1 given Z0 = z. Here, the choices of m and K are

independent.

Denote

h(Zt−1,θ) =

⎧⎪⎪⎨⎪⎪⎩
φ10 +

p1∑
i=1

φ1iyt−i +
q1∑
i=1

ψ1iεt−i, if yt−d ≤ r,

φ20 +
p2∑
i=1

φ2iyt−i +
q2∑
i=1

ψ2iεt−i, if yt−d > r.

Then, model (2.1) can be written as yt = εt + h(Zt−1,θ0).
Given y1 = r0 and Z0 = z, we have ε1 = r0 − h(z,θ0) and
π(r0|z) = fε(r0 − h(z,θ0)).

Let Fε(·) be the cumulative distribution function of εt.
When θ0, π(r0), Fε(·) and G(·) are known, the following

algorithm describes how to sample Y1 from F
(m)
k,K (x|r0, {zj}).

Algorithm C
Step C.1. Draw a sample Z = {z1, . . . , zK} from G(·).
Step C.2. For each i ∈ {1, . . . ,K}, sample independently

{εt : 2 ≤ t ≤ d + 1 + m} from Fε(·) and generate
{yt : 2 ≤ t ≤ d + 1 +m} by iterating model (2.1) with
the initial value y1 = r0, Z0 = zi and ε1 = r0−h(zi,θ0).

Then calculate ζ
(m)
1,d+1, denoted by ξ

(m,i)
1,d+1.

Step C.3. Calculate π(r0|zi)’s and sample a U from
the conditional discrete density: P (U = i|Z) =

π(r0|zi)/[
∑K

l=1 π(r0|zl)] for i = 1, . . . ,K, independent
of all {εt, t ≥ 2}.

Step C.4. Obtain Y1 = ξ
(m,U)
1,d+1 .

Clearly, by Step C.2 and Step C.3, {yt, t ≥ 2} is indepen-

dent of U given Z, and so is ξ
(m,i)
1,d+1. Denote the conditional

measure PZ(·|A) ≡ P (·|A,Z). Thus,

PZ(Y1 ≤ x)

=

K∑
i=1

PZ
(
ξ
(m,i)
1,d+1 ≤ x, U = i

)
=

K∑
i=1

PZ
(
ξ
(m,i)
1,d+1 ≤ x

)
PZ(U = i)

=

K∑
i=1

P
(
ζ
(m)
1,d+1 ≤ x|y1 = r0,Z0 = zi

) π(r0|zi)∑K
l=1 π(r0|zl)

= F
(m)
1,K (x|r0, {zj}).

Since F
(m)
k,K (x|r0, {zj}) K→∞−→ F

(m)
k (x|r0) m→∞−→ Fk(x|r0),

Y1|Z ∼ F1(x|r0) asymptotically. Denote the sequences of the

two-sided CPPs by {℘(m)(z) : z ∈ R} and {℘(m)
K (z) : z ∈ R}

which are determined by the same jump rate π(r0) and jump

distributions F
(m)
k (x|r0) and F

(m)
k,K (x|r0, {zj}), respectively.

By Theorem 16 in Pollard (1984, page 134), we have a.s. that

℘
(m)
K (z)

K→∞
=⇒ ℘(m)(z)

m→∞
=⇒ ℘(z) in D(R). Minimizing the

process ℘
(m)
K (z), we can get the smallest minimizer M̃

(m)
K .

By Theorem 3.1 (on the continuity of the smallest argmax

functional) in Seijo and Sen (2011), M̃
(m)
K =⇒ M− (first

K → ∞, then m → ∞). Summarizing the above discussion,
we have
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Theorem 4.1. Suppose Assumptions 3.1–3.2 hold and {yt}
is strictly stationary and ergodic. Then, almost surely,

lim
m→∞

lim
K→∞

|PZ(M̃
(m)
K ≤ x)− P (M− ≤ x)| = 0

at each x for which P (M− = x) = 0.

Since M̃
(m)
K is only relevant to model (2.1) and indepen-

dent of the estimation of the parameter, without loss of gen-

erality, in what follows, we regard M̃
(m)
K as M−.

In practice, however, since only one sample X ≡
{y1, . . . , yn} is available, we can use it to estimate θ0 and

π(r0) a.s., denoting the estimators as θ̂n and π̂(r̂n), respec-

tively, where π̂(·) is the kernel density estimator of π(·),
and calculate the residuals {ε̂t : k0 + 1 ≤ t ≤ n}, where
k0 = max(p, d, q). Based on the residuals, we construct the

estimators F̂ε(·) and f̂ε(·) of Fε(·) and fε(·) as follows

F̂ε(x) =
1

n− k0

n∑
t=k0+1

(ε∗t ≤ x),

where ε∗t = ε̂t − ¯̂ε with ¯̂ε = 1
n−k0

∑n
t=k0+1 ε̂t, and

f̂ε(x) =
1

n− k0

n∑
t=k0+1

1

ĥ∗
opt

K

(
ε∗t − x

ĥ∗
opt

)
,

where K(x) = (
√
2π)−1 exp(−x2/2) is the Gaussian kernel

and ĥ∗
opt is the bandwidth, which can be selected by

ĥ∗
opt = ĥopt

(
1 +

35

48
γ̂4 +

35

32
γ̂2
3 +

385

1024
γ̂2
4

)−1/5

,(4.2)

where ĥopt = 1.06s(n − k0)
−1/5 is the reference bandwidth

selector, and s, γ̂3 and γ̂4 are the sample standard deviation,

skewness and kurtosis of the residuals {ε̂t : k0+1 ≤ t ≤ n},
respectively. See Fan and Yao (2003, pp. 201). Of course, one

can use other kernel functions and bandwidths. When fε(·)
is uniformly continuous, using the technique in Silverman

(1978), we can show that supx∈R |f̂ε(x) − fε(x)| = op(1)

as n → ∞. The following algorithm is just an extension of

Algorithm C under ε̂t and π̂(r̂n).

Algorithm D

Step D.1. Set ẑi = (yi, . . . , yi−(p∨d)+1, ε̂i, . . . , ε̂i−q+1)
′ for

i = k0 + 1, . . . , n.

Step D.2. For each i ∈ {k0 + 1, . . . , n}, sample indepen-

dently {ε̃t : 2 ≤ t ≤ d + 1 + m} from F̂ε given X

and generate {ỹt : 2 ≤ t ≤ d + 1 + m} by iterating

model (2.1) with the initial value y1 = r̂n, Z0 = ẑi and

ε1 = r̂n − h(ẑi, θ̂n) and θ0 being replaced by θ̂n. Then

calculate ζ̃
(m)
1,d+1, denoted by ξ̃

(m,i)
1,d+1, where

ζ̃
(m)
1,d+1 =

{
m∑
j=0

(
e′

j∏
i=1

[Ψ̂2n + (Ψ̂1n − Ψ̂2n)

× I(ỹi+1 ≤ r̂n)]e

)2}
δ∗ 2
d+1

+ 2

{
m∑
j=0

ε̃d+1+j

(
e′

j∏
i=1

[Ψ̂2n + (Ψ̂1n − Ψ̂2n)

× I(ỹi+1 ≤ r̂n)]e

)}
δ∗d+1

and

δ∗d+1 = (φ̂10n − φ̂20n) +

p∑
s=1

(φ̂1sn − φ̂2sn)y
∗
d+1−s

+

q∑
s=1

(ψ̂1sn − ψ̂2sn)ε
∗
d+1−s

with

y∗j =

⎧⎨⎩ỹj , if j ≥ 2,
r̂n, if j = 1,
yi+j , if j ≤ 0,

and

ε∗j =

⎧⎨⎩
ε̃j , if j ≥ 2,

r̂n − h(ẑi, θ̂n), if j = 1,
ε̂i+j , if j ≤ 0.

Step D.3. Calculate π̂(r̂n|ẑi)’s and sample a U from the
conditional discrete density: P (U = i|X) = π̂(r̂n|ẑi)/
[
∑n

l=k0+1 π̂(r̂n|ẑl)] for i = k0 + 1, . . . , n, conditionally
independent of {ε̃t, t ≥ 2} given X.

Step D.4. Obtain Ỹ1 = ξ̃
(m,U)
1,d+1 .

Denote by M̂
(m)
n the counterpart of M̃

(m)
K obtained using

Algorithm D. By the same procedure used in the proof of
Theorem 3.2 in Li, Ling and Li (2010), we have

Theorem 4.2. Suppose Assumptions 3.1–3.5 hold and
fε(x) is uniformly continuous on R. Then, in probability,

lim
m→∞

lim
n→∞

|PX(M̂
(m)
n ≤ x)− P (M− ≤ x)| = 0

at each x for which P (M− = x) = 0.

We now consider the following TARMA(1, 1, 1, 1) model:

yt =

{
φ10 + φ11yt−1 + εt + ψ11εt−1, if yt−1 ≤ r0,
φ20 + φ21yt−1 + εt + ψ21εt−1, if yt−1 > r0,

(4.3)

where θ0 = (φ10, φ11, ψ11, φ20, φ21, ψ21, r0)
′ = (0.6, 0.6,

−0.7,−1, 0.4, 0.5, 0.2)′ and {εt} is i.i.d standard normal.
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Figure 1. The density of M− for different values of T . (a) T = 50; (b) T = 100.

Table 1. Quantiles for M− under model (4.3)

α 0.5% 1% 2.5% 5% 95% 97.5% 99% 99.5%
Q −22.05 −19.18 −14.74 −11.61 7.27 10.88 15.86 20.06

Since it is difficult to obtain the exact value of π(r0), we
adopt the kernel method to estimate it, where the sample
size is N = 10,000 and the Gaussian kernel is used. The
bandwidth is chosen by (4.2). To ensure the precision of
the estimation, 100 replications are used. Finally, we get
π(r0) = 0.3241.

Figure 1 gives the densities of M− when T = 50 and
100 by using Algorithms B and C. 1,001 observations (i.e.,
K = 1,000) together with the driven noises generated by
model (4.3) and m = 200 are used to calculate the jump

sizes ζ
(m)
k,d+1, k = 1, 2. Then, minimizing the process (4.1), we

can obtain an observation of M−. Here, 10,000 replications
are used to get the density of M−. From Fig 1, we can see
that the densities of M− are very close to each other for
T = 50 and 100. In theory, the larger T , the more precise the
density of M−. How to select a suitable T is an interesting
and open problem and there is no theory to support this in
the literature.

Table 1 gives the quantiles ofM− under model (4.3) when
the significance level α = 0.005, 0.01, 0.025, 0.05, 0.95, 0.975,
0.99 and 0.995.

For Algorithm D, simulation studies show that it works
well in practice. Suppose that a sample {y1, . . . , y400} is from
model (4.3) and fixed. Then we consistently estimate the
quantities involved in Algorithm D.m = 200 and 1,000 repli-

cations are used to obtain M̂
(m)
n . Fig 2 (a) shows the empir-

ical cumulative distribution functions of M̂
(m)
n and M̃

(m)
K .

Figure 2 (b) gives the density of M̂
(m)
n , which is close to

those in Fig 1.
To further evaluate the performance of the simulation

method above, we consider another example, e.g., a higher-
order TARMA(3, 3, 0, 0) model:

yt =

{
1 + 0.2yt−1 − 0.4yt−2 + 0.3yt−3 + εt, yt−3 ≤ 0,
−1 + 0.6yt−1 + 0.1yt−2 − 0.2yt−3 + εt, yt−3 > 0,

(4.4)

where εt ∼ i.i.d. N (0, 1). The simulation results are dis-
played in Fig 3. The density of n(r̂n−r0) is given in Fig 3 (a),
where the sample size is 600 and 10,000 replications are
used. Figure 3 (b) shows the density of M−, where 10,000
replications are used. Figures 3 (c)–(d) show the density

of M̂− (obtained by Algorithms B and D) for a given and
fixed sample {y1, . . . , y600} from model (4.4), where 1,000
and 10,000 replications are used for (c) and (d), respectively.
From Fig 3, we can see that (a), (b) and (d) are very match-
ing.
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Figure 2. (a) The empirical cumulative distribution functions of M̃
(m)
K (M−) and M̂

(m)
n . (b) The density of M̂

(m)
n , where

the sample size is n = 400 and 1,000 replications are used.

5. SIMULATION STUDIES

To assess the performance of the LSE of θ0 in finite sam-
ples, we use sample sizes n = 200, 400, 600 and 800, each
with replications 1,000 for model (4.3) with εt ∼ N (0, 1).
In Table 2, we summarize the empirical mean, empirical
standard deviation (ESD) and asymptotic standard devia-

tion (ASD). Here, the ASD of λ̂ are computed using Σ in
Theorem 3.2 and the ASD of r̂n is obtained by simulating
M−.

From Table 2, we see that the consistency of the estima-
tors is shown by the empirical means and the closeness of the
empirical standard deviations to the asymptotic standard
deviations. We also see that the values of the ESDs for r̂n
are about halved each time when the value of n is doubled.
This partially illustrates the n-consistency of the thresh-
old estimator, under which the estimator of the threshold
parameter would approach the true parameter much faster
than the coefficient parameter estimators.

Table 3 reports the coverage probabilities of the estimator
r̂n for n = 200, 400, 600 and 800, respectively, based on the
critical values in Table 1. From the table, we can see that

Table 2. Simulation studies for model (4.3) with
θ0 = (0.6, 0.6,−0.7,−1, 0.4, 0.5, 0.2)′

n φ10 φ11 ψ11 φ20 φ21 ψ21 r

200 EM 0.6149 0.6099 −0.7241 −1.0063 0.4046 0.5107 0.1877
ESD 0.1315 0.1920 0.1935 0.2103 0.2101 0.1936 0.0325
ASD 0.1167 0.1636 0.1553 0.2003 0.1837 0.1535 0.0296

400 EM 0.6083 0.6047 −0.7092 −1.0057 0.4076 0.4987 0.1953
ESD 0.0879 0.1215 0.1226 0.1529 0.1406 0.1196 0.0165
ASD 0.0825 0.1157 0.1098 0.1416 0.1299 0.1085 0.0148

600 EM 0.6086 0.6059 −0.7071 −1.0058 0.4073 0.4951 0.1965
ESD 0.0691 0.0952 0.0958 0.1128 0.1064 0.0944 0.0093
ASD 0.0674 0.0945 0.0897 0.1156 0.1061 0.0886 0.0099

800 EM 0.5999 0.6060 −0.7127 −1.0001 0.4026 0.4973 0.1967
ESD 0.0601 0.0836 0.0796 0.0987 0.0930 0.0804 0.0071
ASD 0.0583 0.0818 0.0777 0.1001 0.0919 0.0767 0.0074

the coverage probability is rather accurate even though the
sample size n is 200.

Figure 4 shows the density of n(r̂n−r0) when the sample
size n = 200, 400, 600 and 800, respectively. From Fig 4,
we see that the densities of n(r̂n − r0) and M− in Fig 1
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Figure 3. (a) The density of n(r̂n − r0). (b) The density of M−. (c) The density of M̂− when 1,000 replications are used.

(d) The density of M̂− when 10,000 replications are used.

Table 3. Coverage probabilities

α 200 400 600 800
0.01 0.979 0.986 0.991 0.988
0.05 0.936 0.936 0.966 0.960
0.10 0.890 0.888 0.917 0.911

are matching, which supports Theorem 3.3 empirically. We
also see that the density of n(r̂n − r0) is leptokurtic and
asymmetric. Here the skewness of M− is 0.234 and the kur-
tosis is 8.96. Due to the skewness and kurtosis, we must be
careful in constructing confidence intervals of the estimated
threshold in practice.

6. CONCLUDING REMARKS

This paper considers the general TARMA model which
contains the pure TAR model and the pure TMA model as
two special cases and has established the asymptotic the-
ory of the least squares estimation. The limiting distribu-
tion of the estimated threshold, which is the smallest mini-
mizer of a two-sided compound Poisson process, has been de-
rived. A numerical method is proposed to simulate this lim-
iting distribution and simulation studies show that it does
work well. These results are obtained under which the order
(p1, p2, q1, q2) is known. In applications, one can use either
the AIC or BIC to determine the unknown order. Here we do
not pursue this issue anymore. As for TARMA model (3.3)
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Figure 4. The density of n(r̂n − r0) when the sample size n = 200, 400, 600 and 800, respectively.

where the autoregressive function is continuous and where
there is no threshold in the moving-average part, we conjec-
ture that the estimated threshold has a

√
n-convergence rate

and is asymptotically normal as well as other parameters.
This conjecture corresponds to the results in Chan and Tsay
(1998) on TAR models when the autoregressive function is
continuous. For this case, further study will be needed in
the future.

APPENDIX A. PROOF OF THEOREM 3.2

In this section we give the proof for the case q = 1 and
1 ≤ d ≤ p. For a general case, the proof is similar. We first
give a lemma.

Lemma A.1. Suppose that Assumptions 3.1–3.5 hold.
Then, for any ε > 0 and η > 0, there exists a constant

Threshold ARMA models 193



B > 0 such that for any fixed δ ∈ (0, 1) small enough and
any n ≥ 1

P

(
sup

B/n<u<δ

∣∣∣∣∑n
t=1 I

∗(r0 < yt−d ≤ r0 + u)

nG∗(u)
− 1

∣∣∣∣ < η

)
(A.1)

> 1− ε,

P

(
sup

B/n<u<δ

∣∣∣∣∑n
t=1 At(0, u)

nG(u)

∣∣∣∣ < η

)
> 1− ε,(A.2)

P

(
sup

B/n<u<δ

∣∣∣∣∑n
t=1 εt[εt(λ0, r0 + u)− εt]

nG(u)

∣∣∣∣ < η

)
(A.3)

> 1− ε,

where I∗(r0 < yt−d ≤ r) = I(r0 < yt−d ≤ r, ‖Zt−1 − Z∗‖ ≤
β), G∗(u) = P (r0 < yt−d ≤ r0 + u, ‖Zt−1 − Z∗‖ ≤
β), G(u) = P (r0 < yt−d ≤ r0 + u) and At(u1, u2) =
I(r0 + u1 < yt−d ≤ r0 + u2)

∑∞
j=0 ρ

j‖Zt−2−j‖I(r0 + u1 <
yt−1−d−j ≤ r0 + u2) for u, u1, u2 ∈ [0, δ]. Here β is a fixed
positive constant and Z∗ = (w′,a′)′ defined in Assump-
tion 3.5.

Proof. The proof of (A.1) is simple by Assumption 3.4, sim-
ilar to that of (4.4a) in Chan (1993) and hence it is omitted.
Since the proof of (A.3) is similar to that of (A.2), we only
prove (A.2). It is sufficient to verify the following inequalities
for 0 ≤ u1, u2 ≤ δ

E[At(u1, u2)] ≤ C[G(u2)−G(u1)],(A.4)

Var(At(u1, u2)) ≤ C[G(u2)−G(u1)],(A.5)

Var

(
n∑

t=1

At(u1, u2)

)
≤ Cn[G(u2)−G(u1)].(A.6)

First, note that the following two facts. One is that for k ≥ 1

P (r0 < y0 ≤ r0 + u, r0 < yk ≤ r0 + u) ≤ Cu2

by a conditional argument. The other is that there exist two
finite positive constants m0 and M0 such that

m0(u2 − u1) ≤ G(u2)−G(u1) ≤ M0(u2 − u1)

for r0 − 1 ≤ u1 ≤ u2 ≤ r0 + 1, since the density of yt is
continuous and positive on R by Assumption 3.2 and the
convolution property.

For (A.4), by Hölder’s inequality and Assumptions 3.3–
3.4, it follows that

E[At(u1, u2)] ≤ C(u2 − u1)
3/2 ≤ C[G(u2)−G(u1)].(A.7)

The first inequality in (A.7) implies that it is not necessary
to subtract E[At(u1, u2)] from At(u1, u2).

For (A.5), by Hölder’s inequality and Assumptions 3.3–
3.4 again, we have

Var(At(u1, u2)) ≤ E[A2
t (u1, u2)]

≤ C(E‖Zt‖4)1/2[G(u2)−G(u1)].

For (A.6), by a simple calculation, we have

|E(At|G0)− E(At)|

≤ Ctρt(1 + ‖Z0‖) + Cρt + Cρt
∞∑
j=0

ρj‖Z−j‖,

where G0 = σ(Zt, t ≤ 0), which implies that

|Cov(A0(u1, u2), At(u1, u2))| ≤ E{A0|E(At|G0)− EAt|}

≤ Ctρt[G(u2)−G(u1)].

Thus,

Var

(
n∑

t=1

At(u1, u2)

)
= nVar(At(u1, u2))

+ 2

n−1∑
k=1

(n− k)Cov(A0(u1, u2), Ak(u1, u2))

≤ Cn

{ ∞∑
k=1

kρk

}
[G(u2)−G(u1)] ≤ Cn[G(u2)−G(u1)].

The proof of is complete.

Proof of Theorem 3.2 (i). Since θ̂n is consistent, we restrict
Θ to an open neighborhood of θ0, defined by Uδ = {θ ∈
Θ : ‖λ − λ0‖ < δ, |r − r0| < δ} for some 0 < δ < 1 to be
determined later. Then it suffices to show that there exist
constants B > 0, γ > 0, such that for n large enough

P

(
inf

B/n<|r−r0|≤δ
θ∈Uδ

Ln(λ, r)− Ln(λ, r0)

nG(|r − r0|)
> γ

)
> 1− 4ε.

(A.8)

Here, we only treat the case r > r0. The proof for the case
r < r0 is similar.

Let r = r0+u for some 0 < u < 1. Decompose Ln(λ, r)−
Ln(λ, r0) as

Ln(λ, r)− Ln(λ, r0)

= {[Ln(λ, r)− Ln(λ, r0)]− [Ln(λ0, r)− Ln(λ0, r0)]}
+ [Ln(λ0, r)− Ln(λ0, r0)]

≡ L(1)
n (λ, r) + L(2)

n (r).

We first consider L
(2)
n (r). Note that

εt(λ0, r)− εt = f(Zt−1) + g(Zt−1)[εt−1(λ0, r)− εt−1]

=
∞∑
j=0

{
j∏

i=1

g(Zt−i)

}
f(Zt−1−j),
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where

f(Zt−1) =

{
p∑

i=1

(φ2i0 − φ1i0)yt−i + (ψ20 − ψ10)εt−1

}
× I(r0 < yt−d ≤ r),

g(Zt−1) = −[ψ20 + (ψ10 − ψ20)I(yt−d ≤ r)].

By Assumption 3.5, there exists β > 0 such that ((φ10 −
φ20)

′, (ψ10 −ψ20)
′)′Z is bounded away from 0 for all Z sat-

isfying ‖Z− Z∗‖ ≤ β with Z∗ = (w′,a′)′. Thus,

ε2t (λ0, r)− ε2t

≥ [f(Zt−1)]
2I(‖Zt−1 − Z∗‖ ≤ β) + 2εt[εt(λ0, r)− εt]

+ 2f(Zt−1)I(‖Zt−1 − Z∗‖ ≤ β)

× g(Zt−1)[εt−1(λ0, r)− εt−1].

Clearly, |f(Zt−1)| ≤ C‖Zt−1‖I(r0 < yt−d ≤ r) and
|g(Zt−1)| ≤ ρ < 1 by the compactness of Θ. Then

2|f(Zt−1)I(‖Zt−1 − Z∗‖ ≤ β)g(Zt−1)[εt−1(λ0, r)− εt−1]|

≤ CI(r0 < yt−d ≤ r)

∞∑
j=0

ρj‖Zt−2−j‖I(r0 < yt−1−d−j ≤ r)

= CAt(0, u)

and there exists a positive constant c0 such that

[f(Zt−1)]
2I(‖Zt−1 − Z∗‖ ≤ β)

≥ c0I(r0 < yt−d ≤ r, ‖Zt−1 − Z∗‖ ≤ β)

= c0I
∗(r0 < yt−d ≤ r).

Hence,

L
(2)
n (r)

nG(u)
≥ c0G

∗(u)

G(u)

∑n
t=1 I

∗(r0 < yt−d ≤ r0 + u)

nG∗(u)

− C

∑n
t=1 At(0, u)

nG(u)

+ 2

∑n
t=1 εt[εt(λ0, r0 + u)− εt]

nG(u)
.

Note that

lim
u↓0

G∗(u)

G(u)
= P (‖Zt−1 − Z∗‖ ≤ β

∣∣yt−d = r+0 ) > 0

by a conditional argument for the inequality above. Write
the limit as a0. Then there exists a δ > 0 small enough such
that c0G

∗(u)/G(u) ≥ c0a0/2 on [0, δ]. By Lemma A.1, it
follows that

P

(
inf

B/n<u≤δ

L
(2)
n (r)

nG(u)
>

c0a0
4

)
> 1− 3ε.

Next, we consider L
(1)
n (λ, r). Clearly,

1

n
L(1)
n (λ, r)

=
1

n

n∑
t=1

∫ 1

0

[
∂ε2t (λv, r)

∂λ′ − ∂ε2t (λv, r0)

∂λ′

]
(λ− λ0)dv,

where λv = λ0 + v(λ− λ0). Similarly, we can prove that

sup
B/n<u≤δ

θ∈Uδ

|L(1)
n (λ, r)|
nG(u)

= Op

(
sup
θ∈Uδ

‖λ− λ0‖
)
= Op(δ).

Clearly,

inf
B/n<u≤δ

θ∈Uδ

Ln(λ, r)− Ln(λ, r0)

nG(u)

≥ inf
B/n<u≤δ

L
(2)
n (r)

nG(u)
− sup

B/n<u≤δ
θ∈Uδ

|L(1)
n (λ, r)|
nG(u)

.

Let γ = c0a0/8 > 0. Then, for sufficiently small δ > 0, (A.8)
holds. The proof of (i) is complete.

For the proof of Theorem 3.2 (ii), it is similar to that
of Theorem 2.2 (ii) in Li, Ling and Li (2010). Hence it is
omitted.

APPENDIX B. PROOF OF THEOREM 3.3

Here, we give an outline of the proof, which is similar
to that of Theorem 2.3 in Li, Ling and Li (2010). First of

all, we can prove that d(L̃n(z), ℘n(z)) → 0 in probability,
where d(·, ·) is the Skorokhod metric in D(R). Secondly, we
show that ℘n(z) converges weakly to a two-sided compound
Poisson process ℘(z) in D(R). The tightness of {℘n(z)} can
be verified by Theorem 5 in Kushner (1984, pp. 32). To
characterize convergence of finite dimensional distributions

of {℘n(z)}, we study the truncated process {℘(a)
n (z)} for

a > 0 large enough, defined similarly to {℘n(z)} with the

jumps being replaced by ζ
(a)
1t ≡ ζ1tI(|ζ1t| ≤ a). Now we

consider the weak convergence of {℘(a)
n (z)} as n → ∞ for

each a > 0. This takes two steps. (i). Proving the tightness

of {℘(a)
n (z)}. This can be done by Theorem 5 in Kushner

(1984, pp. 32) again; (ii). Characterizing the convergence

of finite dimensional distributions of {℘(a)
n (z)}, which can

be completed by verifying Assumptions A.1–A.4 in the Ap-
pendix in Li, Ling and Li (2010). Thus we have shown that

{℘(a)
n (z)} converges weakly to a two-sided compound Pois-

son process ℘(a)(z), having the jump rate κ
(a)
1 π(r0) and the

jump distribution Q
(a)
1 on the left side (i.e., z < 0) and the

jump rate κ
(a)
2 π(r0) and the jump distribution Q

(a)
2 on the

right side (i.e., z > 0), where κ
(a)
j = P (|ζjt| ≤ a|yt−d = r0)

and Q
(a)
j (A) = P (ζjt ∈ A|yt−d = r0, |ζjt| ≤ a) for any Borel

set A and j = 1, 2. Note that κ
(a)
j → 1 and Q

(a)
j → Fj(·|r0)
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as a → ∞, we have that ℘(a)(z) converges weakly to ℘(z) in
(3.5) by Theorem 16 in Pollard (1984, pp. 134). In addition,

lim
a→∞

lim sup
n→∞

P (d(℘
(a)
n (z), ℘n(z)) > ε) = 0 for any ε > 0.

Hence, ℘n(z) converges weakly to ℘(z) by Theorem 3.2 in
Billingsley (1999, pp. 28). The remainder is the same as
Theorem 2 in Chan (1993).
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