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A review of threshold time series models in
finance
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Since the pioneering work by Tong (1978, 1983), thresh-
old time series modelling and its applications have become
increasingly important for research in economics and fi-
nance. A number of books and a vast number of research
papers published in this area have been motivated by Tong’s
threshold models. The goal of this paper is to give a through
review on the development of the family of threshold time
series model in finance and to provide a streamlined ap-
proach to financial time series analysis. It covers threshold
modeling, nonlinearity tests, statistical inference, diagnos-
tic checking, and model selection, as well as applications of
the threshold autoregressive model and its generalizations
in finance.
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1. INTRODUCTION

Nonlinear time series modelling drew much attention in
the 1970’s, during the time when many classes of models
were proposed. As compared to the linear models, the non-
linear time series models provide a much wider spectrum
of possible dynamics for economic and financial time series
data. The threshold autoregressive (TAR) model is proposed
by Tong (1978, 1983) and Tong and Lim (1980) for describ-
ing periodic time series. This model captures the dynamic
behavior of time series by switching the regimes. The fea-
tures of this class of models include limit cycles, amplitude
dependent frequencies and jump phenomena which linear
models fail to capture. The TAR model plays an important
role in nonlinear time series modelling. The new era of non-
linear time series analysis, following the proposal of the TAR
model, offers us very exciting possibilities. A general form
of Tong’s TAR model is given as follows:

yt = φ
(Jt)
0 +

p∑
i=1

φ
(Jt)
i yt−i + θ(Jt)at,(1)

where ats are i.i.d. D(0, σ2) and {Jt} are indicator random
variables, taking integer values in {1, . . . , J}. Typical thresh-
old modelling assumes that the value of Jt is determined by
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a threshold variable zt. {Jt} can be a Markov chain driven
TAR model. The Markov chain can be either observable
or hidden. (see Tong and Lim 1980, p. 285, Tong 1983, p.
62, and Tyssedal and Tjøstheim 1988). When {Jt} is hid-
den, (1) is also called Markov switching models (Hamilton
1989). The indicator time series acts as a switching mecha-
nism. Note that the TAR model can be easily extended to
a threshold autoregressive moving average model (TARMA

model for short) by replacing θ(Jt)at with
∑q

j=0 θ
(Jt)
j at−j .

Further extension to include some exogenous time series is
straightforward and called TARMAX.

It is well known that financial market volatility changes
over time and often exhibits the volatility clustering prop-
erty: large changes in prices tend to cluster together, result-
ing in the persistence of the amplitudes of price changes. A
common way to capture this phenomenon is that proposed
by Engle (1982) who introduces the autoregressive condi-
tional heteroscedastic (ARCH) model for modelling time-
varying conditional variance of financial returns. Boller-
slev (1986) proposes an extension to a generalized ARCH
(GARCH) model which is a widely accepted model to de-
scribe the time series properties of financial market returns.
However, symmetric ARCH and GARCH formulations are
not well suited for capturing an asymmetric response of
volatility. This phenomenon is discovered by Black (1976)
and subsequently confirmed by Nelson (1991) and Glosten,
Jagannathan and Runkle (1993), among others. Numerous
improvements have been made to the GARCH model. For
example, Chan (2009) provides a useful tool for researchers
and students interested in the theory and practice of nonlin-
ear time series analysis, while Li (2009) examines threshold
approaches in volatility modelling. The idea of nonlinearity
is also extended to the threshold unit-root test and the dis-
continuous adjustment to a long-run equilibrium (threshold
co-integration), e.g. Kapetanios, Shin, and Snell (2003).

A number of books and a vast number of research pa-
pers have been published in diverse areas, such as ecology,
econometrics, economics, finance, actuarial science and hy-
drology, motivated by Tong’s threshold models. The goal
of this paper is to give a thorough review of the vast and
important development of the threshold time series model
in financial applications and to provide a streamlined ap-
proach to financial time series analysis. This paper is orga-
nized as follows. We discuss representations of the threshold
time series models in Section 2. Testing for the presence of
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nonlinearity is described in Section 3. For the estimation
of threshold models, two major approaches, frequentist and
Bayesian approaches, are discussed in Section 4. Many is-
sues related to model selection and diagnostic checking are
addressed in Section 5. Section 6 provides a review of recent
applications of the threshold models in finance. Section 7
concludes.

2. THRESHOLD MODELLING

In this section, we describe three classes of threshold time
series models, namely nonlinearity in the mean (or level),
nonlinearity in the volatility, and ‘double’ threshold dynam-
ics (in mean and volatility). Franses and van Dijk (2000)
give an excellent review on model specifications and basic
properties of the first two classes. In this survey, we also
include recent developments in multivariate threshold mod-
elling with a particular focus on financial applications.

2.1 Nonlinearity in the mean

The self-exciting TAR (SETAR) model defined in Tong
and Lim (1980) is characterized by the lagged endogenous
variable, yt−d. The threshold variable in (1) can also be
determined by an exogenous time series Xt, as in Chen
(1998). Other choices of zt include linear combinations of
the lag variables or exogenous variables (Chen, Chiang and
So 2003, Chen and So 2006 and Gerlach, Chen, Lin, and
Huang 2006) and nonlinear combinations (Chen 1995, Wu
and Chen 2007). A special case of the TAR model is the
switching autoregressive model, as originally proposed in
Tong and Lim (1980), subsequently formalized by Hamilton
(1989), and used by McCulloch and Tsay (1994). This model
uses a random latent (unobservable) indicator as the thresh-
old variable. The mixture autoregressive models of Wong
and Li (2000a) and Wong, Chan and Kam (2009) also fall
into this category.

A range of variants on the threshold nonlinear model
structure have also been proposed, including the threshold
moving-average (TMA) (Tong 1990, De Gooijer 1998, Ling,
Tong and Li 2007) and threshold autoregressive moving-
average models (TARMA) (Tong 1990, Ling 1999, Amen-
dola, Niglio and Vitale 2006). These extensions have led
to applied and theoretical works in this model class. Even
though the TMA model is quite well studied in the statis-
tics literature, there has been less focus on TMA/TARMA
in financial applications. This is likely due to the well-known
difficulty of including moving-average terms in the model.
Comparing nonlinear models with linear ARMA models
where there are well-documented stationarity and invertibil-
ity conditions, similar statistical properties in the threshold
class of models are far more complicated. For the thresh-
old time series models, such as TAR, TMA and TARMA
models, the stationary and invertible conditions in previous
research are summarized in Table 1. The previous studies are
restricted to the AR process (or MA process) with order one

in the threshold model, and there are only sufficient condi-
tions for general orders. It remains difficult to find necessary
and sufficient conditions for stationarity and invertibility in
TARMA models.

In addition, it is possible to have an indicator function,
Jt, to present the threshold and to enable a smooth and
continuous transition for regime switching, an idea first pro-
posed by Bacon and Watts (1971) and introduced to non-
linear time series models by Chan and Tong (1986). This
smooth transition method later gains popularity (Granger
and Teräsvirta 1993, Teräsvirta 1994, Teräsvirta 1998). van
Dijk, Teräsvirta and Franses (2002) give a comprehensive re-
view of the smooth transition autoregressive (STAR) model
and several of its variants, such as basic STAR models (lo-
gistic or exponential STAR models), multiple regime STAR
models and vector STAR models. The basic STAR model
can be specified as follows:

yt = (1−G(yt−d; γ, c))

[
φ
(1)
0 +

p1∑
i=1

φ
(1)
i yt−i

]
(2)

+G(yt−d; γ, c)

[
φ
(2)
0 +

p2∑
i=1

φ
(2)
i yt−i

]
+ at,

where the transition function G(yt−d; γ, c) is usually as-
sumed to be a logistic, exponential or a cumulative dis-
tribution function. The observation yt is determined as a
weighted average of two AR processes. The parameter c
is interpreted as the threshold and γ is the parameter of
smoothness for the smooth transition. A logistic function
specification for G(.) is perhaps the most common choice in
the literature.

2.2 Nonlinearity in the volatility

Volatility, usually defined as the standard deviation of
financial returns, is a common measure of risk in financial
time series. It is also a key input to many investment deci-
sions such as the calculation of derivative prices, portfolio
selection and risk management. The family of GARCH mod-
els is one of the most popular volatility models among prac-
titioners. Poon and Granger (2003) note several salient fea-
tures in financial time series and well document the measure-
ment of volatility and volatility forecasts. These include fat-
tailed distributions of risky asset returns, volatility cluster-
ing, asymmetry and mean reversion. Asymmetry in volatil-
ity is first discussed by Black (1976) and later by Christie
(1982), from which a major cause of the asymmetry is rec-
ognized as the leverage effect. It has now become standard
to use asymmetric (often nonlinear) GARCH-type models to
describe the characteristics of financial time series. Li (2009)
gives an extensive survey on the threshold approaches to
model volatility changes.

The GJR-GARCH model given below (named after
Glosten et al. 1993) can be interpreted as a special case

168 C. W. S. Chen, M. K. P. So and F.-C. Liu



Table 1. Stationary and invertible conditions for various TAR, TMA and TARMA models

Considered Model Conditions

Petruccelli and Two-regime TAR(1), d = 1 Necessary and sufficient condition
Woolford (1984) for the ergodicity:

φ
(1)
1 < 1, φ

(2)
1 < 1 and φ

(1)
1 φ

(2)
1 < 1

Chen and Tsay (1991) Two-regime TAR(1), Necessary and sufficient condition
with general d for the ergodicity:

φ
(1)
1 < 1, φ

(2)
1 < 1, φ

(1)
1 φ

(2)
1 < 1,

φ
(1)
1

s(d)
φ
(2)
1

t(d)
< 1

and φ
(1)
1

t(d)
φ
(2)
1

s(d)
< 1

where s(d) and t(d) are nonnegative
integers depending on d

Tong (1983) k-regime TAR(1) Sufficient condition for the existence
of stationarity:

|φ(1)
1 | < 1 and |φ(k)

1 | < 1

Chan, Petruccelli, Tong k-regime TAR(1) Sufficient condition for stationarity
and Woolford (1985) and ergodicity:

φ
(1)
1 < 1, φ

(k)
1 < 1 and φ

(1)
1 φ

(k)
1 < 1

Chan and Tong (1985) k-regime TAR(p) Sufficient condition for stationarity
and ergodicity:

maxj

∑p
i=1 |φ

(j)
i | < 1, j = 1, . . . , k

Brockwell, Liu and k-regime TARMA(p, q), Sufficient condition for stationarity
Tweedie (1992) here MA is assumed linear and ergodicity:

ρ(maxj{|Φ̄|(j)}) < 1
where Φ̄ is a specified matrix
which contains ARMA coefficients

Ling (1999) General k-regime Strictly stationary condition:

TARMA(p, q)
∑p

i=1 maxj |φ(j)
i | < 1, j = 1, . . . , k

Ling and Tong (2005) Two-regime TMA(1) Invertible condition:

|θ(1)1 | < 1 and |θ(2)1 | < 1

Ling, Tong and Li (2007) Two-regime TMA(1) A weaker invertible condition:

|θ(1)1 |1−Fy(r)|θ(2)1 |Fy(r) < 1,
where Fy is the distribution function
of y and r is the threshold value

k-regime TMA(1) Invertible condition:∏k
j=1 |θ

(j)
1 |Fy(rj)−Fy(rj−1) < 1,

where rj is the threshold value of
regime j

of threshold model.

yt = at, at =
√

htεt, εt ∼ D(0, 1),(3)

ht = α0 +

p∑
j=1

αja
2
t−j

+

p∑
j=1

γjS
−
t−ja

2
t−j +

q∑
k=1

βkht−k,

where S−
t−j =

{
1 if at−j ≤ 0,

0 if at−j > 0,

D(0, 1) is a distribution with mean 0 and variance 1. Glosten
et al. (1993) use dummy variables for negative shocks in
the volatility equation and find evidence that local negative
market news causes increased market volatility. This finding
is confirmed in studies by Koutmos (1999) and Nam, Pyun

and Avard (2001), etc. The GJR-GARCH model is popu-
lar in the finance literature, as it explains the asymmetric
volatility phenomenon through its simplicity and clear in-
terpretation of its asymmetric volatility parameter. Zakoian
(1994) and Rabemananjara and Zakoian (1993) are two
early works in modelling volatility equation using threshold
type models. The former extends ARCH to a piecewise lin-
ear function of the squared past return innovations. Rabem-
ananjara and Zakoian (1993) study a more relaxable version
of the threshold heteroscedastic model in Zakoian (1994).

In addition to the threshold type models, Nelson (1991)
introduces an exponential GARCH (EGARCH) model to al-
low for asymmetric effects of market news. Hagerud (1996)
and González-Rivera (1998) independently adopt the idea
of smooth transition to allow for a more gradual change in
the squared past shocks. Anderson, Nam and Vahid (1999)
modify a volatility switching GARCH model by allowing the
transition from one regime to the other regime to be smooth.
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Table 2. The conditions of stationarity and positiveness of volatility for nonlinear heteroscedastic models

Considered Model Conditions

Glosten, Jagannathan GJR-GARCH(1,1) α0 > 0, β1 > 0
and Runkle (1993) ht = α0 + (α1 + γIt−1)a

2
t−1 + β1ht−1 α1 > 0, α1 + γ ≥ 0

where It−1 = I(at−1>0) and α1 + β1 + 0.5γ < 1

Hagerud (1996) ST-GARCH(pj ,qj) with 2 regimes α0 > 0, α1i, βi ≥ 0
ht = α0 +

∑p
i=1(α1i + α2iF (at−i))a

2
t−i α1i + α2i ≥ 0

+
∑q

k=1 βkht−k and
∑

i(α1i + α2i) +
∑

k βk < 1
where F (.) is an exponential transition

Chen and So (2006) DTGARCH in Eq. (4) α
(j)
0 > 0; α

(j)
i , β

(j)
l > 0; j = 1, . . . , g∑

i α
(j)
i +

∑
k β

(j)
k < 1

Chen, So Threshold GJR-GARCH(1,1) with 2 regimes α
(j)
0 > 0, α

(j)
1 , β

(j)
1 ≥ 0

and Gerlach (2005) ht = α
(j)
0 + (α

(j)
1 + γ(j)It−1)a

2
t−1 + β

(j)
1 ht−1 α

(j)
1 + γ(j) ≥ 0

where It−1 = I(at−1>0) and α
(j)
1 + β

(j)
1 + 0.5γ(j) < 1

Chen, Gerlach TARR(pj ,qj) with k regimes α
(j)
0 > 0, α

(j)
i , β

(j)
i ≥ 0

and Lin (2008) λt = α
(j)
0 +

∑pj
i=1 α

(j)
i Rt−i +

∑qj
k=1 β

(j)
k λt−k and

∑
i α

(j)
i +

∑
k β

(j)
k < 1

where Rt is the intra-day log price range

Gerlach and ST-GARCH in Eq. (13) α
(1)
0 > 0, α

(1)
i , β

(1)
i ≥ 0

Chen (2008)
∑

i α
(1)
i + α

(2)
i ≥ 0,

∑
i β

(1)
i + β

(2)
i ≥ 0, and∑

i(α
(1)
i + 0.5α

(2)
i ) +

∑
j(β

(1)
j + 0.5β

(2)
j ) < 1

α
(1)
0 < b1, β

(1)
i < b2,

∑
i α

(1)
i +

∑
j β

(1)
j < b3

b2, b3 ≥ 1 to allow explosive behavior

Chen, Gerlach DTGARCH in Eq. (4) α
(j)
0 > 0; α

(j)
i , β

(j)
l > 0; j = 1, . . . , g

and Lin (2010)
∑

j Pr(Rj)×
(∑

i α
(j)
i +

∑
k β

(j)
k

)
< 1,

where Pr(Rj) denotes the probability of regime j

The parameter restrictions to ensure stationarity and pos-
itiveness of volatility for each nonlinear model are given in
Table 2. Note that the feature of DTGARCH models in
Chen, Gerlach, and Lin (2010) is that the overall stationarity
does not require the model to be stationary in each regime.
On the contrary, the limit cycle behavior that this class of
models is able to demonstrate arises from the alternation of
explosive, dormant, and rising regimes. The sufficient con-
ditions on the parameters to ensure positive variance and
covariance stationary are given in the last row of Table 2.

2.3 Nonlinearity in the mean and volatility

Motivated by the TAR model of Tong (1978, 1990),
Li and Li (1996) propose a double threshold ARCH
(DTARCH), also allowing asymmetric mean responses,
which is extended to the double threshold GARCH (DT-
GARCH) model by Brooks (2001). These models have been
used to assess asymmetry via threshold nonlinearity in ma-
jor market indices, daily stock returns, exchange rates and
other financial variables (e.g. Koutmos 1999 and Chen et al.
2003). Chen, So and Gerlach (2005) present clear evidence
that the double threshold GARCH model, with a local news
threshold, outperforms the symmetric GARCH model in the
G7 stock markets.

Chen and So (2006) further allow the threshold variable
for regime switching to be formulated as a weighted average
of important auxiliary variables. Estimation and diagnostic

checks are performed using Bayesian methods. Their multi-
regime models can be represented as follows:

yt = φ
(j)
0 +

pj∑
i=1

φ
(j)
i yt−i +

qj∑
k=1

ψ
(j)
k xkt + at,(4)

if rj−1 ≤ zt−d < rj ,

at =
√
htεt, εt ∼ D(0, 1),

ht = α
(j)
0 +

dj∑
i=1

α
(j)
i a2t−i +

cj∑
k=1

β
(j)
k ht−k,

where

(5) zt = w1z1t + · · ·+ wlzlt, 0 ≤ wi ≤ 1,
l∑

i=1

wi = 1,

j = 1, . . . , g, d is a positive integer. The model assumes g
regimes defined by the threshold values rj satisfying −∞ =
r0 < r1 < · · · < rg = ∞ and the d-period delayed thresh-

old variable zt−d. For identification purposes, φ
(j)
pj �= 0 and

the autoregressive vectors (φ
(j)
0 , . . . , φ

(j)
pj ), j = 1, . . . , g, are

assumed to be different. One main advantage of the thresh-
old heteroscedastic model in (4) and (5) is to construct the
threshold variable zt as a linear function of m auxiliary vari-
ables zit. In general, zit can be any function of exogenous
variables and yt, . . . , y1. A likely choice is to set z1t = yt
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and zit = xit for i > 1 where xit are exogenous variables.
In this case, the information in both yt and exogenous vari-
ables can be used to govern the threshold switching. Chen
and So (2006) use this choice of zit in their empirical analy-
sis and find that in most of the markets investigated, rather
than international returns, domestic return is the dominat-
ing factor for determining the threshold.

Instead of having a two-regime structure, Chen, Gerlach
and Lin (2010, 2011) investigate three-regime DTGARCH
models which help to identify explosive, dormant and ris-
ing scenarios to capture the mean and volatility asymme-
tries. Their proposed method allows simultaneous inference
for all unknown parameters, including the problems of es-
timating threshold limits and delay lags. Extending from
the use of step functions in the threshold characterization,
Gerlach and Chen (2008) propose a double smooth transi-
tion GARCH (DST-GARCH) model and design an adaptive
Markov chain Monte Carlo scheme to investigate the esti-
mation and forecasting performance of the models. A DST-
GARCH model with smooth transition functions is given in
the Appendix. Chen, Gerlach, Choy, and Lin (2010) con-
sider a family of threshold nonlinear GARCH models that
allows exponential smooth transitions between regimes, cap-
turing size asymmetry via an exponential smooth transition
function. In addition, Audrino and Bühlmann (2001) pro-
pose a tree-based GARCH model to incorporate threshold
volatility features.

The Stochastic Volatility (SV) model proposed by Tay-
lor (1986) provides an alternative to GARCH models in ac-
counting for the time-varying and persistent volatility as
well as for the leptokurtosis in financial series. The SV model
has the advantage that it includes an additional innovation
term, to provide a more flexible description of time-varying
volatility. In addition to the threshold in ARCH or GARCH,
So, Li, and Lam (2002) assume threshold nonlinearity under
stochastic volatility models. To capture mean and volatility
asymmetries, the threshold SV model in So, Li, and Lam
(2002) is divided into two distinct regimes in response to lag-
one bad news (yt−1 < 0) and lag-one good news (yt−1 ≥ 0).
A generalization of the THSV model is introduced by Chen,
Liu and So (2008), for which the specifications are given in
the Appendix. Chen et al. (2008) extend the So, Li, and
Lam (2002) model to have the error innovations following
the standardized t-distribution. They also include exogenous
variables in the mean equation for detecting possible asym-
metries in the spillover effect from other financial markets.
Instead of using an observed time series to define the thresh-
old structure, So, Lam and Li (1998) study a Markov switch-
ing SV model where the threshold dynamic is governed by a
Markov process independent of the return time series. Gen-
eralizing from Wong and Li (2000a), Wong and Li (2001)
develop a mixture autoregressive ARCH model. Extending
from daily return applications to possibly high-frequency re-
turn applications, McAleer and Medeiros (2008) propose a
smooth transition heterogenous autoregressive model. The

methodology of McAleer and Medeiros (2008) can model
the realized volatility that is computed from intraday re-
turn data.

2.4 Multivariate threshold models

In the first two decades of threshold modelling develop-
ment, most studies center on univariate analysis. Due to
the high-dimensional nature of economic and financial data,
univariate analysis may not be adequate to tackle a wide
range of business problems. Understanding and predicting
the temporal dependence in the second order moments of
asset returns is important for many issues in financial econo-
metrics. It is now widely accepted that financial volatilities
move together over time across assets and markets. Recog-
nizing this feature through a multivariate modelling frame-
work should lead to more relevant empirical models than
working with separate univariate models. To the best of our
knowledge, Tsay (1998) is the first to perform a compre-
hensive investigation on multivariate threshold modelling.
His motivation example draws from the arbitrage theory for
spot and future prices. In his paper, Tsay proposes the use
of arranged autoregression and develops a multivariate test
for the threshold dynamic.

The study of the time-varying conditional covariance
dates back to Bollerslev, Engle and Wooldridge (1988) who
suggest a basic multivariate GARCH (MGARCH) model.
De Goeij and Marquering (2004) extend the univariate GJR
model to a multivariate GJR structure to allow for asymme-
tries in conditional variances and covariances. Using weekly
U.S. stock and bond market data, their results indicate
that variances and covariances respond asymmetrically to
return shocks. Pelletier (2006) introduces a regime switching
model of constant correlations within each regime. The time-
varying correlation model provides more realistic empirical
results than the dynamic conditional correlation model pro-
posed by Engle (2002). McAleer, Hoti and Chan (2009) pro-
pose an asymmetric MGARCH model where some param-
eters depend on the sign of the innovations. Caporin and
McAleer (2006) develop the dynamic asymmetric GARCH
(or DAGARCH) model to generalize asymmetric GARCH
models with multiple thresholds and to make the asymmet-
ric effect time dependent. They provide stationarity condi-
tions for the DAGARCH model and derive the news im-
pact curve surface to analyze the multivariate asymmetric
effect. The recent works of Tse and Tsui (2002) and Engle
(2002) describe a new class of MGARCH models that explic-
itly capture the time-varying correlation matrix instead of
assuming a constant-correlation formulation for the condi-
tional covariance equation. Kwan, Li and Ng (2010) extend
the Tse and Tsui (2002) model to allow the correlation equa-
tion to have threshold structure. So and Yip (2010) work
along the lines of Kwan et al. (2010) to propose an aggre-
gate threshold dynamic. So and Yip (2011) develop a cor-
relation clustering model which allows correlation dynamic
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to follow different regimes. Audrino and Trojani (2006) de-
velop a tree-based MGARCH model for explaining correla-
tion asymmetry.

In addition to the GARCH approach, threshold volatil-
ity models are also built under the stochastic volatility
(SV) framework. Asai and McAleer (2006) propose two
types of asymmetric multivariate stochastic volatility mod-
els, namely, the SV with leverage (SV-L) model and the SV
with leverage and size effect (SV-LSE) model. They adopt
the Monte Carlo likelihood (MCL) estimation for their mul-
tivariate SV-L and SV-LSE models. The empirical results
show that the multivariate SV-LSE model fits the data more
accurately than the multivariate SV-L model. Generalizing
the multivariate SV models in Harvey, Ruiz and Shephard
(1994) and So, Li and Lam (1997), So and Choi (2008)
develop a multivariate threshold SV model and Bayesian
analysis for the model. Through the model, smoothed con-
ditional correlations can also be calculated. To allow high-
dimensional implementation, So and Choi (2009) include a
factor structure in the So and Choi (2008) model as in Chib,
Nardari and Shephard (2006). By applying the factor thresh-
old SV model of So and Choi (2009) to 20 time series, a
two-factor model produces a reasonable fit as a three-factor
model. News impact analysis is conducted to understand
the effect of positive and negative news on the changes in
volatility.

3. NONLINEARITY TESTS IN THRESHOLD
MODELS

3.1 Testing nonlinearity in mean

In nonlinear time series modelling, it is instrumental to
perform tests of nonlinearity to examine the statistical ad-
equacy of linear models and to detect possible nonlinearity
features in time series. A general representation of nonlinear
stationary time series model is referred to as the Volterra ex-
pansion. Keenan (1985) constructs an analogue of Tukey’s
(1949) one degree of freedom nonadditivity test for linearity
with the second-order Volterra expansion as an alternative.
Tsay (1986) modifies the Keenan (1985) test and retains its
simplicity to obtain a more powerful test for nonlinearity.
Petruccelli and Davies (1986) propose a portmanteau test
to detect self-exciting threshold autoregressive-type nonlin-
earity in time series data. The test is based on cumulative
sums of standardized residuals from autoregressive fits to the
data. Incorporating the nonlinearity tests of Keenan (1985),
Tsay (1986), and Petruccelli and Davies (1986), Tsay (1989)
proposes a portmanteau test based on arranged autoregres-
sion and predictive residuals. The test statistic is a usual
F statistic which can be implemented by sorting routine
and linear regression. For multivariate time series modelling,
Tasy (1998) generalizes the test of Tsay (1989) for detect-
ing threshold nonlinearity in vector time series. Based on
the likelihood ratio idea, Chan (1990) developes a test for

threshold autoregressive processes. Wong and Li (1997) ex-
tend the Chan (1990) test to incorporate heteroscedasticity.
Wong and Li (2000b) further generalize the results of Wong
and Li (1997) to also allow threshold structure in the mean.

3.2 Testing nonlinearity in volatility

Engle and Ng (1993) propose a set of tests for asymmetry
in volatility, known as sign and size bias tests. The Engle and
Ng tests are useful for determining whether an asymmetric
model is required for a given series, or whether the symmet-
ric GARCH model can be deemed adequate. Apart from the
tests based on residuals, there are Bayesian approaches via
MCMC methods in the literature. In Chen, Gerlach and Tai
(2008), a nonlinearity test for mean and volatility for het-
eroscedastic models is proposed by using posterior credible
intervals on model parameters. The test proceeds by fitting
the DTGARCH model to the data using MCMC methods.
Then, posterior credible intervals of the differences in mean
and volatility parameters are obtained from MCMC samples
for the testing. The testing problem can also be referred to
as a Bayesian model selection problem. So, Chen and Chen
(2005) test the significance of the threshold nonlinearity by
comparing a GARCH and its threshold GARCH counter-
part. The reversible-jump MCMC (RJMCMC) method of
Green (1995) is used to compute the posterior probabilities
of GARCH and threshold GARCH models. Then, a better
model can be selected with a higher posterior probability,
and we can declare significant volatility asymmetry effect
if the threshold GARCH model is preferred. One advanta-
geous feature of the Bayesian test is that it can simultane-
ously account for uncertainty in the unobserved threshold
value and the time delay lag parameter while performing
the nonlinearity test. In fact, there is little work focusing on
procedures for model choice or comparison among compet-
ing asymmetric volatility models. The same is true for al-
lowance of uncertainty about threshold values (usually set to
0) and delay lags (set to 1). Following So et al. (2005), Chen
et al. (2005) adopt the RJMCMC idea to test for thresh-
old nonlinearity in a time series with GARCH volatility dy-
namics in G-7 stock markets. Posterior evidence favoring
the threshold GARCH model indicates threshold nonlinear-
ity with asymmetric behaviors in the mean and volatility.
In addition, Chen, Gerlach and So (2006) design a RJM-
CMC procedure, allowing jumps between potentially non-
nested models of different dimensions to estimate posterior
probabilities between pairs of competing nonlinear models.
Adopting a direct estimation method proposed by Congdon
(2006, 2007) to estimate posterior probabilities, Chen, Ger-
lach and So (2008) compare seven heteroscedastic models for
three daily Asian market returns. The details of direct es-
timation method of Congdon (2006, 2007) will be discussed
in a later section.

4. STATISTICAL INFERENCE

Studying financial data is one of the most active areas in
time series research over the last three decades. There are
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a large (and still growing) number of papers using complex
time series models. For the estimation of threshold mod-
els, frequentist approach and Bayesian Monte Carlo simu-
lation are the two major methods in the literature. Thus,
the key objectives are to review threshold time series model
in finance and economics over frequentist and Bayesian ap-
proaches.

4.1 Frequentist approach

Estimation of parameters in the threshold models is com-
plex. Quantities to be determined include the number of
regimes, the threshold variable, the delay parameter, the
model order in each regime, the threshold values, and the
coefficients in each regime. One challenge in threshold mod-
elling is to determine the delay parameter and the thresh-
old value. In the previous literature, a two-stage approach is
commonly adopted (see Tong and Lim 1980, Ghaddar and
Tong 1981, Tsay 1989). The asymptotic properties of the
least squares estimation for TAR are established by Chan
(1993). Hansen (1997) investigate statistical inference pro-
cedures of the TAR models.

The two-stage approach specifies the delay parameter
of the threshold variable and the threshold values and
then uses the likelihood-based maximization to estimate
the model parameters. With the two-stage approach, Tsay
(1989) estimates the parameters of two-regime threshold au-
toregressive (TAR) models by ordinary least squares. The
least squares estimators of the TAR models are consistent
and converge almost surely to the true values given the
threshold variables and threshold values. For the specifica-
tion of the delay lag and the threshold values, Tong and Lim
(1980) and Ghaddar and Tong (1981) use the Akaike infor-
mation criterion (Akaike 1974) to select the delay lag after
choosing all of the other parameters. Tsay (1989) proposes
a testing procedure to select the delay lag and uses scatter
plots to identify the thresholds. Liu (2009) addresses the is-
sue of TAR model estimation by using the weighted estima-
tion method. In the mixture models of Wong and Li (2000a,
2001) where the regimes are governed by latent variables,
the EM algorithm is adopted.

4.2 Bayesian approach for two-regime
models

Practitioners are increasingly turning to Bayesian meth-
ods for the analysis of complicated heteroscedastic models.
This move seems due to the advent of inexpensive high
speed computers and the development of stochastic inte-
gration methodology, especially Markov Chain Monte Carlo
(MCMC) approaches. MCMC is a computationally inten-
sive simulation method for numerical integration developed
in the 1980s, making it possible to tackle more complex,
realistic models and problems.

This subsection discusses how Bayesian methods can be
used to cope with challenges that arise in dynamic het-
eroscedastic and SV models in finance. Bayesian approach

via MCMC methods is successfully applied to the family
of TAR models (e.g. Chen and Lee 1995, Chen 1998, So
and Chen 2003). The MCMC idea is a sequential sampling
scheme which enables us to decompose high-dimensional pa-
rameter estimation to sampling of low dimensional blocks
and thus makes high-dimensional estimation feasible. As
such, estimation of all threshold parameters, including the
delay and threshold values, can be done at the same time.
Unlike two-stage frequentist methods, the Bayesian ap-
proach can take into account estimation errors of the de-
lay and threshold values when estimating other parameters.
Chen and Lee (1995) perform simultaneous inference for all
parameters, including the delay lag of threshold variable and
the threshold value, of TAR models by Bayesian approach.
The samples of parameter estimates are generated from the
joint posterior distribution of all parameters via MCMC
methods. Applications of the Bayesian approach can also
be found in Chen (1998) for generalized TAR models, in
Chen et al. (2003) for investigation of the asymmetric re-
action of US stock market with DTGARCH models, in So
and Chen (2003) for subset selection of TAR models, and
in Chen, Lin, Liu, and Gerlach (2008) for the estimation of
parsimonious TAR models.

One advantage of the Bayesian approach is to incorpo-
rate parameter restrictions, such as those from stationarity
and positivity conditions, to be incorporated into the prior
distribution. By specifying priors with suitable domain, the
posterior sample of parameters automatically satisfies any
necessary constraint. Furthermore, we can allow the thresh-
old variable to depend on unknown parameters as in Chen
and So (2006). Advances in Bayesian computations let the
researcher efficiently deal with numerical complications that
arise in models with latent state variables, such as regime-
switching GARCH models (Chen, So, and Lin 2009 and
Bauwens, Preminger and Rombouts 2010).

4.3 Multiple-regime threshold models

Many authors contributing to threshold models find sig-
nificant nonlinearity and/or asymmetry in the volatility,
and the mean or level, of financial market and asset return
data. Most of these studies focus only on two-regime models.
There are some exceptions, for example Brooks and Garrett
(2002) consider a three-regime TAR model to explain the
(mean) dynamics of spot and futures markets, but the delay
lag is subjectively fixed at one and no formal model com-
parison is considered. Boeroa and Marrocu (2004) evaluate
the forecasting performance of a two-regime and a three-
regime SETAR model, using a three-stage procedure to es-
timate the parameters. In two and three-stage estimation
approaches uncertainty about the threshold lag and thresh-
old value is not properly included in the analysis, which is
less than optimal. One issue is that if the chosen thresh-
old or delay parameters are changed, the estimation and
forecasts of the SETAR model can be substantially differ-
ent. Chen, Gerlach, and Lin (2010) propose an efficient way
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to make inference and approximate model comparisons for
a general multiple-regime nonlinear DT-GARCH specifica-
tion, where the number of regimes can be greater than two.
This paper allows for an explosive volatility regime. So, Lam,
and Li (1998) also consider a three regime Markov-switching
stochastic volatility model, but focus on the intercept change
between regimes.

Capital asset pricing model (CAPM) has become an es-
sential tool in finance for assessing the cost of capital, risk
management, portfolio diversification and other financial as-
sets. Banz (1981) and Fama and French (1992) argue that
the simple constant beta is not sufficient on CAPM. Ghy-
sels (1998) shows that continuously time-varying models for
market beta do not approximate the dynamics well, and
speculates that betas actually change much more slowly
and discretely than implied. Chen, Gerlach, and Lin (2011)
draw on Bollerslev’s GARCH modelling strategy to formu-
late a multiple-regime CAPM with time-varying risk and
expected returns. Three clear regimes are found in average
returns: bear markets induce assets to collapse, bull mar-
kets induce assets to rise, and stable markets induce fairly
dormant returns. These findings can have important impli-
cations for risk assessment, asset allocation, portfolio selec-
tion, and hedging decisions.

The problem of estimating three (or higher) regime SE-
TAR and GARCH models is a challenge. Specifically, the
likelihood function is non-differentiable in terms of the
threshold values and is often multi-modal. Such problems
are magnified as the number of regimes increases. Further,
quasi-likelihood approaches can also be sub-optimal under
the usual parameter constraints applied to GARCH mod-
els. Bayesian approaches, based on MCMC methods, allow
simultaneous inference for all unknown parameters, while
parameter constraints simply and properly form part of the
prior distribution and problems with estimating threshold
limits and delay lags disappear. Chen, Lin, and Yu (2011)
consider time-varying market betas in CAPM by a smooth
transition regime switching CAPM with heteroscedasticity,
which provides flexible nonlinear representation of market
betas as well as flexible asymmetry and clustering in volatil-
ity. This paper employs the quantile regression to investi-
gate the nonlinear behavior in the market betas and volatil-
ity under various market conditions represented by different
quantile levels. Parameter estimation is done by a Bayesian
approach.

5. ASSESSING THRESHOLD MODELS

5.1 Model selection

An important task for financial modelling is to de-
cide the best model from a group of candidate mod-
els. Traditionally, information criteria, such as Akaike’s
(AIC) and the Bayesian (BIC), are used to identify the
‘best’ model, by comparing all possible models. However,
such methods are problematic with a large number of

possible models and favoring of over-fitted models. Thus,
researchers seek Bayesian methods for the model selec-
tion of a large number of candidate models. Bayes fac-
tors (Kass and Raftery 1995) are viewed as the correct
way to carry out Bayesian model comparisons. Chen et
al. (2008) review and investigate recently developed tech-
niques for Bayesian estimation and model selection ap-
plied to a large group of modern asymmetric heteroscedas-
tic models. These include the GJR-GARCH, threshold
autoregression with GARCH errors, threshold GARCH,
and double threshold heteroscedastic model with auxil-
iary threshold variables. In Bayesian model hypothesis test-
ing, the decision between two models, Mi versus Mj , is
made by the posterior odds ratio; i.e., Mi is chosen if
PORij > 1.

PORij =
p(Mi|y1,n)

p(Mj |y1,n)
=

p(y1,n|Mi)

p(y1,n|Mj)

Pr(Mi)

Pr(Mj)
,

where y1,n is the observation vector; Pr(Mi) is the
prior probability of model Mi and p(y1,n|Mi) is the
marginal (or integrated) likelihood. A Bayes factor, Bij ,
defined in Kass and Raftery (1995), is the ratio of pos-
terior odds of Mi to its prior odds. Thus, without any
prior information on model choice, the prior odds ra-
tio = 1 and the PORij then becomes the Bayes fac-
tor.

Bij =
p(y1,n|Mi)

p(y1,n|Mj)
,

where p(y1,n|Mi) =

∫
p(y1,n|θi,Mi)p(θi|Mi)dθi,

and θi is the vector of parameters in model Mi. Due
to the challenge of calculating the integration in the
marginal likelihood, the formal model comparison via
Bayes factors remains difficult. Multidimensional integra-
tion over the parameter space obstructs the implemen-
tation of model comparisons. Several methodologies fo-
cusing on Bayesian model comparison methods are dis-
cussed below. These are the Monte Carlo approaches,
avoiding the calculation of marginal likelihoods explicitly,
for estimating the marginal likelihoods or selecting mod-
els.

Importance Sampling: Geweke (1995) and Gerlach,
Carter and Kohn (1999) propose the importance sampling
MCMCmethods to estimate the marginal likelihood for each
competing model. By running separate MCMC sampling
schemes with sequential increase of the sample size k, an
estimate of the marginal likelihood can be evaluated by

p̂(y1,n|Mj)(6)

= p̂(y1|Mj)

n∏
t=2

p̂(yt|y1,t−1,Mj); j = 1, . . . ,m,
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where m is the number of competing models, and, when
k ≥ t,

p̂(yt|y1,t−1,Mj)

=

N∑
i=1

p(yt|y1,t−1,θ
(i)
k ,Mj)/p(y

t,k|y1,t−1,θ
(i)
k ,Mj)

N∑
i=1

1/p(yt,k|y1,t−1,θ
(i)
k ,Mj)

.

θ
(i)
k is the ith MCMC iterate sampled from the poste-

rior p(θj |y1,k,Mj). This method is employed successfully
in Chen and So (2006) for double threshold heteroscedastic
models; in Gerlach et al. (2006) for asymmetric DTGARCH
models of price-volume relationships, and in So et al. (2007)
for the return-volume partition of regimes.

Reversible-Jump MCMC (RJMCMC): The RJM-
CMC method of Green (1995) is similar to the reject-accept
procedure of the Metropolis-Hastings algorithm in allowing
jumps between spaces of different dimensions of competing
models. The acceptance probability for a jump is computed
as

℘ =
p(y1,n|θj ,Mj)p(θj |Mj)Pr(Mj)J(Mi,Mj)qj(uj |θj)

p(y1,n|θi,Mi)p(θi|Mi)Pr(Mi)J(Mj ,Mi)qi(ui|θi)

(7)

×
∣∣∣∣∂(θj , uj)

∂(θi, ui)

∣∣∣∣ ;
where p(θj |Mj) is the prior distribution of the parameter,
Pr(Mj) is the model prior probability and J(Mi,Mj) is the
probability of considering the jump from model Mi to Mj .
qj(.) and qi(.) are the kernels of the accept-reject algorithm.
The term of |∂(θj , uj)/∂(θi, ui)| is a transformation Jaco-
bian for the bijection between (θi, ui) and (θj , uj). Thus, the
jump to modelMj is allowed with the probabilitymin{1, ℘}.
The model posterior probability of model Mj can be com-
puted by the proportion of times the MCMC sample jumps
to model Mj . Then, the model can be selected with a higher
posterior probability. This method is employed to choose
GARCH models by Vrontos, Dellaportas and Politis (2000),
GARCH and threshold GARCH models by So et al. (2005),
DTGARCH models by Chen et al. (2005) and various non-
nested asymmetric heteroscedastic models by Chen et al.
(2006). Using the method of RJMCMC, So, Chen, Lee, and
Chang (2008) compare the two most commonly used statis-
tical distributions in empirical analysis to capture the fea-
tures of the student-t distribution and the generalized error
distribution (GED).

Direct Estimation Method: An approximate estima-
tion of model posterior probability proposed by Congdon
(2006, 2007) is a direct estimation method that uses sepa-
rate MCMC samples of m competing models. An approxi-
mate Monte Carlo estimate of model posterior probability,
p(Mi|y1,n), is obtained as

Pr(Mi|y1,n) ≈ 1

N −M

N∑
j=M+1

Pr(Mi|y1,n,θ
(j)
i ),

where

Pr(Mi|y1,n,θ
(j)
i )(8)

∝ p(y1,n|θ(j)
i ,Mi)p(θ

(j)
i |Mi)Pr(Mi) = G

(j)
i ,

where θ
(j)
i is the jth MCMC iterate from the posterior dis-

tribution of model Mi. The normalizing factor in (8) is the

sum of the termsG
(j)
k , k = 1, . . . ,m. Thus, Pr(Mi|y1,n,θ

(j)
i )

is estimated by

P̂ r(Mi|y1,n,θ(j)) = G
(j)
i /

m∑
k=1

G
(j)
k

and

P̂ r(Mi|y1,n) ≈ 1

N −M

N∑
j=M+1

P̂ r(Mi|y1,n,θ
(j)
i )

According to this approach, the best model, that with the
highest posterior model probability, is selected.

There are further assumptions required for using this di-
rect estimation method. For discussions on these assump-
tions, see Congdon (2006) and Chen et al. (2008). Some
results support that the approximation seems quite pre-
cise and powerful for model selection. For example, Ger-
lach and Chen (2008) consider the comparison of smooth
transition GARCH, DTGARCH and linear GARCH mod-
els; Chen et al. (2008) select the model from various het-
eroscedastic models; Chen, Gerlach, and Lin (2010) compare
multi-regime threshold heteroscedastic models; and Chen,
Gerlach, and Lin (2011) evaluate the performance of correct
selection of multi-regime capital asset pricing models.

Stochastic Search Variable Selection (SSVS): Pro-
posed by George and McCulloch (1993), the idea of the
stochastic search variable selection (SSVS) procedure is to
develop a procedure that uses probabilistic considerations
for selecting promising subsets of the model. An introduc-
tion of a mixture of two normals prior for the coefficients of
predictors is a key point of the SSVS method. For the coef-
ficient φi, i = 1, . . . , p, where p is the number of predictors,
the prior is set as

φi|si ∼ (1− si)N(0, τ2i ) + siN(0, c2i τ
2
i ),(9)

where si is a latent indicator variable with si = 0 or 1 and
Pr(si = 1) = πi. si has the dual role of indicating which
normal prior applies to φi and indicating whether (si = 1)
or not (si = 0) φi is in the current model subset. The series
si is thus an unknown latent indicator series to be estimated
or inferred, and each MCMC sample from the vector of si’s,
i = 1, . . . , p, uniquely identifies a specific model.
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In the SSVS method, the hyper-parameter settings of τi
and ci are important since model selection results can be
sensitive to change in these settings. The general criteria for
setting ci and τi are ci > 1 and sufficiently large, and τ2i
small and close to 0 to make c2i τ

2
i substantially greater than

τ2i . Chen (1999) and So and Chen (2003) adopt this idea for
selecting AR and TAR models, respectively. So, Chen and
Liu (2006) propose optimal subset selection among autore-
gressive models with exogenous variables and heteroscedas-
tic errors, extending the idea of the SSVS procedure. In the
subset selection of threshold models, Chen, Liu and Gerlach
(2011) propose a sampling mechanism for subset selection
among a general family of TARMA models. Incorporating
the idea of Bayesian model averaging, they modify the SSVS
method to consider the subset selection among more than
16 million possible subsets.

5.2 Diagnostic checking

Tests of Serial Independence: For checking the model
adequacy, the frequentist approach is to test the serial inde-
pendence of residuals. However, testing serial independence
is challenging because it requires evaluation of all possible
relations between the variable of interest and its lagged vari-
ables. In practice, diagnostic tests of serial independence
typically focus on certain aspects of the data, such as serial
correlations or ARCH-type dependence (i.e., squared cor-
relations). McLeod and Li (1983) suggest testing whether
the first m autocorrelations of y2t are zero using a Q test.
Li (2004) focuses mainly on diagnostic checks for stationary
time series.

In the typical frequentist approach for parameter estima-
tion, residual autocorrelation is a standard device for check-
ing time series model adequacy. An important overall test
of fit in ARMA models is considered by Box and Pierce
(1970) with modification by Ljung and Box (1978). Li (1992)
obtains the asymptotic distribution of residual autocorrela-
tions for a general nonlinear time series. This includes the
threshold model as a special case. Li and Mak (1994) obtain
the asymptotic distribution of squared residual autocorre-
lations for a general conditional heteroscedastic nonlinear
time series model. In threshold ARCH modelling, Li and Li
(1996) follow the idea of Li and Mak (1994) to derive the
asymptotic standard errors of residual autocorrelations and
squared residual autocorrelations of the DTARCH models
for model diagnostic checks.

Based on the MCMC methods for statistical inference, it
is natural to consider a Bayesian approach for performing
diagnostic checking. Chen and So (2006) and Chen, Gerlach,
and Lin (2010) perform diagnostic checking by using the
method in Gerlach et al. (1999) that is demonstrated to be
very effective in financial time series. Based on the following
time series

ut = F (yt|y1,t−1), t = 1, . . . , n,

where F (.) is the cumulative distribution function. Gerlach
et al. (1999) show that for k ≥ t, the estimator,

ût =

∑N
i=1 F (yt|y1,t−1, θ

(i)
k )/p(yt,k|y1,t−1, θ

(i)
k )∑N

i=1 1/p(y
t,k|y1,t−1, θ

(i)
k )

(10)

converges to ut as N → ∞. Here θ
(i)
k is the ith MCMC it-

erate sampled from the posterior given the data y1,k. The
parameters are numerically integrated out by MCMC sam-
pling. Based on the convergence properties of ût, the esti-
mates v̂t = Φ−1(ût) are approximately i.i.d. N(0, 1) under
the correct model. Standard diagnostic tests can be applied
to this generalized residual series, such as the Ljung-Box
test for autocorrelation or studentized range test for distri-
butional fit.

6. FINANCIAL APPLICATIONS

Several threshold models that lead to more flexibility in
financial applications have been proposed (see Chen et al.
2005, Chen, Yang, Gerlach, and Lo 2006 and Chen and Yu
2005). Chan, Wong and Tong (2004) introduce nonlinear
time series modelling techniques through the examples of
actuarial science. They discuss the uses of the basic SETAR
models, SETAR models with heteroscedasticity, and multi-
variate SETAR models in pricing insurance products. Chen
et al. (2005) present clear evidence that the double thresh-
old GARCH model, with local news threshold, outperforms
the symmetric GARCH model for the G7 stock markets.
The interactive effects between US and local news are ob-
served, and an asymmetric pattern in the relationship be-
tween US and local markets is also found. Chiang, Chen and
So (2007) employ a DT-GARCH model with a composite-
news variable to investigate four international return series.
Their model shows the evidence of asymmetric effects in
both the mean and conditional variance and indicates that
the volatility and persistence of bad news are greater than
those of good news. So et al. (2007) propose a DT-GARCH
model and incorporate the changes in log volumes in regime
switching and asymmetric effects on the volatility equations.
Using the posterior odds ratios for model selection, So et
al. (2007) select a model that involves volumes as the best
model.

Chen, Gerlach and Lin (2008) build a threshold het-
eroscedastic model that allows the intra-day high and low
price range to depend nonlinearly on either past informa-
tion or on an exogenous variable such as US market in-
formation. This model brings greater integrity to volatility
estimation. Chen, Liu and So (2008) adopt the Bayesian
approach to estimate model parameters and forecast value-
at-risk (VaR) by the generalized THSV models. In recent
years, VaR has become a standard tool for market risk mea-
surement. For better VaR estimation, Engle and Manganelli
(2004) introduce the conditional autoregressive value-at-risk
(CAViaR) model to estimate the VaR directly by quantile
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regression. Some well-known dynamic conditional autore-
gressive quantile models are generalized in Gerlach, Chen
and Chan (2011) to fully consider the nonlinear thresh-
old family of dynamic models. This paper investigates a
Bayesian solution to the general quantile regression prob-
lem via the Skewed-Laplace distribution, which is adapted
and designed for parameter estimation in this model family
through an adaptive MCMC sampling scheme. The thresh-
old CAViaR (TCAV) model is as follows.

ft(β) =

{
β1 + β2ft−1(β) + β3 |yt−1| , zt−1 ≤ γ

β4 + β5ft−1(β) + β6 |yt−1| , zt−1 > γ,
(11)

where zt is an observed threshold variable, which can be
exogenous or self-exciting, that is, zt = yt, and γ is the
threshold value. Gerlach et al. (2010) fix γ = 0, which makes
TCAV a direct extension of the asymmetric slope (AS)
model in Engle and Manganelli (2004). Yu, Li and Jin (2010)
extend the CAViaR model by using two approaches, namely
the threshold and mixture type of indirect-VaR models. The
threshold type of indirect-VaR models is given by

ft(β) =

{
(β1 + β2f

2
t−1(β) + β3y

2
t−1)

1/2, if zt−1 < γ,

(β4 + β5f
2
t−1(β) + β6y

2
t−1)

1/2, if zt−1 ≥ γ.

(12)

Chen, Gerlach, Lin and Lee (2011) assess the possibility of
general Bayesian forecasting for carrying out one- to ten-
day ahead VaR across a range of competing parametric het-
eroscedastic models.

While threshold modelling is widely applied in financial
time series as mentioned above, several relevant issues are
considered under the threshold models, such as threshold
unit root tests and threshold co-integration. The threshold
unit root problem is first considered by Pham, Chan and
Tong (1991) as a nonlinear unit root problem. They show
that the least squares estimators (LSE) of the parameters
are strongly consistent under a simplified TAR(1) model.
Using the SETAR models of Tong (1990), Kräger and Ku-
gler (1993) propose the modelling of nonlinear dependencies
in the conditional mean of exchange rate changes. Their re-
sults indicate that moderate or large, negative or positive
exchange rate changes follow different AR behaviors. Bec,
Salem and Carrasco (2004) consider modelling the real ex-
change rate by a stationary three-regime SETARmodel with
the possibility of a unit root in the middle regime. This rep-
resentation is consistent with purchasing power parity in
the presence of trading costs. Their main contribution is
to provide statistical tools for testing the unit root versus
a SETAR. In some cases, results reject the null hypothesis
of a linear unit root in favour of a stationary three-regime
SETAR model, e.g., Taylor (2001).

In 1982, Granger introduces the concept of cointegration,
which means integrated series for which a linear combination
exists that is stationary.

β1Yt1 + β2Yt2 + · · ·+ βKYtK = Zt,

where Zt is a stationary series. This can be interpreted eco-
nomically as the presence of long-run equilibrium, the rela-
tionship between the variables being stable. That is, cointe-
gration is useful since it identifies a long-run relationship
between I(1) variables. Granger’s representation theorem
states that if a set of variables is cointegrated then there al-
ways exists an error-correcting formulation of the dynamic
model and vice versa. Motivated by the TAR model of Tong
(1978, 1983), Balke and Fomby (1997) introduce the con-
cept of threshold cointegration, which allows us to take into
account the main criticisms raised against linear cointegra-
tion. In their setup, the adjustment does not need to occur
instantaneously but only once the deviations exceed some
critical threshold, allowing the presence of an inaction or
no-arbitrage band. Hence, the linear adjustment process is
extended to

zt =

⎧⎪⎨
⎪⎩
ρLzt−1 + ut, if zt−1 ≤ θL

ρMzt−1 + ut, if θL ≤ zt−1 ≤ θH

ρHzt−1 + ut, if θH ≤ zt−1,

where autoregressive parameters are denoted by subscripts
L, M , and H, standing for low, middle, and high regimes,
respectively. While the work of Balke and Fomby (1997) fo-
cuses on the long-run relationship representation, extension
to a threshold vector error correction model has been made
by several authors, e.g., Granger and Lee (1989), Hansen
and Seo (2002), Lo and Zivot (2001), etc. Kapetanios and
Shin (2006) propose a testing procedure to distinguish a
unit root process from a globally stationary three-regime
self-exciting threshold autoregressive process.

7. CONCLUSIONS

Nowadays, threshold time series models and threshold
philosophy are successfully applied to many practical prob-
lems in finance. The Bayesian paradigm provides a rich
framework for inference and decision making with modern
heteroscedastic models. Looking ahead, it seems that the
threshold principle will continue to make worthwhile con-
tributions to financial time series analysis. In particular, it
will lead to advances in multivariate time series modelling,
panel time series modelling, and others.

APPENDIX

Double smooth-transition GARCH Model.
A time series {yt} is a Double Smooth-Transition

GARCH (DST) process, if it satisfies,

yt = μ
(1)
t +G(zt−d; γ, c)μ

(2)
t + at,(13)

at =
√

htεt, εt ∼ D(0, 1),

ht = h
(1)
t +G(zt−d; γ, c)h

(2)
t ,
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μ
(l)
t = φ

(l)
0 +

p∑
i=1

φ
(l)
i yt−i +

q∑
j=1

ψ
(l)
j xt−j ,

h
(l)
t = α

(l)
0 +

g∑
i=1

α
(l)
i a2t−i +

k∑
j=1

β
(l)
j ht−j , l = 1, 2,

where D(0, 1) is a distribution with mean 0 and variance
1 and the G(.) is a smooth-transition function. In practice,
G(.) often assumes one of three forms — namely, a logis-
tic, exponential, or cumulative distribution function. Two
commonly used transition functions are the logistic and ex-
ponential, which are given below.

G(zt−d; γ, c) =
1

1 + exp
{
−γ

(
zt−d−c

sz

)} ,

G∗(zt−d; γ, c) = 1− exp

{
−γ

∣∣∣∣zt−d − c

sz

∣∣∣∣
}

or 1− exp

{
−γ

(
zt−d − c

sz

)2
}
,

where γ is the smoothness of change in the value of the func-
tion, usually assumed positive; c is the threshold value and
sz is the sample standard deviation of the observed thresh-
old variable zt; this allows γ to be scale-free and therefore
comparable across different return series. A full Bayesian in-
ference procedure is developed by Gerlach and Chen (2008)
to examine whether asymmetry in time series is better mod-
elled by a logistic transition function in both mean and
volatility equations. Chen, Gerlach, Choy and Lin (2010)
apply DST-GARCH with an exponential smooth transition
to financial data and highlight the presence of both mean
and volatility (size) asymmetry.

Threshold stochastic volatility (THSV) Model.

The generalized THSV model in Chen, Liu and So (2008)
is defined as

Rt = (ψ0 + δ0st) +

p∑
i=1

(ψi + δist)Rt−i(14)

+

l∑
k=1

qk∑
j=1

(φk,j + γk,jst)xk,t−j + at,

at = eht/2ut, ut ∼ tν(0, 1),

ht+1 = (α0 + β0st+1) +

g∑
k=1

(αk + βkst+1)ht+1−k + ηt,

ηt ∼ N(0, σ2),

where p and g are the orders of the autoregressive processes
of mean and variance equations, l is the number of exogenous
variables, and qk is the lag of the kth exogenous variable.
The state variable is defined as

st =

{
0 if zt−d < r,

1 if zt−d ≥ r,
(15)

with the threshold value r and the delay d of threshold vari-
able zt both considered unknown parameters.

ACKNOWLEDGEMENTS

We thank the editor and an anonymous referee for their
insightful and helpful comments and suggestions, which im-
proved this paper. Cathy Chen is supported by the grant:
99-2118-M-035-001-MY2 from the National Science Council
(NSC) of Taiwan.

Received 10 September 2010

REFERENCES

Akaike, H. (1974) A new look at the statistical model identifica-
tion. IEEE Transactions on Automatic Control, AC-19, 716–723.
MR0423716

Amendola, A., Niglio, M. and Vitale, C. (2006) The moments of
SETARMA models. Statistics & Probability Letters, 76, 625–633.
MR2255792

Anderson, H. M., Nam, K. and Vahid, F. (1999) Asymmetric non-
linear smooth transition GARCH models. In P. Rothman (ed.),
Nonlinear Time Series Analysis of Economic and Financial Data,
Kluwer, Boston, 191–207. MR2478830

Asai, M. and McAleer, M. (2006) Asymmetric multivariate stochas-
tic volatility. Econometric Reviews, 25, 453–473. MR2256294
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